

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c762-16-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	PINC		SCRIP	211UNS				
	Р	PIC17C75	5X	PIC17	7C76X			
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	47	50	39	62	49	I	ST	Oscillator input in Crystal/Resonator or RC Oscillator mode. External clock input in External Clock mode.
OSC2/CLKOUT	48	51	40	63	50	0	_	Oscillator output. Connects to crystal or resonator in Crystal Oscillator mode. In RC Oscillator or External Clock modes, OSC2 pin outputs CLKOUT which has one fourth the frequency (Fosc/4) of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	15	16	7	20	9	I/P	ST	Master clear (RESET) input or Programming Voltage (VPP) input. This is the active low RESET input to the device.
								PORTA pins have individual differentiations that are listed in the following descriptions:
RA0/INT	56	60	48	72	58	Ι	ST	RA0 can also be selected as an external inter- rupt input. Interrupt can be configured to be on positive or negative edge. Input only pin.
RA1/T0CKI	41	44	33	56	43	I	ST	RA1 can also be selected as an external inter- rupt input and the interrupt can be configured to be on positive or negative edge. RA1 can also be selected to be the clock input to the Timer0 timer/counter. Input only pin.
RA2/SS/SCL	42	45	34	57	44	I/O ⁽²⁾	ST	RA2 can also be used as the slave select input for the SPI or the clock input for the I ² C bus. High voltage, high current, open drain port pin.
RA3/SDI/SDA	43	46	35	58	45	I/O ⁽²⁾	ST	RA3 can also be used as the data input for the SPI or the data for the I ² C bus. High voltage, high current, open drain port pin.
RA4/RX1/DT1	40	43	32	51	38	I/O ⁽¹⁾	ST	RA4 can also be selected as the USART1 (SCI) Asynchronous Receive or USART1 (SCI) Synchronous Data. Output available from USART only.
RA5/TX1/CK1	39	42	31	50	37	I/O ⁽¹⁾	ST	RA5 can also be selected as the USART1 (SCI) Asynchronous Transmit or USART1 (SCI) Synchronous Clock. Output available from USART only.
								PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	55	59	47	71	57	I/O	ST	RB0 can also be the Capture1 input pin.
RB1/CAP2	54	58	46	70	56	I/O	ST	RB1 can also be the Capture2 input pin.
RB2/PWM1	50	54	42	66	52	I/O	ST	RB2 can also be the PWM1 output pin.
RB3/PWM2	53	57	45	69	55	I/O	ST	RB3 can also be the PWM2 output pin.
RB4/TCLK12	52	56	44	68	54	I/O	ST	RB4 can also be the external clock input to Timer1 and Timer2.
RB5/TCLK3	51	55	43	67	53	I/O	ST	RB5 can also be the external clock input to Timer3.
RB6/SCK	44	47	36	59	46	I/O	ST	RB6 can also be used as the master/slave clock for the SPI.
RB7/SDO	45	48	37	60	47	I/O	ST	RB7 can also be used as the data output for the SPI.

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

DS30289C-page 14

t Wake-up from SLEEP through Interrupt
N/A
N/A
uuuu uuuu
PC + 1 (2)
uuuu uuuu
1111 uuuu
0000 000-
uu qquu
uuuu uuuu (1)
N/A
uuuu uuuu
นนนน นนนน
นนนน นนนน
uuuu uuuu
นนนน นนนน
นนนน นนนน
นนนน นนนน
u-uu uuuu
นนนน นนนน
uuuu uuuu
uuuu -uuu
uuuu uuuu
uuuuuu
uuuu uuuu
uuuu uuuu

 TABLE 5-4:
 INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

- 3: See Table 5-3 for RESET value of specific condition.
- 4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

6.0 INTERRUPTS

PIC17C7XX devices have 18 sources of interrupt:

- External interrupt from the RA0/INT pin
- Change on RB7:RB0 pins
- TMR0 Overflow
- TMR1 Overflow
- TMR2 Overflow
- TMR3 Overflow
- USART1 Transmit buffer empty
- USART1 Receive buffer full
- USART2 Transmit buffer empty
- USART2 Receive buffer full
- SSP Interrupt
- SSP I²C bus collision interrupt
- A/D conversion complete
- Capture1
- Capture2
- Capture3
- Capture4
- T0CKI edge occurred

There are six registers used in the control and status of interrupts. These are:

- CPUSTA
- INTSTA
- PIE1
- PIR1
- PIE2
- PIR2

The CPUSTA register contains the GLINTD bit. This is the Global Interrupt Disable bit. When this bit is set, all interrupts are disabled. This bit is part of the controller core functionality and is described in the Section 6.4.

FIGURE 6-1: INTERRUPT LOGIC

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with the interrupt vector address. There are four interrupt vectors. Each vector address is for a specific interrupt source (except the peripheral interrupts, which all vector to the same address). These sources are:

- · External interrupt from the RA0/INT pin
- TMR0 Overflow
- T0CKI edge occurred
- Any peripheral interrupt

When program execution vectors to one of these interrupt vector addresses (except for the peripheral interrupts), the interrupt flag bit is automatically cleared. Vectoring to the peripheral interrupt vector address does not automatically clear the source of the interrupt. In the peripheral Interrupt Service Routine, the source(s) of the interrupt can be determined by testing the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

When an interrupt condition is met, that individual interrupt flag bit will be set, regardless of the status of its corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt latency. For two-cycle instructions, the latency could be one instruction cycle longer.

The "return from interrupt" instruction, RETFIE, can be used to mark the end of the Interrupt Service Routine. When this instruction is executed, the stack is "POPed" and the GLINTD bit is cleared (to re-enable interrupts).

EXAMPLE 6-1: SAVING STATUS AND WREG IN RAM (SIMPLE)

; The addresses that are used to store the CPUSTA and WREG values must be in the data memory ; address range of 1Ah - 1Fh. Up to 6 locations can be saved and restored using the MOVFP ; instruction. This instruction neither affects the status bits, nor corrupts the WREG register. UNBANK1 ; Address for 1st location to save EQU 0x01A UNBANK2 EQU 0x01B ; Address for 2nd location to save UNBANK3 EQU 0x01C ; Address for 3rd location to save UNBANK4 0x01D EOU ; Address for 4th location to save UNBANK5 EQU 0x01E ; Address for 5th location to save (Label Not used in program) ; UNBANK6 EQU 0x01F ; Address for 6th location to save (Label Not used in program) ; ; ; At Interrupt Vector Address ٠ ALUSTA, UNBANK1 PUSH MOVFP ; Push ALUSTA value MOVFP BSR, UNBANK2 ; Push BSR value MOVFP WREG, UNBANK3 ; Push WREG value MOVFP PCLATH, UNBANK4 ; Push PCLATH value ; ; Interrupt Service Routine (ISR) code : ; UNBANK4, PCLATH ; Restore PCLATH value POP MOVFP UNBANK3, WREG ; Restore WREG value MOVFP MOVFP UNBANK2, BSR ; Restore BSR value MOVFP UNBANK1, ALUSTA ; Restore ALUSTA value ; RETFIE ; Return from interrupt (enable interrupts)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT	
Bank 2												
10h	TMR1	Timer1's R	legister							xxxx xxxx	uuuu uuuu	
11h	TMR2	Timer2's R	legister							xxxx xxxx	uuuu uuuu	
12h	TMR3L	Timer3's R	imer3's Register; Low Byte xxxx xxxx									
13h	TMR3H	Timer3's R	imer3's Register; High Byte xxxx xxxx 1									
14h	PR1	Timer1's P	eriod Regis	ter						XXXX XXXX	uuuu uuuu	
15h	PR2	Timer2's P	eriod Regis	ter						XXXX XXXX	uuuu uuuu	
16h	PR3L/CA1L	Timer3's P	eriod Regis	ter - Low By	te/Capture1 I	Register; Lo	w Byte			XXXX XXXX	uuuu uuuu	
17h	PR3H/CA1H	Timer3's P	eriod Regis	ter - High By	/te/Capture1	Register; Hi	gh Byte			XXXX XXXX	uuuu uuuu	
Bank 3												
10h	PW1DCL	DC1	DC0		—		—	—		xx	uu	
11h	PW2DCL	DC1	DC0	TM2PW2	—		—	_	—	xx0	uu0	
12h	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu	
13h	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu	
14h	CA2L	Capture2 I	_ow Byte							XXXX XXXX	uuuu uuuu	
15h	CA2H	Capture2 I	High Byte							XXXX XXXX	uuuu uuuu	
16h	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000	
17h	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000	
Bank 4												
10h	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010	
11h	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000	
12h	Unimplemented	—	—	—	—	_	_	_	_			
13h	RCSTA2	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u	
14h	RCREG2	Serial Port	Receive Re	egister for US	SART2					xxxx xxxx	uuuu uuuu	
15h	TXSTA2	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	0000lu	
16h	TXREG2	Serial Port	Transmit R	egister for U	SART2					xxxx xxxx	uuuu uuuu	
17h	SPBRG2	Baud Rate	Generator	for USART2						0000 0000	0000 0000	
Bank 5:												
10h	DDRF	Data Direc	tion Registe	er for PORTF	=					1111 1111	1111 1111	
11h	PORTF ⁽⁴⁾	RF7/ AN11	RF6/ AN10	RF5/ AN9	RF4/ AN8	RF3/ AN7	RF2/ AN6	RF1/ AN5	RF0/ AN4	0000 0000	0000 0000	
12h	DDRG	Data Direc	tion Registe	er for PORTO	3					1111 1111	1111 1111	
13h	PORTG ⁽⁴⁾	RG7/ TX2/CK2	RG6/ RX2/DT2	RG5/ PWM3	RG4/ CAP3	RG3/ AN0	RG2/ AN1	RG1/ AN2	RG0/ AN3	xxxx 0000	uuuu 0000	
14h	ADCON0	CHS3	CHS2	CHS1	CHS0	—	GO/DONE	—	ADON	0000 -0-0	0000 -0-0	
15h	ADCON1	ADCS1	ADCS0	ADFM	—	PCFG3	PCFG2	PCFG1	PCFG0	000- 0000	000- 0000	
16h	ADRESL	A/D Result	t Register L	ow Byte						xxxx xxxx	uuuu uuuu	
17h	ADRESH	A/D Result	t Register H	igh Byte						xxxx xxxx	uuuu uuuu	

TABLE 7-3: SPECIAL FUNCTION REGISTERS (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition.

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

TABLE 10-9: PORTE FUNCTIONS

Name	Bit	Buffer Type	Function
RE0/ALE	bit0	TTL	Input/output or system bus Address Latch Enable (ALE) control pin.
RE1/OE	bit1	TTL	Input/output or system bus Output Enable (\overline{OE}) control pin.
RE2/WR	bit2	TTL	Input/output or system bus Write (WR) control pin.
RE3/CAP4	bit3	ST	Input/output or Capture4 input pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 10-10: REGISTERS/BITS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
15h, Bank 1	PORTE	—	—	_	—	RE3/CAP4	RE2/WR	RE1/OE	RE0/ALE	xxxx	uuuu
14h, Bank 1	DDRE	Data Dire	ction Regis		1111	1111					
14h, Bank 7	CA4L	Capture4	Low Byte							xxxx xxxx	uuuu uuuu
15h, Bank 7	CA4H	Capture4	Capture4 High Byte							xxxx xxxx	uuuu uuuu
16h, Bank 7	TCON3	—	CA4OVF	CA30VF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

TABLE 10-11: PORTF FUNCTIONS

Name	Bit	Buffer Type	Function
RF0/AN4	bit0	ST	Input/output or analog input 4.
RF1/AN5	bit1	ST	Input/output or analog input 5.
RF2/AN6	bit2	ST	Input/output or analog input 6.
RF3/AN7	bit3	ST	Input/output or analog input 7.
RF4/AN8	bit4	ST	Input/output or analog input 8.
RF5/AN9	bit5	ST	Input/output or analog input 9.
RF6/AN10	bit6	ST	Input/output or analog input 10.
RF7/AN11	bit7	ST	Input/output or analog input 11.

Legend: ST = Schmitt Trigger input

TABLE 10-12: REGISTERS/BITS ASSOCIATED WITH PORTF

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
10h, Bank 5	DDRF	Data Dir	ection Reg		1111 1111	1111 1111					
11h, Bank 5	PORTF	RF7/ AN11	RF6/ AN10	RF5/ AN9	RF4/ AN8	RF3/ AN7	RF2/ AN6	RF1/ AN5	RF0/ AN4	0000 0000	0000 0000
15h, Bank 5	ADCON1	ADCS1	ADCS0	ADFM		PCFG3	PCFG2	PCFG1	PCFG0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTF.

12.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

12.3.1 READING 16-BIT VALUE

The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 12-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

EXAMPLE 12-1: 16-BIT READ

MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMROL		;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
RETURN			;return
1			

12.3.2 WRITING A 16-BIT VALUE TO TMR0

Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H second, in two consecutive instructions, as shown in Example 12-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

EXAMPLE 12-2: 16-BIT WRITE

BSF	CPUSTA, GLINTD ; Disable interrupts
MOVFP	RAM_L, TMROL ;
MOVFP	RAM_H, TMROH ;
BCF	CPUSTA, GLINTD ; Done, enable
	; interrupts

12.4 Prescaler Assignments

Timer0 has an 8-bit prescaler. The prescaler selection is fully under software control; i.e., it can be changed "on the fly" during program execution. Clearing the prescaler is recommended before changing its setting. The value of the prescaler is "unknown" and assigning a value that is less than the present value, makes it difficult to take this unknown time into account.

13.2 Timer3

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a another 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the counter increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer/counter to increment. When TMR3ON is clear, the timer will not increment or set flag bit TMR3IF.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- Three capture and one period register mode
- · Four capture register mode

The PIC17C7XX has up to four 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are four capture pins

(RB0/CAP1, RB1/CAP2, RG4/CAP3, and RE3/CAP4), one for each capture register pair. The capture pins are multiplexed with the I/O pins. An event can be:

- · A rising edge
- A falling edge
- · Every 4th rising edge
- · Every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture modules are truly part of the Timer3 block. Figure 13-5 and Figure 13-6 show the block diagrams for the two modes of operation.

13.2.1 THREE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode, registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 13-5. The timer increments until it equals the period register and then resets to 0000h on the next timer clock. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

FIGURE 13-5: TIMER3 WITH THREE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

FIGURE 14-1: USART TRANSMIT

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- 7. Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 14-7: ASYNCHRONOUS RECEPTION

TABLE 14-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	e Generato	r Register						0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for asynchronous reception.

15.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit[™] (I²C)

Figure 15-1 shows a block diagram for the SPI mode, while Figure 15-2 and Figure 15-3 show the block diagrams for the two different I^2C modes of operation.

FIGURE 15-2:

I²C SLAVE MODE BLOCK DIAGRAM

I²C MASTER MODE BLOCK DIAGRAM

15.1.7 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode and data to be shifted into the SPI transmit/receive shift register. When all 8-bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from SLEEP.

15.1.8 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

TABLE 15-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
07h, Unbanked	INTSTA	PEIF	T0CKIF	TOIF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	_	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
14h, Bank 6	SSPBUF	Synchro	onous Ser	ial Port Re	eceive Bu	uffer/Trans	smit Regis	ter		XXXX XXXX	uuuu uuuu
11h, Bank 6	SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
13h, Bank 6	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

15.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit PEN (SSPCON2<2>). At the end of a receive/ transmit the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to '0'. When the baud rate generator times out, the SCL pin will be brought high and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-31).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

15.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 15-33).

15.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

15.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

FIGURE 15-33: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and A/D interrupt flag bit, ADIF is set. The block diagrams of the A/D module are shown in Figure 16-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding DDR bits selected as inputs. To determine sample time, see Section 16.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure analog pins/voltage reference/ and digital I/O (ADCON1)
 - b) Select A/D input channel (ADCON0)
 - c) Select A/D conversion clock (ADCON0)
 - d) Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - a) Clear ADIF bit
 - b) Set ADIE bit
 - c) Clear GLINTD bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - a) Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - a) Polling for the GO/DONE bit to be cleared OR
 - b) Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF, if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

Table 18-2 lists the instructions recognized by the MPASM assembler.

Note 1: Any unused opcode is Reserved. Use of any reserved opcode may cause unexpected operation.

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 18-1: GENERAL FORMAT FOR INSTRUCTIONS

18.1 Special Function Registers as Source/Destination

The PIC17C7XX's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

18.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA and then set the Z bit leaving 0000 0100b in the register.

18.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCH \to PCLATH; PCL \to dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	PCL \rightarrow ALU operand PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

18.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write (R-M-W)). The user should keep this in mind when operating on some special function registers, such as ports.

Note:	Status bits that are manipulated by the
	device (including the interrupt flag bits) are
	set or cleared in the Q1 cycle. So, there is
	no issue on doing R-M-W instructions on
	registers which contain these bits

BSF		Bit Set f						
Synt	ax:	[<i>label</i>] E	[<i>label</i>] BSF f,b					
Ope	rands:	$0 \le f \le 25$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Ope	ration:	$1 \rightarrow (f < b >$	$1 \rightarrow (f < b >)$					
Statu	us Affected:	None						
Enco	oding:	1000	0bbb	fff	f	ffff		
Des	cription:	Bit 'b' in reg	gister 'f' is	s set.				
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	Read register 'f'	Proce Dat	ess a	re	Write gister 'f'		
<u>Exar</u>	<u>mple</u> : Before Instru FLAG_R	BSF Iction EG = 0x	FLAG_RE	G, 7				
	After Instruct FLAG_R	tion EG = 0x	(8A					

BTF	SC	Bit Test, s	kip if Clear				
Synt	ax:	[label] B	TFSC f,b				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Ope	ration:	skip if (f) = 0					
Statu	us Affected:	None					
Enco	oding:	1001	1bbb ff	ff ffff			
Desc	cription:	If bit 'b' in re instruction i If bit 'b' is 0,	gister 'f' is 0, th s skipped. then the next i	nstruction			
		fetched during the current instruction exe cution is discarded and a NOP is executed instead, making this a two-cycle instruction.					
Wor	ds:	1					
Cycl	es:	1(2)					
QC	cle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	No operation			
lf ski	Decode p:	Read register 'f'	Process Data	No operation			
lf ski	Decode ip: Q1	Read register 'f' Q2	Process Data Q3	No operation Q4			
lf ski	Decode ip: Q1 No operation	Read register 'f' Q2 No operation	Process Data Q3 No operation	No operation Q4 No operation			
lf ski <u>Exar</u>	Decode ip: Q1 No operation mple:	Read register 'f' Q2 No operation HERE E FALSE : TRUE :	Process Data Q3 No operation	No operation Q4 No operation			
lf ski <u>Exar</u>	Decode p: Q1 No operation <u>mple</u> : Before Instruct	Read register 'f' Q2 No operation HERE E FALSE : TRUE : Ction = add	Process Data Q3 No operation TFSC FLAC	No operation Q4 No operation			
lf ski <u>Exa</u> r	Decode Q1 No operation <u>mple</u> : Before Instruct PC After Instructi If FLAG	Read register 'f' Q2 No operation HERE E FALSE : TRUE : Ction = add ion 1> = 0; = add	Process Data Q3 No operation TFSC FLAC dress (HERE)	No operation Q4 No operation			

INFS	SNZ	Increment f, skip if not 0							
Synt	ax:	[<i>label</i>] I	NFSNZ	f,d					
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$						
Ope	ration:	(f) + 1 \rightarrow (skip if not	(f) + 1 \rightarrow (dest), skip if not 0						
Statu	us Affected:	None							
Enco	oding:	0010 010d ffff fff							
Des	cription:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is not 0, the next instructio which is already fetched is discarded and a NOP is executed instead. makin							
		it a two-cyc	le instruct	ion.					
Wor	ds:	1							
Cycl	es:	1(2)	1(2)						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proces Data	ss d	Write to estination				
lf ski	ip:								
	Q1	Q2	Q3		Q4				
	No operation	No operation	No operati	on d	No operation				
<u>Exar</u>	<u>mple</u> :	HERE ZERO NZERO	INFSNZ	REG,	1				
	Before Instru REG	iction = REG							
	After Instruct REG If REG PC If REG PC	tion = REG + = 1; = Address = 0; = Address	1 s (zero) s (nzero)					

IORLW	Inclusive	Inclusive OR Literal with WREG						
Syntax:	[label]	IORLW k						
Operands:	$0 \le k \le 25$	55						
Operation:	(WREG) .	(WREG) .OR. (k) \rightarrow (WREG)						
Status Affected	l: Z							
Encoding:	1011	0011 k	kkk	kkkk				
Description:	The conter the eight-b placed in V	nts of WREG it literal 'k'. T VREG.	are O he resi	R'ed with ult is				
Words:	1							
Cycles:	1							
Q Cycle Activit	y:							
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Process Data	V	Vrite to VREG				
Example:	IORLW	0x35						
Before Ins	truction							

WREG	=	0x9A
After Instruc	tion	
WREG	=	0xBF

SUBW	/F	S	ubtra	ct	WREG from	n f		
Syntax		[label]	5	SUBWF f,d			
Opera	nds:	0 d	$0 \le f \le 255$ $d \in [0,1]$					
Operat	tion:	(f	$(f) - (W) \rightarrow (dest)$					
Status	Affected:	C	V, C,	D	C, Z			
Encod	ing:		0000		010d fff	f ffff		
Descri	ption:	S C re re	Subtract WREG from register 'f' (2's complement method). If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in register 'f'.					
Words	:	1						
Cycles	:	1						
Q Cycl	le Activity:							
_	Q1		Q2		Q3	Q4		
	Decode	F reg	Read gister 'f	•	Process Data	Write to destination		
Examp	<u>ble 1</u> :	S	UBWF		REG1, 1			
Be	efore Instru	ictior	า					
	REG1 WREG C	= = =	3 2 ?					
Af	ter Instruct REG1 WREG C Z	tion = = = =	1 2 1 0	; 1	result is positiv	'e		
Examp	ole 2:							
Be	efore Instru REG1 WREG C	ictior = = =	ו 2 2 ?					
Af	ter Instruct REG1 WREG C Z	tion = = = =	0 2 1 1	; I	result is zero			
Examp	ole <u>3</u> :							
Be	efore Instru REG1 WREG C	ictior = = =	ו 1 2 ?					
Af	ter Instruct	tion						
	REG1 WREG C Z	= = =	FF 2 0 0	; I	result is negati	ve		

SUB	WFB Subtract WREG from f with Borrow						th
Synta	ax:	[<i>la</i>	abel] S	SUBWFE	3 f,o	ł	
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$					
Operation: $(f) - (W) - \overline{C} \rightarrow (dest)$							
Statu	s Affected:	O٧	/, C, D(C, Z			
Enco	ding:	0	0000	001d	fff	f	ffff
Desc	ription:	Sul (bo me sto sto	btract W prrow) fr nt meth red in W red bac	/REG and om regist iod). If 'd' /REG. If ' k in regis	d the er 'f' is 0, d' is 1 ter 'f'.	carry (2's co the re , the i	flag omple- sult is result is
Word	ls:	1					
Cycle	es:	1					
Q Cy	cle Activity:						
-	Q1	C	2	Q3		(Q4
	Decode	Re	ead	Proce	SS	W	rite to
		regis		Dala	I	uesi	Ination
<u>Exan</u>	<u>nple 1</u> :	SUI	BWFB	REG1, 1	L		
Exan E	Before Instruct REG1 WREG C After Instruct REG1 WREG C Z Before Instruct REG1 WREG C After Instruct REG1 WREG C	iction = () = () icion = = () substitution = iction = iction = iction = iction = = () = () = () = () = () = () = () = ()	Dx19 Dx0D 1 Dx0C Dx0D 1 Dx0D 1 Dx1B Dx1A Dx1B Dx1A Dx1B Dx1B Dx10 1	(0001 (0000 (0000) ; result EEG1, 0 (0001 (0001 (0001 ; result	1001 110 101 110 is po 101 101 101 is ze	1) 1) 1) sitive 1) 0) 1)	
	Z	= ´	1				
<u>Exan</u>	nple3:	SUBI	WFB R	EG1,1			
E	Before Instru REG1 WREG C	iction = (= (= ^	0x03 0x0E 1	(0000 (0000	0013	1) 1)	
ŀ	REG1 WREG C Z	non = (= (= (= (0xF5 0x0E 0	(1111 (0000 ; result	010 110 is ne	0) [2's 1) egative	e comp]