

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c756a-16-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				1 1	
Register	Address	Power-on Reset Brown-out Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through Interrupt	
Bank 7					
PW3DCL	10h	xx0	uu0	uuu	
PW3DCH	11h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CA3L	12h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
САЗН	13h	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CA4L	14h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CA4H	15h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TCON3	16h	-000 0000	-000 0000	-uuu uuuu	
Unimplemented	17h				
Bank 8					
DDRH	10h	1111 1111	1111 1111	uuuu uuuu	
PORTH ⁽⁴⁾	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
DDRJ	12h	1111 1111	1111 1111	uuuu uuuu	
PORTJ ⁽⁴⁾	13h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
Unbanked					
PRODL	18h	xxxx xxxx	นนนน นนนน	นนนน นนนน	
PRODH	19h	XXXX XXXX	uuuu uuuu	uuuu uuuu	

TABLE 5-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 5-3 for RESET value of specific condition.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

10.0 I/O PORTS

PIC17C75X devices have seven I/O ports, PORTA through PORTG. PIC17C76X devices have nine I/O ports, PORTA through PORTJ. PORTB through PORTJ have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA, PORTB, PORTE<3>, PORTF, PORTG and the upper four bits of PORTH are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer Modules
- Capture Modules
- PWM Modules
- USART/SCI Modules
- SSP Module
- A/D Module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM Module
- SSP Module
- USART/SCI Module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

The other peripheral modules (which require an input) must have their data direction bits configured appropriately.

Note:	A pin that is a peripheral input, can be con-
	figured as an output (DDRx <y> is cleared).</y>
	The peripheral events will be determined
	by the action output on the port pin.

When the device enters the "RESET state", the Data Direction registers (DDR) are forced set, which will make the I/O hi-impedance inputs. The RESET state of some peripheral modules may force the I/O to other operations, such as analog inputs or the system bus.

13.1.3.1 PWM Periods

The period of the PWM1 output is determined by Timer1 and its period register (PR1). The period of the PWM2 and PWM3 outputs can be individually software configured to use either Timer1 or Timer2 as the timebase. For PWM2, when TM2PW2 bit (PW2DCL<5>) is clear, the time base is determined by TMR1 and PR1 and when TM2PW2 is set, the time base is determined by Timer2 and PR2. For PWM3, when TM2PW3 bit (PW3DCL<5>) is clear, the time base is determined by TMR1 and PR1, and when TM2PW3 is set, the time base is determined by Timer2 and PR2.

Running two different PWM outputs on two different timers allows different PWM periods. Running all PWMs from Timer1 allows the best use of resources by freeing Timer2 to operate as an 8-bit timer. Timer1 and Timer2 cannot be used as a 16-bit timer if any PWM is being used.

The PWM periods can be calculated as follows:

period of PWM1 = $[(PR1) + 1] \times 4TOSC$

period of PWM2 = $[(PR1) + 1] \times 4TOSC$ or $[(PR2) + 1] \times 4TOSC$

period of PWM3 =
$$[(PR1) + 1] \times 4TOSC$$
 or
 $[(PR2) + 1] \times 4TOSC$

The duty cycle of PWMx is determined by the 10-bit value DCx<9:0>. The upper 8-bits are from register PWxDCH and the lower 2-bits are from PWxDCL<7:6> (PWxDCH:PWxDCL<7:6>). Table 13-4 shows the maximum PWM frequency (FPWM), given the value in the period register.

The number of bits of resolution that the PWM can achieve depends on the operation frequency of the device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log\left(2\right)} \quad \text{bits}$$

where: FPWM = 1 / period of PWM

The PWMx duty cycle is as follows:

PWMx Duty Cycle = $(DCx) \times TOSC$

where DCx represents the 10-bit value from PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx = PWxDCH, then the PWM output will be low for one to four Q-clocks (depending on the state of the PWxDCL<7:6> bits). For a duty cycle to be 100%, the PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are double buffered. When the user writes to these registers, they are stored in master latches. When TMR1 (or TMR2) overflows and a new PWM period begins, the master latch values are transferred to the slave latches and the PWMx pin is forced high.

Note:	For PW1DCH, PW1DCL, PW2DCH,								
	PW2DCL, PW3DCH and PW3DCL regis-								
	ters, a write operation writes to the "master								
	latches", while a read operation reads the								
	"slave latches". As a result, the user may								
	not read back what was just written to the								
	duty cycle registers (until transferred to								
	slave latch).								

The user should also avoid any "read-modify-write" operations on the duty cycle registers, such as: ADDWF PW1DCH. This may cause duty cycle outputs that are unpredictable.

TABLE 13-4:	PWM FREQUENCY vs.
	RESOLUTION AT 33 MHz

PWM	Frequency (kHz)								
Frequency	32.2	64.5	90.66	128.9	515.6				
PRx Value	0xFF	0x7F	0x5A	0x3F	0x0F				
High Resolution	10-bit	9-bit	8.5-bit	8-bit	6-bit				
Standard Resolution	8-bit	7-bit	6.5-bit	6-bit	4-bit				

13.1.3.2 PWM INTERRUPTS

The PWM modules make use of the TMR1 and/or TMR2 interrupts. A timer interrupt is generated when TMR1 or TMR2 equals its period register and on the following increment is cleared to zero. This interrupt also marks the beginning of a PWM cycle. The user can write new duty cycle values before the timer rollover. The TMR1 interrupt is latched into the TMR1IF bit and the TMR2 interrupt is latched into the TMR2IF bit. These flags must be cleared in software.

13.2.4 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks, twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 13-7 shows the timing diagram when operating from an external clock.

13.2.5 READING/WRITING TIMER3

Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method is to stop the timer, perform any read or write operation and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 freerunning, care must be taken. For writing to the 16-bit TMR3, Example 13-2 may be used. For reading the 16bit TMR3, Example 13-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 13-2: WRITING TO TMR3

BSF	CPUSTA,	GLINTD	;	Disable interrupts
MOVFP	RAM_L,	TMR3L	;	
MOVFP	RAM_H,	TMR3H	;	
BCF	CPUSTA,	GLINTD	;	Done, enable interrupts

EXAMPLE 13-3: READING FROM TMR3

MOVPF	TMR3L,	TMPLO	;	read low TMR3	
MOVPF	TMR3H,	TMPHI	;	read high TMR3	
MOVFP	TMPLO,	WREG	;	tmplo -> wreg	
CPFSLT	TMR3L		;	TMR3L < wreg?	
RETURN			;	no then return	
MOVPF	TMR3L,	TMPLO	;	read low TMR3	
MOVPF	TMR3H,	TMPHI	;	read high TMR3	
RETURN			;	return	

BAUD	Fosc	= 33 MHz	SPBRG	Fosc = 25 N	lHz	SPBRG	FOSC = 2	0 MHz	SPBRG	Fosc = 1	6 MHz	SPBRG
RATE (K)	KBAL	JD %ERROR	VALUE (DECIMAL)	KBAUD %	ERROR	VALUE (DECIMAL)	KBAUD	%ERROR	VALUE (DECIMAL)	KBAUD	%ERROR	VALUE (DECIMAL)
0.3	NA	. —	_	NA	_	_	NA	_	_	NA	_	_
1.2	NA	. —	—	NA	_	—	NA	_	—	NA	—	_
2.4	NA	. —	—	NA	—	—	NA	—	—	NA	—	_
9.6	NA	. —	_	NA	_	_	NA	_	_	NA	_	_
19.2	NA	. —	—	NA	—	—	19.53	+1.73	255	19.23	+0.16	207
76.8	77.1	0 +0.39	106	77.16	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.9	-0.07	85	96.15	+0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.6	64 -1.79	27	297.62	-0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.2	29 -2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	825	0 —	0	6250	_	0	5000	_	0	4000	_	0
LOW	32.2	2 —	255	24.41	_	255	19.53	_	255	15.625	_	255
	ī	FOSC = 10 MHz	2	00000	Fosc	= 7.159 MHz		00000	Fosc = 5.	068 MHz		00000
RAT	JD FE			VALUE				VALUE				VALUE
(K)	KBAUD	%ERROR	(DECIMAL) KB	AUD %	ERROR	(DECIMAL)	KBAUE	D %E	RROR ((DECIMAL)
0.3	3	NA	_	_	-	NA	_	_	NA		_	-
1.2	2	NA	_	—	1	NA	—	_	NA		_	—
2.4	4	NA	—	—	1	NA	—	—	NA		_	—
9.6	6	9.766	+1.73	255	9.	622	+0.23	185	9.6		0	131
19.	2	19.23	+0.16	129	19	9.24	+0.23	92	19.2		0	65
76.	8	75.76	-1.36	32	7	7.82	+1.32	22	79.2	+	3.13	15
96	6	96.15	+0.16	25	94	4.20	-1.88	18	97.48	+	1.54	12
30	0	312.5	+4.17	7	29	98.3	-0.57	5	316.8	+	5.60	3
50	0	500	0	4	1	NA	_	_	NA		_	_
HIG	θH	2500	_	0	17	89.8	_	0	1267		_	0
LO	W	9.766	_	255	6.	991	_	255	4.950		_	255
		Eosc - 3 579 M	Hz		Fosc	= 1 MHz			FOSC = 3	2 768 kHz		
BAU	JD	1 000 - 0.010 M		SPBRG				SPBRG				SPBRG
KAI (K))	KBAUD	%ERROR	(DECIMAL) КВ	AUD %	ERROR	(DECIMAL)	KBAU	о %E	RROR ((DECIMAL)
0.3	3	NA	_	_	1	NA	_	_	0.303	+	1.14	26
1.2	2	NA	_	_	1.	202	+0.16	207	1.170	-:	2.48	6
2.4	4	NA	_	_	2.	404	+0.16	103	NA		_	_
9.6	6	9.622	+0.23	92	9.	615	+0.16	25	NA		_	_
19.	2	19.04	-0.83	46	19	9.24	+0.16	12	NA		_	_
76.	8	74.57	-2.90	11	83	3.34	+8.51	2	NA		_	_
96	6	99.43	_3.57	8	1	NA	_	_	NA		_	_

TABLE 14-4:	BAUD RATES FOR SYNCHRONOUS MODE
-------------	--

298.3

NA

894.9

3.496

-0.57

_

_

2

—

0

255

NA

NA

250

0.976

_

_

_

_

_

0

255

NA

NA

8.192

0.032

_

_

_

_

_

_

0

255

300

500

HIGH

LOW

						•	•	•			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
	bit 7							bit 0			
bit 7	GCEN : General Call Enable bit (in I ² C Slave mode only) 1 = Enable interrupt when a general call address (0000h) is received in the SSPSR 0 = General call address disabled										
hit 6		ai cali auures: • Δcknowledge	s Status hit	(in I ² C Maste	ar mode only	ı)					
Dit O	In Master Transmit mode: 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave										
bit 5	ACKDT: A	kcknowledge D	Data bit (in l ²	² C Master me	ode only)						
	In Master Value that receive. 1 = Not Ac 0 = Ackno	Receive mode will be transm cknowledge wledge	<u>e:</u> nitted when t	the user initia	ates an Ackr	nowledge see	quence at th	e end of a			
bit 4	ACKEN: A	Acknowledge S	Sequence E	nable bit (in	I ² C Master r	node only)					
	In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins and transmit AKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence idle										
	Note:	If the I ² C mo	dule is not i	in the IDLE n	node, this bi	t may not be	set (no spo	oling) and			
		the SSPBUF	may not be	e written (or v	vrites to the	SSPBUF are	e disabled).				
bit 3	RCEN: Re 1 = Enable 0 = Receiv	eceive Enable es Receive mo ve idle	bit (in I ² C N ode for I ² C	laster mode	only)						
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	e set (no spo e disabled).	oling) and			
bit 2	PEN: STC	P Condition E	nable bit (ir	n I ² C Master	mode only)						
	<u>SCK Rele</u> 1 = Initiate 0 = STOP	ase Control: STOP condit condition idle	ion on SDA	and SCL pir	is. Automati	cally cleared	by hardware	Э.			
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	e set (no spo e disabled).	oling) and			
bit 1	RSEN : Re 1 = Initiate 0 = Repea	epeated Start C e Repeated Sta ated Start conc	Condition Er art condition lition idle	nabled bit (in on SDA and	I ² C Master I SCL pins. <i>I</i>	mode only) Automatically	/ cleared by	hardware.			
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	set (no spo disabled).	oling) and			
bit 0	SEN: STA 1 = Initiate 0 = STAR	RT Condition START cond T condition idle	Enabled bit ition on SD/ e.	(In I ² C Maste A and SCL pi	er mode onl ns. Automa	y) tically cleare	d by hardwa	re.			
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	e set (no spo e disabled).	oling) and			
	Legend:										
	R = Read	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									

- n = Value at POR Reset '1' = Bit is set

REGISTER 15-3: SSPCON2: SYNC SERIAL PORT CONTROL REGISTER2 (ADDRESS 12h, BANK 6)

x = Bit is unknown

'0' = Bit is cleared

15.1.4 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 15-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming bit CKP (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in

Figure 15-6, Figure 15-8 and Figure 15-9, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 33 MHz) of 8.25 MHz.

Figure 15-6 shows the waveforms for Master mode. When CKE = 1, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 15-6: SPI MODE WAVEFORM (MASTER MODE)

EXAMPLE 15-2: INTERFACING TO A 24LC01B SERIAL EEPROM (USING MPLAB C17)

```
// Writes the byte data to 24LC01B at the specified address
void ByteWrite(static unsigned char address, static unsigned char data)
{
   StartI2C();
                                    // Send start bit
                                    // Wait for idle condition
   IdleI2C();
   WriteI2C(CONTROL);
                                    // Send control byte
   IdleI2C();
                                    // Wait for idle condition
   if (!SSPCON2bits.ACKSTAT)
                                    // If 24LC01B ACKs
    {
       WriteI2C(address);
                                    // Send control byte
       IdleI2C();
                                    // Wait for idle condition
                                    // If 24LC01B ACKs
       if (!SSPCON2bits.ACKSTAT)
           WriteI2C(data);
                                    // Send data
   }
   IdleI2C();
                                    // Wait for idle condition
   StopI2C();
                                    // Send stop bit
                                    // Wait for idle condition
   IdleI2C();
   return;
// Reads a byte of data from 24LC01B at the specified address
unsigned char ByteRead(static unsigned char address)
                                    // Send start bit
   StartI2C();
   IdleI2C();
                                    // Wait for idle condition
   WriteI2C(CONTROL);
                                    // Send control byte
   IdleI2C();
                                    // Wait for idle condition
    if (!SSPCON2bits.ACKSTAT)
                                    // If the 24LC01B ACKs
    {
                                    // Send address
       WriteI2C(address);
                                    // Wait for idle condition
       IdleI2C();
       if (!SSPCON2bits.ACKSTAT) // If the 24LC01B ACKs
       {
           RestartI2C();
                                    // Send restart
           IdleI2C();
                                   // Wait for idle condition
                                 // Send control byte with R/W set
           WriteI2C(CONTROL+1);
           IdleI2C();
                                    // Wait for idle condition
                                      // If the 24LC01B ACKs
           if (!SSPCON2bits.ACKSTAT)
           {
                                        // Read a byte of data from 24LC01B
               getcI2C();
                                       // Wait for idle condition
               IdleI2C();
               NotAckI2C();
                                       // Send a NACK to 24LC01B
               IdleI2C();
                                       // Wait for idle condition
                                       // Send stop bit
               StopI2C();
               IdleI2C();
                                        // Wait for idle condition
             }
       }
    }
   return(SSPBUF);
```

16.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 16-6 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/ D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8bit registers.

16.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from

FIGURE 16-6: A/D RESULT JUSTIFICATION

SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To allow the conversion to occur during SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

16.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

CAL	L	Subroutine Call							
Synt	ax:	[label]	[<i>label</i>] CALL k						
Ope	rands:	$0 \le k \le 81$	91						
Ope	ration:	PC+ 1 \rightarrow TOS, k \rightarrow PC<12:0>, k<12:8> \rightarrow PCLATH<4:0>; PC<15:13> \rightarrow PCLATH<7:5>							
Statu	us Affected:	None							
Enco	oding:	111k	kkkk kk	kk kkkk					
Desc	cription:	Subroutine return addr the stack. T into PC bits eight bits of PCLATH. C instruction. See LCALL space.	Subroutine call within 8K page. First, return address (PC+1) is pushed onto the stack. The 13-bit value is loaded into PC bits<12:0>. Then the upper- eight bits of the PC are copied into PCLATH. CALL is a two-cycle instruction. See LCALL for calls outside 8K memory space.						
Word	ds:	1	1						
Cycl	es:	2	2						
QC	cle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'<7:0>, Push PC to stack	Process Data	Write to PC					
	No	No	No	No					

CLR	F	Clear f					
Synt	ax:	[<i>label</i>] CLI	[<i>label</i>] CLRF f,s				
Ope	rands:	$0 \le f \le 255$	5				
Ope	ration:	$00h \rightarrow f, s$ $00h \rightarrow des$	s ∈ [0,1] st				
State	us Affected:	None					
Enco	oding:	0010	100s	ffff	ffff		
Des	cription:	Clears the register(s). s = 0: Data WREG are s = 1: Data cleared.	Clears the contents of the specified register(s). s = 0: Data memory location 'f' and WREG are cleared. s = 1: Data memory location 'f' is cleared.				
Wor	ds:	1	1				
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Process Data	s re sp	Write gister 'f' and if pecified WREG		
Example: CLRF FLAG_REG, 1 Before Instruction FLAG_REG = 0x5A WREG = 0x01 After Instruction FLAG_REG = 0x00 WDEC 0:01				1			
		= ()Y	01				

Example: HERE CALL THERE

operation

operation

operation

Before Instruction

operation

PC = Address (HERE)

After Instruction

PC = Address (THERE)

TOS = Address (HERE + 1)

INC	F	Incremer	Increment f				
Synt	ax:	[label]	INCF f	,d			
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in [0,1] \end{array}$	5				
Ope	ration:	(f) + 1 \rightarrow	(dest)				
Statu	us Affected:	OV, C, D0	C, Z				
Enco	oding:	0001	010d	ffff	ffff		
Deso	cription:	The conter mented. If WREG. If back in reg	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'.				
Wor	ds:	1					
Cycl	es:	1					
QC	vcle Activity:						
	Q1	Q2	Q3	3	Q4		
	Decode	Read register 'f'	Proce Dat	ess V a de	Vrite to stination		
<u>Exar</u>	<u>mple</u> :	INCF	CNT,	1			
	Before Instru	iction					
	CNT	= 0xFF					
	C	= 0 = ?					
	After Instruct	tion					
	CNT	= 0x00					
	Z	= 1					
	С	= 1					

INC	FSZ	Incremen	Increment f, skip if 0				
Synt	ax:	[label]	INCFSZ f	,d			
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$	5				
Ope	ration:	(f) + 1 \rightarrow skip if res	(dest) ult = 0				
Statu	us Affected:	None					
Enco	oding:	0001	111d f	fff	ffff		
Description: The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched is discarded and a NOP is executed instead, makin it a two orde instruction					incre- placed in placed uction, carded I, making		
Wor	ds:	1	1				
Cycl	es:	1(2)					
QC	cle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Process Data	V de	Vrite to stination		
lf sk	ip:						
	Q1	Q2	Q3		Q4		
	No operation	No operation	No operation	op	No peration		
Example:		HERE NZERO ZERO	INCFSZ : :	CNT,	1		
	Before Instru PC	iction = Addres	S (HERE)				
After Instruction CNT = CNT + 1 If CNT = 0; PC = Address (ZERO)							

- If CNT \neq 0;
 - PC = Address (NZERO)

PIC17C7XX

SUBW	/F	S	ubtra	ct	WREG from	n f
Syntax		[label]	5	SUBWF f,d	
Opera	nds:	0 d	≤ f ≤ 2 ∈ [0,2	25 1]	5	
Operat	tion:	(f) – (W	/) -	→ (dest)	
Status	Affected:	C	V, C,	D	C, Z	
Encod	ing:		0000		010d fff	f ffff
Descri	ption:	S C re re	ompler ompler esult is esult is	t W ne sto sto	/REG from rec nt method). If pred in WREG. ored back in re	jister 'f' (2's d' is 0, the If 'd' is 1, the egister 'f'.
Words	:	1				
Cycles	:	1				
Q Cycl	le Activity:					
_	Q1		Q2		Q3	Q4
	Decode	F reg	Read gister 'f	•	Process Data	Write to destination
Examp	<u>ble 1</u> :	S	UBWF		REG1, 1	
Be	efore Instru	ictior	า			
	REG1 WREG C	= = =	3 2 ?			
Af	ter Instruct REG1 WREG C Z	tion = = = =	1 2 1 0	; 1	result is positiv	'e
Examp	ole 2:					
Be	efore Instru REG1 WREG C	ictior = = =	ו 2 2 ?			
Af	ter Instruct REG1 WREG C Z	tion = = = =	0 2 1 1	; 1	result is zero	
Examp	ole <u>3</u> :					
Be	efore Instru REG1 WREG C	ictior = = =	ו 1 2 ?			
Af	ter Instruct	tion				
	REG1 WREG C Z	= = =	FF 2 0 0	; I	result is negati	ve

SUB	WFB	Su Bo	Subtract WREG from f with Borrow				
Synta	ax:	[<i>la</i>	[label] SUBWFB f,d				
Oper	ands:	0 ≤ d ∈	≤ f ≤ 25 ₌ [0,1]	5			
Oper	ation:	(f)	- (W) -	$\overline{C} \rightarrow (c$	lest)		
Statu	s Affected:	O٧	/, C, D(C, Z			
Enco	ding:	0	0000	001d	fff	f	ffff
Description:			btract W prrow) fr nt meth red in W red bac	/REG and om regist iod). If 'd' /REG. If ' k in regis	d the er 'f' is 0, d' is 1 ter 'f'.	carry (2's co the re , the i	flag omple- sult is result is
Word	ls:	1					
Cycle	es:	1					
Q Cy	cle Activity:						
-	Q1	C	2	Q3		(Q4
	Decode	Re	ead	Proce	SS	W	rite to
		regis		Dala	I	uesi	Ination
<u>Exan</u>	<u>nple 1</u> :	SUI	BWFB	REG1, 1	L		
Exan E	Before Instruct REG1 WREG C After Instruct REG1 WREG C Z Before Instruct REG1 WREG C After Instruct REG1 WREG C	iction = () = () icion = = () substitution = iction = = () = () = () = () = () = () = () = () = () = () = () = () = ()	Dx19 Dx0D 1 Dx0C Dx0D 1 Dx0D 1 Dx1B Dx1A Dx1A Dx1B Dx1A Dx1B Dx10 1	(0001 (0000 (0000) ; result EEG1, 0 (0001 (0001 (0001 ; result	1001 110 101 110 is po 101 101 101 is ze	1) 1) 1) sitive 1) 0) 1)	
	Z	= ´	1				
<u>Exan</u>	nple3:	SUBI	WFB R	EG1,1			
E	Before Instru REG1 WREG C	iction = (= (= ^	0x03 0x0E 1	(0000 (0000	0013	1) 1)	
ŀ	REG1 WREG C Z	non = (= (= (= (0xF5 0x0E 0	(1111 (0000 ; result	010 110 is ne	0) [2's 1) egative	e comp]

TABLRD	Table Read				
Example1:	TABLRD	1, 1,	REG ;		
Before Instruc REG TBLATH TBLATL TBLPTR MEMORY(tion TBLPTR)	= = = =	0x53 0xAA 0x55 0xA356 0x1234		
After Instruction REG TBLATH TBLATL TBLPTR MEMORY(on (table v TBLPTR)	vrite con = = = = =	mpletion) 0xAA 0x12 0x34 0xA357 0x5678		
Example2:	TABLRD	0, 0,	REG ;		
Before Instruc REG TBLATH TBLATL TBLPTR MEMORY(tion TBLPTR)	= = = =	0x53 0xAA 0x55 0xA356 0x1234		
After Instructio REG TBLATH TBLATL TBLPTR MEMORY(n (table v	vrite coi = = = =	mpletion) 0x55 0x12 0x34 0xA356 0x1234		

TAB	LWT	Table Wri	ite			
Synt	ax:	[label]	TABLWT t,	i,f		
Ope	rands:	$0 \le f \le 25$	5			
		i ∈ [0,1] t ∈ [0,1]				
Ope	ration:	lf t = 0.				
000		$f \rightarrow TBLA$	TL;			
		If $t = 1$,	τц.			
		$T \rightarrow TBLA$ TBLAT \rightarrow	Prog Men	n (TBLPTR);		
		If i = 1,	.			
		IBLPIR · If i – 0	$+1 \rightarrow IBL$	PIR		
		TBLPTR i	s unchang	ed		
Statu	us Affected	: None				
Enco	oding:	1010	11ti i	fff ffff		
Des	cription:	1. Load	value in 'f' ir	nto 16-bit table		
		latch (If t = 1	(TBLAT) I: load into h	niah byte:		
		If $t = 0$): load into l	ow byte		
		2. The c	ontents of T	BLAT are writ-		
		locatio	on pointed to	by TBLPTR.		
		If TB	LPTR point	ts to external		
		the in:	struction tak	es two-cycle.		
		If TBL	PTR points	to an internal		
		instru	ction is ter	minated when		
	te. The	an inte	errupt is rec	eived.		
INC	volta	ige for success	ful program	ming of internal		
	men	ory.				
	the p	programming se	gramming sequence of internal memory			
	will Toy)	be interrupted.	interrupted. A short write will occur (2			
	affeo	ted.	nemery loo			
		3. The T	BLPTR car	n be automati-		
		cally i If i = 1	ncremented	is not		
		11 : 0	incremen	ted		
Wor	do.	IT I = C	; IBLPIR	is incremented		
Cycl	us.	ı 2 (many if	write is to	on chin		
Cyci	63.	EPROM p	EPROM program memory)			
QC	ycle Activity	/:				
	Q1	Q2	Q3	Q4		
	Decode	Read	Process	Write		
		register T	Data	TBLATH or		
				TBLATL		
	No operation	No operation	No operation	No operation		
		(Table Pointer		(Table Latch on		
		on Address bus)		Address bus, WR goes low)		
	No operation	No operation (Table Pointer on Address bus)	No operation	No operation (Table Latch on <u>Add</u> ress bus, WR goes low)		

FIGURE 20-5: PARAMETER MEASUREMENT INFORMATION

FIGURE 20-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET TIMING

TABLE 20-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (Id	ow)	100	_		ns	Vdd = 5V
31	Twdt	Watchdog Timer Time-out Period (Postscale = 1)		5	12	25	ms	VDD = 5V
32	Tost	Oscillation Start-up Tir	mer Period	_	1024Tosc	_	ms	Tosc = OSC1 period
33	TPWRT	Power-up Timer Perio	d	40	96	200	ms	Vdd = 5V
34	Tioz	MCLR to I/O hi-imped	ance	100		l	ns	Depends on pin load
35	TmcL2adI	MCLR to System PIC17C7XX		_		100	ns	
		Interface bus (AD15:AD0>) invalid	PIC17 LC 7XX	—		120	ns	
36	TBOR	Brown-out Reset Pulse Width (low)		100	_	—	ns	VDD within VBOR limits (parameter D005)
†	Data in "Typ	" column is at 5V, 25°C	unless otherwise s	stated.				

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

.

PIC17C7XX

FIGURE 20-25: MEMORY INTERFACE READ TIMING

TABLE 20-21: MEMORY INTERFACE READ REQUIREMENTS

Param. No.	Sym	Characteristic		Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD15:AD0 (address) valid to	PIC17 C XXX	0.25Tcy - 10	_	—	ns	
		ALE↓ (address setup time)	PIC17LCXXX	0.25Tcy - 10	_	—		
151	TalL2adl	ALE \downarrow to address out invalid	PIC17 C XXX	5	_	_	ns	
		(address hold time)	PIC17LCXXX	5		_		
160	TadZ2oeL	AD15:AD0 hi-impedance to	PIC17 C XXX	0	_	_	ns	
		OE↓	PIC17LCXXX	0		_		
161	ToeH2ad	OE [↑] to AD15:AD0 driven	PIC17 C XXX	0.25Tcy - 15		_	ns	
	D		PIC17 LC XXX	0.25Tcy - 15		_		
162	TadV2oeH	Data in valid before \overline{OE}^{\uparrow}	PIC17 C XXX	35		_	ns	
		(data setup time)	PIC17 LC XXX	45				
163	ToeH2adl	OE [↑] to data in invalid	PIC17 C XXX	0	_		ns	
		(data hold time)	PIC17 LC XXX	0	_			
164	TalH	ALE pulse width	PIC17 C XXX	_	0.25TCY	—	ns	
			PIC17LCXXX	—	0.25TCY	—		
165	ToeL	OE pulse width	PIC17 C XXX	0.5Tcy - 35	_	_	ns	
			PIC17LCXXX	0.5Tcy - 35		_		
166	TalH2alH	ALE↑ to ALE↑(cycle time)	PIC17 C XXX	—	Тсү	—	ns	
			PIC17LCXXX	—	TCY	—		
167	Tacc	Address access time	PIC17 C XXX	_	_	0.75Tcy - 30	ns	
			PIC17LCXXX		_	0.75Tcy - 45		
168	Toe	Output enable access time	PIC17 C XXX		_	0.5Tcy - 45	ns	
		(OE low to data valid)	PIC17LCXXX	_		0.5Tcy - 75		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

TABLE 21-2: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Average Fosc @ 5V, +25°C		
22 pF	10k	3.33 MHz	± 12%	
	100k	353 kHz	± 13%	
100 pF	3.3k	3.54 MHz	± 10%	
	5.1k	2.43 MHz	± 14%	
	10k	1.30 MHz	± 17%	
	100k	129 kHz	± 10%	
300 pF	3.3k	1.54 MHz	± 14%	
	5.1k	980 kHz	± 12%	
	10k	564 kHz	± 16%	
	160k	35 kHz	± 18%	

PIC17C7XX

FIGURE 21-21: TYPICAL, MAXIMUM AND MINIMUM VIN vs. VDD (TTL INPUT, -40°C to 125°C)

NOTES: