

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c756at-33e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC17C7XX

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
Bank 2											
10h	TMR1	Timer1's R	legister							xxxx xxxx	uuuu uuuu
11h	TMR2	Timer2's R	legister							xxxx xxxx	uuuu uuuu
12h	TMR3L	Timer3's R	egister; Lov	v Byte						xxxx xxxx	uuuu uuuu
13h	TMR3H	Timer3's R	egister; Hig	h Byte						xxxx xxxx	uuuu uuuu
14h	PR1	Timer1's P	eriod Regis	ter						xxxx xxxx	uuuu uuuu
15h	PR2	Timer2's P	eriod Regis	ter						xxxx xxxx	uuuu uuuu
16h	PR3L/CA1L	Timer3's P	eriod Regis	ter - Low Byt	te/Capture1 F	Register; Lo	w Byte			xxxx xxxx	uuuu uuuu
17h	PR3H/CA1H	Timer3's P	eriod Regis	ter - High By	te/Capture1	Register; Hi	gh Byte			xxxx xxxx	uuuu uuuu
Bank 3											
10h	PW1DCL	DC1	DC0	—	—	—	—	—	—	xx	uu
11h	PW2DCL	DC1	DC0	TM2PW2	—	—	—	—	—	xx0	uu0
12h	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
14h	CA2L	Capture2 I	low Byte	•	•					XXXX XXXX	uuuu uuuu
15h	CA2H	Capture2 I	High Byte							XXXX XXXX	uuuu uuuu
16h	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
Bank 4											
10h	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
12h	Unimplemented	—	—	—	—	—	—	—	—		
13h	RCSTA2	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG2	Serial Port	Receive Re	egister for US	SART2					xxxx xxxx	uuuu uuuu
15h	TXSTA2	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	0000lu
16h	TXREG2	Serial Port	Transmit R	egister for U	SART2					xxxx xxxx	uuuu uuuu
17h	SPBRG2	Baud Rate	Generator	for USART2						0000 0000	0000 0000
Bank 5:											
10h	DDRF	Data Direc	tion Registe	er for PORTF	:					1111 1111	1111 1111
11h	PORTF ⁽⁴⁾	RF7/ AN11	RF6/ AN10	RF5/ AN9	RF4/ AN8	RF3/ AN7	RF2/ AN6	RF1/ AN5	RF0/ AN4	0000 0000	0000 0000
12h	DDRG	Data Direc	tion Registe	er for PORTO	6					1111 1111	1111 1111
13h	PORTG ⁽⁴⁾	RG7/ TX2/CK2	RG6/ RX2/DT2	RG5/ PWM3	RG4/ CAP3	RG3/ AN0	RG2/ AN1	RG1/ AN2	RG0/ AN3	xxxx 0000	uuuu 0000
14h	ADCON0	CHS3	CHS2	CHS1	CHS0	—	GO/DONE	—	ADON	0000 -0-0	0000 -0-0
15h	ADCON1	ADCS1	ADCS0	ADFM	—	PCFG3	PCFG2	PCFG1	PCFG0	000- 0000	000- 0000
16h	ADRESL	A/D Result	t Register Lo	ow Byte						xxxx xxxx	uuuu uuuu
17h	ADRESH	A/D Result	t Register H	igh Byte						xxxx xxxx	uuuu uuuu
Legend:	x = unknown, u Shaded cells at	-		•	, read as '0',	q = value d	epends on c	ondition.			

TABLE 7-3: SPECIAL FUNCTION REGISTERS (CONTINUED)

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
Bank 6	•		•								
10h	SSPADD	SSP Addre	ess Register	in I ² C Slave	e mode. SSF	Baud Rate	Reload Regi	ster in I ² C Ma	aster mode	0000 0000	0000 0000
11h	SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
12h	SSPCON2	GCEN	AKSTAT	AKDT	AKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
13h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
14h	SSPBUF	Synchrono	ous Serial Po	•	xxxx xxxx	uuuu uuuu					
15h	Unimplemented	_	—	—	—	_	—	—	_		
16h	Unimplemented	_	_	_	_	_	_	_	_		
17h	Unimplemented	_	_		_	_	_	_	_		
Bank 7	•					•			•		
10h	PW3DCL	DC1	DC0	TM2PW3	_	_	_	_	_	xx0	uu0
11h	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
12h	CA3L	Capture3 I	_ow Byte							xxxx xxxx	uuuu uuuu
13h	САЗН	Capture3 I								xxxx xxxx	uuuu uuuu
14h	CA4L	Capture4 I	_ow Byte							xxxx xxxx	uuuu uuuu
15h	CA4H	Capture4 I	High Byte							xxxx xxxx	uuuu uuuu
16h	TCON3		CA40VF	CA30VF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
17h	Unimplemented	_		_		_	_	_	_		
Bank 8 ⁽³⁾						•			•		
10h ⁽³⁾	DDRH	Data Direc	tion Registe	r for PORTH	1					1111 1111	1111 1111
	PORTH ⁽⁴⁾	RH7/ AN15	RH6/ AN14	RH5/ AN13	RH4/ AN12	RH3	RH2	RH1	RH0	xxxx xxxx	uuuu uuuu
12h ⁽³⁾	DDRJ	Data Direc	tion Registe	r for PORTJ						1111 1111	1111 1111
13h ⁽³⁾	PORTJ ⁽⁴⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx xxxx	uuuu uuuu
14h ⁽³⁾	Unimplemented	_	_	_	_	_		_	_		
15h ⁽³⁾	Unimplemented		_	_	_	_	_	_	_		
16h ⁽³⁾	Unimplemented			_	_	_	_	_	_		
17h ⁽³⁾	Unimplemented			_		_			_		
Unbanke			1								
18h	PRODL Low Byte of 16-bit Product (8 x 8 Hardware Multiply)									XXXX XXXX	uuuu uuuu
19h	PRODH	-			Hardware Mu					xxxx xxxx	uuuu uuuu

SPECIAL FUNCTION REGISTERS (CONTINUED) TABLE 7-3

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose

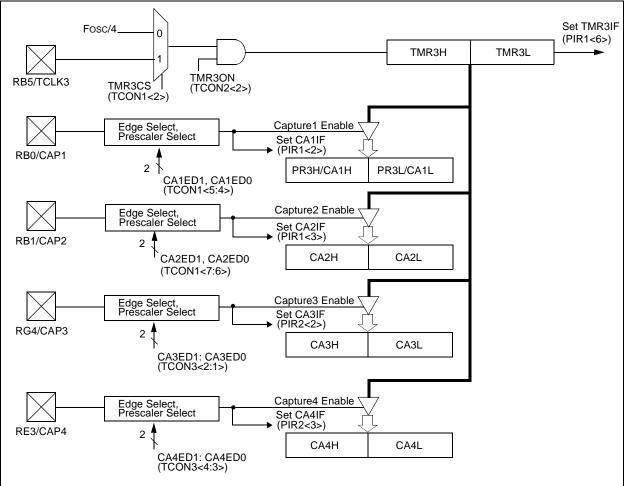
contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.


6: On any device RESET, these pins are configured as inputs.

13.2.2 FOUR CAPTURE MODE

This mode is selected by setting bit CA1/PR3. A block diagram is shown in Figure 13-6. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this rollover. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set upon detection of the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

All the captures operate in the same manner. Refer to Section 13.2.1 for the operation of capture.

FIGURE 13-6: TIMER3 WITH FOUR CAPTURES BLOCK DIAGRAM

	F aat			F			F			F		
BAUD	FOSC	= 33 MHz	SPBRG	FOSC = 25 Mł	1Z	SPBRG	FOSC = 2	0 MHz	SPBRG	FOSC = 1	6 MHz	SPBRG
RATE			VALUE			VALUE		**	VALUE		**	VALUE
(K)	KBAL		(DECIMAL)		RROR	(DECIMAL)		%ERROR	(DECIMAL)	KBAUD	%ERROR	(DECIMAL)
0.3	NA	. —	—	NA	-	_	NA	_	—	NA	_	_
1.2	NA	. —	—	NA	_	_	NA	_	_	NA	_	_
2.4	NA	. —	—	NA	_	_	NA	_	_	NA	_	_
9.6	NA	. —	—	NA	—	—	NA	—	—	NA	—	—
19.2	NA	. —	—	NA	—	—	19.53	+1.73	255	19.23	+0.16	207
76.8	77.1	0 +0.39	106	77.16 -	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.9	3 -0.07	85	96.15 -	-0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.6	64 -1.79	27	297.62	0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.2	29 -2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	825	0 —	0	6250	_	0	5000	_	0	4000	_	0
LOW	32.2	2 —	255	24.41	_	255	19.53	—	255	15.625	—	255
5.41	15	Fosc = 10 MHz	Z	00000	Fosc	= 7.159 MHz		00000	Fosc = 5	.068 MHz		00000
BAU RAT				SPBRG VALUE				SPBRG VALUE				SPBRG VALUE
(K		KBAUD	%ERROR	(DECIMAL)	KB	AUD %	ERROR	(DECIMAL)	KBAUI	D %E	RROR	(DECIMAL)
0.3	3	NA			Ν	NA	_	_	NA		-	—
1.2	2	NA	—	_	Ν	٨A	_	—	NA		_	_
2.4	4	NA	_	—	Ν	١A	_	—	NA		-	_
9.0	6	9.766	+1.73	255	9.	622	+0.23	185	9.6		0	131
19.	.2	19.23	+0.16	129	19	.24	+0.23	92	19.2		0	65
76.	.8	75.76	-1.36	32	77	.82	+1.32	22	79.2	+	3.13	15
96	6	96.15	+0.16	25	94	.20	-1.88	18	97.48	+	1.54	12
30	0	312.5	+4.17	7	29	98.3	-0.57	5	316.8	+	5.60	3
50	0	500	0	4	Ν	١A	_	—	NA		-	_
HIG	θH	2500	—	0	17	89.8	_	0	1267		_	0
LO	W	9.766	—	255	6.9	991	_	255	4.950		_	255
		Fosc = 3.579 M	IH7		Fosc	= 1 MHz			FOSC = 3	2.768 kHz		
BAU				SPBRG				SPBRG				SPBRG
RAT (K		KBAUD	%ERROR	VALUE (DECIMAL)	KB	AUD %	ERROR	VALUE (DECIMAL)	KBAU	D %E	RROR	VALUE (DECIMAL)
0.3	3	NA			N	NA	_		0.303	+	1.14	26
1.2		NA	_	_			+0.16	207	1.170		2.48	6
2.4		NA	_	_			+0.16	103	NA		_	
9.6		9.622	+0.23	92			+0.16	25	NA		_	_
19.		19.04	-0.83	46			+0.16	12	NA		_	_
76.		74.57	-2.90	10	-		+8.51	2	NA		_	_
96		99.43	_3.57	8		NA	_	_	NA		_	_
	-	00.10	_0.07	-	1 .							

TABLE 14-4:	BAUD RATES FOR SYNCHRONOUS MODE
-------------	---------------------------------

298.3

NA

894.9

3.496

-0.57

_

_

2

—

0

255

NA

NA

250

0.976

—

_

_

_

_

0

255

NA

NA

8.192

0.032

_

_

_

_

_

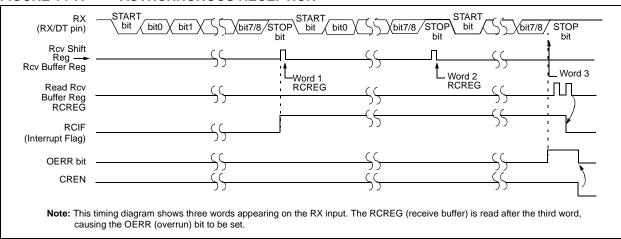
_

0

255

300

500


HIGH

LOW

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- 7. Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 14-7: ASYNCHRONOUS RECEPTION

TABLE 14-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC		—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register						0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for asynchronous reception.

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and A/D interrupt flag bit, ADIF is set. The block diagrams of the A/D module are shown in Figure 16-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding DDR bits selected as inputs. To determine sample time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure analog pins/voltage reference/ and digital I/O (ADCON1)
 - b) Select A/D input channel (ADCON0)
 - c) Select A/D conversion clock (ADCON0)
 - d) Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - a) Clear ADIF bit
 - b) Set ADIE bit
 - c) Clear GLINTD bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - a) Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - a) Polling for the GO/DONE bit to be cleared OR
 - b) Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

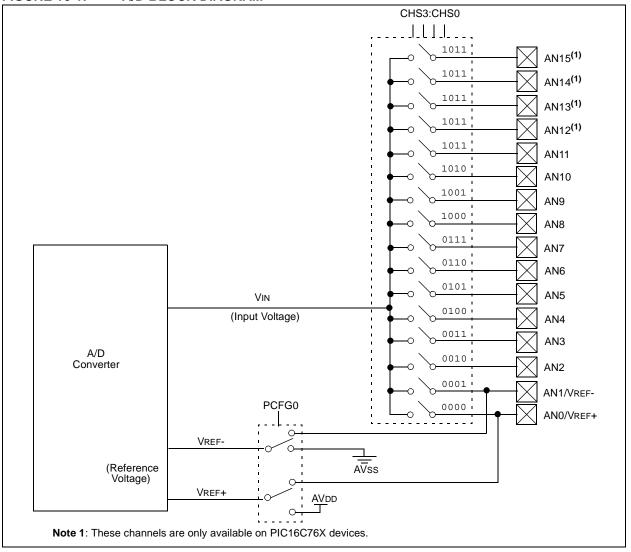
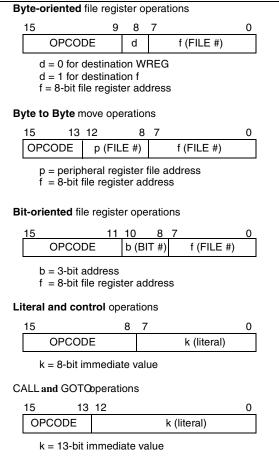


Table 18-2 lists the instructions recognized by the MPASM assembler.

Note 1: Any unused opcode is Reserved. Use of any reserved opcode may cause unexpected operation.

All instruction examples use the following format to represent a hexadecimal number:

0xhh


where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 18-1: GENERAL FORMAT FOR INSTRUCTIONS

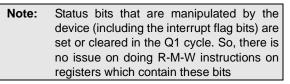
18.1 Special Function Registers as Source/Destination

The PIC17C7XX's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

18.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA and then set the Z bit leaving 0000 0100b in the register.

18.1.2 PCL AS SOURCE OR DESTINATION


Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCH \to PCLATH; PCL \to dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	PCL \rightarrow ALU operand PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

18.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write (R-M-W)). The user should keep this in mind when operating on some special function registers, such as ports.

TABLE 18-2: PIC17CXXX INSTRUCTION SET

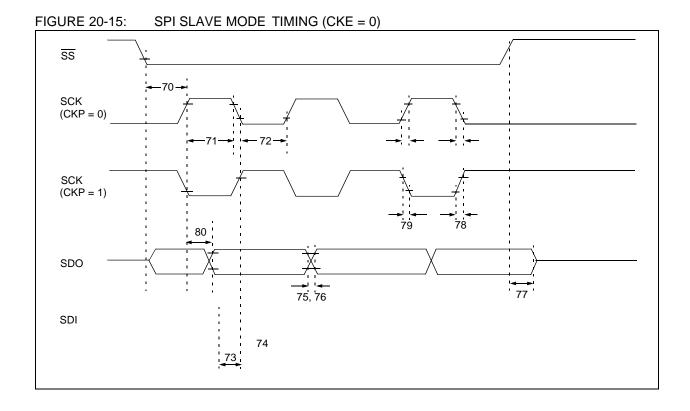
Mnemonic	,	Description	Cycles		16-bit C	Opcode	1	Status	Nete-
Operands		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED	FILE REGISTER OPERATIONS						1	
ADDWF	f,d	ADD WREG to f	1	0000	111d	ffff	ffff	OV,C,DC,Z	
ADDWFC	f,d	ADD WREG and Carry bit to f	1	0001	000d	ffff	ffff	OV,C,DC,Z	
ANDWF	f,d	AND WREG with f	1	0000	101d	ffff	ffff	Z	
CLRF	f,s	Clear f, or Clear f and Clear WREG	1	0010	100s	ffff	ffff	None	3
COMF	f,d	Complement f	1	0001	001d	ffff	ffff	Z	
CPFSEQ	f	Compare f with WREG, skip if f = WREG	1 (2)	0011	0001	ffff	ffff	None	6,8
CPFSGT	f	Compare f with WREG, skip if f > WREG	1 (2)	0011	0010	ffff	ffff	None	2,6,8
CPFSLT	f	Compare f with WREG, skip if f < WREG	1 (2)	0011	0000	ffff	ffff	None	2,6,8
DAW	f,s	Decimal Adjust WREG Register	1	0010	111s	ffff	ffff	С	3
DECF	f,d	Decrement f	1	0000	011d	ffff	ffff	OV,C,DC,Z	
DECFSZ	f,d	Decrement f, skip if 0	1 (2)	0001	011d	ffff	ffff	None	6,8
DCFSNZ	f,d	Decrement f, skip if not 0	1 (2)	0010	011d	ffff	ffff	None	6,8
INCF	f,d	Increment f	1	0001	010d	ffff	ffff	OV,C,DC,Z	
INCFSZ	f,d	Increment f, skip if 0	1 (2)	0001	111d	ffff	ffff	None	6,8
INFSNZ	f,d	Increment f, skip if not 0	1 (2)	0010	010d	ffff	ffff	None	6,8
IORWF	f,d	Inclusive OR WREG with f	1	0000	100d	ffff	ffff	Z	
MOVFP	f,p	Move f to p	1	011p	pppp	ffff	ffff	None	
MOVPF	p,f	Move p to f	1	010p	pppp	ffff	ffff	Z	
MOVWF	f	Move WREG to f	1	0000	0001	ffff	ffff	None	
MULWF	f	Multiply WREG with f	1	0011	0100	ffff	ffff	None	
NEGW	f,s	Negate WREG	1	0010	110s	ffff	ffff	OV,C,DC,Z	1,3
NOP	_	No Operation	1	0000	0000	0000	0000	None	
RLCF	f,d	Rotate left f through Carry	1	0001	101d	ffff	ffff	С	
RLNCF	f,d	Rotate left f (no carry)	1	0010	001d	ffff	ffff	None	
RRCF	f,d	Rotate right f through Carry	1	0001	100d	ffff	ffff	С	
RRNCF	f,d	Rotate right f (no carry)	1	0010	000d	ffff	ffff	None	
SETF	f,s	Set f	1	0010	101s	ffff	ffff	None	3
SUBWF	f,d	Subtract WREG from f	1	0000	010d	ffff	ffff	OV,C,DC,Z	1
SUBWFB	f,d	Subtract WREG from f with Borrow	1	0000	001d	ffff	ffff	OV,C,DC,Z	1
SWAPF	f,d	Swap f	1	0001	110d	ffff	ffff	None	
TABLRD	t,i,f	Table Read	2 (3)	1010	10ti	ffff	ffff	None	7
TABLWT	t,i,f	Table Write	2	1010	11ti	ffff	ffff	None	5
TLRD	t,f	Table Latch Read	1	1010	00tx	ffff	ffff	None	
TLWT	t,f	Table Latch Write	1	1010	01tx	ffff	ffff	None	

Legend: Refer to Table 18-1 for opcode field descriptions.

Note 1: 2's Complement method.

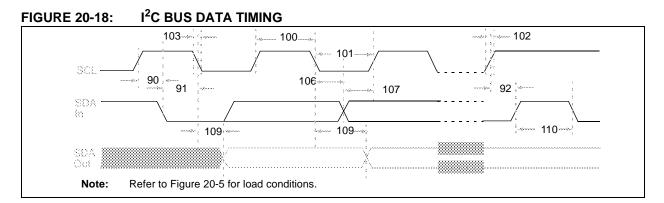
2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.


4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL).

5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.

6: Two-cycle instruction when condition is true, else single cycle instruction.


7: Two-cycle instruction except for TABLRD to PCL (program counter low byte), in which case it takes 3 cycles.

8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead a NOP is executed.

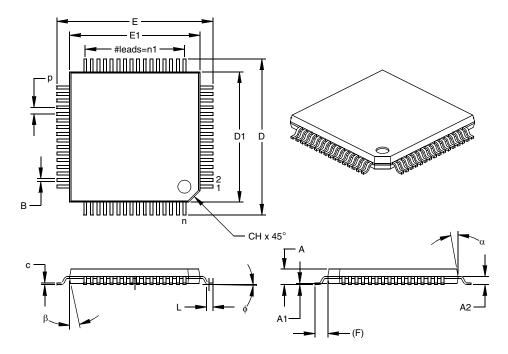
TABLE 20-10: SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS pto SCK por SCK ninput		Тсу	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	_	ns	
71A		(Slave mode)	Single Byte	40	_	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(Slave mode)	Single Byte	40	_	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to	SCK edge	100	_	_	ns	
73A	Тв2в							

TABLE 20-13: I²C BUS DATA REQUIREMENTS

Param No.	Sym	Character	istic	Min	Max	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101	Tlow	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	Tr	SDA and SCL rise time	100 kHz mode	—	1000	ns	Cb is specified to be from
			400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	Tf	SDA and SCL fall time	100 kHz mode	_	300	ns	Cb is specified to be from
			400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	10	ns	
90	Tsu:sta	START condition setup	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated
		time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
91	Thd:sta	START condition hold	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first
		time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	Thd:dat	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	0	_	ns	
107	Tsu:dat	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	100	_	ns	
92	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	Таа	Output valid from clock	100 kHz mode		3500	ns	
			400 kHz mode		1000	ns	
			1 MHz mode ⁽¹⁾	_	400	ns	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.


2: A fast mode (400 KHz) I²C bus device can be used in a standard mode I²C bus system, but the parameter # 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Parameter #102 + #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

3: C_b is specified to be from 10-400pF. The minimum specifications are characterized with $C_b=10pF$. The rise time spec (t_r) is characterized with $R_p=R_p$ min. The minimum fall time specification (t_f) is characterized with $C_b=10pF$, and $R_p=R_p$ max. These are only valid for fast mode operation (VDD=4.5-5.5V) and where the SPM bit (SSPSTAT<7>) =1.)

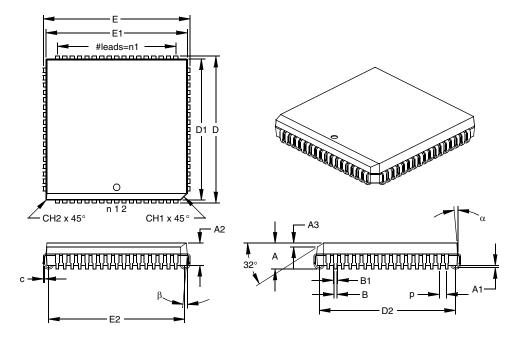
4: Max specifications for these parameters are valid for falling edge only. Specs are characterized with R_p=R_p min and C_b=400pF for standard mode, 200pF for fast mode, and 10pF for 1MHz mode.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*			
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		64			64		
Pitch	р		.020			0.50		
Pins per Side	n1		16			16		
Overall Height	А	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039			1.00		
Foot Angle	¢	0	3.5	7	0	3.5	7	
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25	
Overall Length	D	.463	.472	.482	11.75	12.00	12.25	
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10	
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10	
Lead Thickness	С	.005	.007	.009	0.13	0.18	0.23	
Lead Width	В	.007	.009	.011	0.17	0.22	0.27	
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic


Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-085

84-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*		Ν	IILLIMETERS	6
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Pins per Side	n1		17			17	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	E	.985	.990	.995	25.02	25.15	25.27
Overall Length	D	.985	.990	.995	25.02	25.15	25.27
Molded Package Width	E1	.950	.954	.958	24.13	24.23	24.33
Molded Package Length	D1	.950	.954	.958	24.13	24.23	24.33
Footprint Width	E2	.890	.920	.930	22.61	23.37	23.62
Footprint Length	D2	.890	.920	.930	22.61	23.37	23.62
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047 Drawing No. C04-093