

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c762-16i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	PINC	DUT DE	SCRIP	TIONS		T		
	PIC17C75X			PIC17C76X				
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	47	50	39	62	49	I	ST	Oscillator input in Crystal/Resonator or RC Oscillator mode. External clock input in External Clock mode.
OSC2/CLKOUT	48	51	40	63	50	0	_	Oscillator output. Connects to crystal or resonator in Crystal Oscillator mode. In RC Oscillator or External Clock modes, OSC2 pin outputs CLKOUT which has one fourth the frequency (Fosc/4) of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	15	16	7	20	9	I/P	ST	Master clear (RESET) input or Programming Voltage (VPP) input. This is the active low RESET input to the device.
								PORTA pins have individual differentiations that are listed in the following descriptions:
RA0/INT	56	60	48	72	58	I	ST	RA0 can also be selected as an external inter- rupt input. Interrupt can be configured to be on positive or negative edge. Input only pin.
RA1/T0CKI	41	44	33	56	43	I	ST	RA1 can also be selected as an external inter- rupt input and the interrupt can be configured to be on positive or negative edge. RA1 can also be selected to be the clock input to the Timer0 timer/counter. Input only pin.
RA2/SS/SCL	42	45	34	57	44	I/O ⁽²⁾	ST	RA2 can also be used as the slave select input for the SPI or the clock input for the I ² C bus. High voltage, high current, open drain port pin.
RA3/SDI/SDA	43	46	35	58	45	I/O ⁽²⁾	ST	RA3 can also be used as the data input for the SPI or the data for the I ² C bus. High voltage, high current, open drain port pin.
RA4/RX1/DT1	40	43	32	51	38	I/O ⁽¹⁾	ST	RA4 can also be selected as the USART1 (SCI) Asynchronous Receive or USART1 (SCI) Synchronous Data. Output available from USART only.
RA5/TX1/CK1	39	42	31	50	37	I/O ⁽¹⁾	ST	RA5 can also be selected as the USART1 (SCI) Asynchronous Transmit or USART1 (SCI) Synchronous Clock. Output available from USART only.
								PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	55	59	47	71	57	I/O	ST	RB0 can also be the Capture1 input pin.
RB1/CAP2	54	58	46	70	56	I/O	ST	RB1 can also be the Capture2 input pin.
RB2/PWM1	50	54	42	66	52	I/O	ST	RB2 can also be the PWM1 output pin.
RB3/PWM2	53	57	45	69	55	I/O	ST	RB3 can also be the PWM2 output pin.
RB4/TCLK12	52	56	44	68	54	I/O	ST	RB4 can also be the external clock input to Timer1 and Timer2.
RB5/TCLK3	51	55	43	67	53	I/O	ST	RB5 can also be the external clock input to Timer3.
RB6/SCK	44	47	36	59	46	I/O	ST	RB6 can also be used as the master/slave clock for the SPI.
RB7/SDO	45	48	37	60	47	I/O	ST	RB7 can also be used as the data output for the SPI.

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

DS30289C-page 14

EXAMPLE 6-2: SAVING STATUS AND WREG IN RAM (NESTED)

; The addresses that are used to store the CPUSTA and WREG values must be in the data memory ; address range of 1Ah - 1Fh. Up to 6 locations can be saved and restored using the MOVFP ; instruction. This instruction neither affects the status bits, nor corrupts the WREG register. ; This routine uses the FRSO, so it controls the FS1 and FSO bits in the ALUSTA register. Nobank FSR EOU 0x40 Bank FSR EQU 0x41 ALU_Temp EQU 0x42 0x43 WREG TEMP EQU BSR S1 EQU 0x01A ; 1st location to save BSR 0x01B BSR S2 EQU ; 2nd location to save BSR (Label Not used in program) BSR S3 EQU 0x01C ; 3rd location to save BSR (Label Not used in program) BSR S4 EQU 0x01D ; 4th location to save BSR (Label Not used in program) 0x01E BSR_S5 EQU ; 5th location to save BSR (Label Not used in program) 0x01F ; 6th location to save BSR (Label Not used in program) BSR_S6 EOU INITIALIZATION CALL CLEAR RAM ; Must Clear all Data RAM INIT_POINTERS ; Must Initialize the pointers for POP and PUSH CLRF BSR, F ; Set All banks to 0 CLRF ALUSTA, F ; FSR0 post increment BSF ALUSTA, FS1 CLRF WREG, F ; Clear WREG MOVLW BSR S1 ; Load FSR0 with 1st address to save BSR MOVWF FSR0 MOVWF Nobank FSR MOVLW 0x20 MOVWF Bank_FSR : ; Your code : : ; At Interrupt Vector Address PUSH BSF ALUSTA, FSO ; FSR0 has auto-increment, does not affect status bits BCF ALUSTA, FS1 ; does not affect status bits MOVFP BSR, INDF0 ; No Status bits are affected CLRF BSR, F ; Peripheral and Data RAM Bank 0 No Status bits are affected MOVPF ALUSTA, ALU_Temp ; MOVPF FSR0, Nobank_FSR ; Save the FSR for BSR values WREG, WREG TEMP MOVPF ; ; Restore FSR value for other values MOVFP Bank_FSR, FSR0 MOVFP ALU_Temp, INDF0 ; Push ALUSTA value MOVFP WREG TEMP, INDFO ; Push WREG value MOVFP PCLATH, INDF0 ; Push PCLATH value MOVPF FSR0, Bank FSR ; Restore FSR value for other values MOVFP Nobank FSR, FSR0 ; ; ; Interrupt Service Routine (ISR) code : ; POP CLRF ALUSTA, F ; FSR0 has auto-decrement, does not affect status bits MOVFP Bank FSR, FSR0 ; Restore FSR value for other values FSR0, F DECF ; ; Pop PCLATH value MOVFP INDF0, PCLATH ; Pop WREG value MOVFP INDF0, WREG ; FSR0 does not change BSF ALUSTA, FS1 MOVPF INDF0, ALU Temp ; Pop ALUSTA value MOVPF FSR0, Bank FSR ; Restore FSR value for other values Nobank_FSR, F DECF ; MOVFP Nobank FSR, FSR0 ; Save the FSR for BSR values ALU Temp, ALUSTA MOVFP ; MOVFP INDF0, BSR ; No Status bits are affected RETFIE ; Return from interrupt (enable interrupts)

8.0 TABLE READS AND TABLE WRITES

The PIC17C7XX has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t, f and TABLWT t, i, f instructions are used to write data from the data memory space to the program memory space. The TLRD t, f and TABLRD t, i, f instructions are used to write data from the program memory space to the data memory space.

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in Microprocessor or Extended Microcontroller mode.

Figure 8-1 through Figure 8-4 show the operation of these four instructions. The steps show the sequence of operation.

FIGURE 8-1: TLWT INSTRUCTION OPERATION

FIGURE 8-2: TABLWT INSTRUCTION OPERATION

14.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e., transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

14.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 14-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit. TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 14-9). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RX/DT and TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the RX/ DT pin reverts to a hi-impedance state (for a reception). The TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hiimpedance Receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN), allows transmission to start sooner than doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is reenabled.

REGISTER 15-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 13h, BANK 6) R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP CKE D/A Р S R/W UA BF bit 7 bit 0 bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in Slave mode In I²C Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High Speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select (Figure 15-6, Figure 15-8 and Figure 15-9) CKP = 0: 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK CKP = 1: 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK bit 5 D/A: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address P: STOP bit bit 4 $(l^2C \text{ mode only})$. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last bit 3 S: START bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last **R/W**: Read/Write bit Information (I²C mode only) bit 2 This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or not ACK bit. In I²C Slave mode: 1 = Read 0 = WriteIn I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress Or'ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. bit 1 **UA**: Update Address (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit Receive (SPI and I²C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I²C mode only) 1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the \overline{ACK} and STOP bits), SSPBUF is empty Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

15.2.12 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note:	The SSP Module must be in an IDLE
	STATE before the RCEN bit is set, or the
	RCEN bit will be disregarded.

The baud rate generator begins counting and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag is set, the SSPIF is set and the baud rate generator is suspended from counting, holding SCL low. The SSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag is automatically cleared. The user can then send an acknowledge bit at the end of reception, by setting the acknowledge sequence enable bit, ACKEN (SSPCON2<4>).

15.2.12.1 BF Status Flag

In receive operation, BF is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when SSPBUF is read.

15.2.12.2 SSPOV Status Flag

In receive operation, SSPOV is set when 8 bits are received into the SSPSR, and the BF flag is already set from a previous reception.

15.2.12.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-36: BUS COLLISION DURING START CONDITION (SCL = 0)

FIGURE 15-37: BRG RESET DUE TO SDA COLLISION DURING START CONDITION

17.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC17CXXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection (Section 4.0)
- RESET (Section 5.0)
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts (Section 6.0)
- Watchdog Timer (WDT)
- SLEEP mode
- Code protection

The PIC17CXXX has a Watchdog Timer which can be shut-off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on POR and BOR. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 17-1.

High (H) Table Read Addr.	U-x	R/P-1	R/P-1	U-x	U-x	U-x	U-x	U-x	U-x
FE0Fh - FE08h	—	PM2	BODEN	_	—	_	—	—	—
	bit 15 bit 8	bit 7							bit 0
Low (L) Table Read Addr.	U-x	U-x	R/P-1	U-x	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FE07h - FE00h		—	PM1		PM0	WDTPS1	WDTPS0	FOSC1	FOSC0
	bit 15 bit 8	bit 7							bit 0
bits 7H, 6L, 4L	PM2, PM1, I	>M∩ ∙ Pr	ocessor M	nde Sel	ect hits				
513 71, 02, 42	111 = Micro								
	110 = Micro								
	101 = Exten				mode				
bit 6H	BODEN: Bro				moue				
	1 = Brown-o				ed				
	0 = Brown-o	ut Detec	t circuitry i	s disabl	ed				
bits 3L:2L	WDTPS1:W				Select bi	ts			
	11 = WDT e 10 = WDT e								
	01 = WDT e								
	00 = WDT d	isabled,	16-bit over	rflow tim	ner				
bits 1L:0L	FOSC1:FOS		cillator Sele	ect bits					
	11 = EC osc 10 = XT osc								
	01 = RC osc								
	00 = LF osc	llator							
Shaded bits (—)	Reserved								

REGISTER 17-1: CONFIGURATION WORDS

18.2 Q Cycle Activity

Each instruction cycle (TcY) is comprised of four Q cycles (Q1-Q4). The Q cycle is the same as the device oscillator cycle (Tosc). The Q cycles provide the timing/ designation for the Decode, Read, Process Data, Write, etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The four Q cycles that make up an instruction cycle (TCY) can be generalized as:

- Q1: Instruction Decode Cycle or forced No operation
- Q2: Instruction Read Cycle or No operation
- Q3: Process the Data
- Q4: Instruction Write Cycle or No operation

Each instruction will show the detailed Q cycle operation for the instruction.

ADDLW	ADD Lite	ADD Literal to WREG						
Syntax:	[label] A	DDLW	k					
Operands:	$0 \le k \le 25$	55						
Operation:	(WREG) ·	+ k \rightarrow (V	VREG)					
Status Affected:	OV, C, D0	C, Z						
Encoding:	1011	1011 0001 kkkk kkkk						
Description:	the 8-bit lite	The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.						
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	5	Q4				
Decode	Read literal 'k'							
Example:	ADDLW	0x15						

ADDWF	ADD WRI	EG to f						
Syntax:	[label] Al	[label] ADDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$						
Operation:	(WREG) +	$+$ (f) \rightarrow (c	dest)					
Status Affected:	OV, C, D0	C, Z						
Encoding:	0000	111d	ffff	ffff				
Description:	Add WREG result is sto result is sto	ored in WI	REG. If 'd'	is 1 the				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proce Data		Vrite to stination				
Example:	ADDWF	REG, ()					
Before Instru WREG REG	uction = 0x17 = 0xC2							

Before Instruction WREG = 0x10 After Instruction

WREG = 0x25

After Instruction

WREG	=	0xD9
REG	=	0xC2

MULLW	Multiply	Literal with \	WREG	MULV	VF	Multiply	WREG w	vith f		
Syntax:	[label]	MULLW k		Syntax	C.	[label]	[<i>label</i>] MULWF f			
Operands:	$0 \le k \le 25$	5		Opera	nds:	$0 \le f \le 2$	$0 \leq f \leq 255$			
Operation:	(k x WRE	$G) \rightarrow PROD$	H:PRODL	Opera	tion:	(WREG	$x f \rightarrow PR$	ODH:	PRODL	
Status Affected:	None			Status	Affected:	None				
Encoding:	1011	1100 kk	kk kkkk	Encod	ding:	0011	0100	ffff	ffff	
Description:	out betwee and the 8-t result is pla register pa high byte. WREG is u None of the Note that n is possible	ed multiplicatio in the contents bit literal 'k'. Th aced in PRODH ir. PRODH con unchanged. e status flags a either overflow in this operatio ssible, but not	of WREG e 16-bit H:PRODL atains the are affected. v, nor carry on. A zero	Descr	Description:		An unsigned multiplication is carri- out between the contents of WRE and the register file location 'f'. Th 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both WREG and 'f' are unchanged None of the status flags are affect Note that neither overflow, nor car is possible in this operation. A zer result is possible, but not detected		f WREG a'f'. The air. byte. hanged. e affected. nor carry . A zero	
Words:	1			Words	Words:					
Cycles:	1			Cycle	s:	1				
Q Cycle Activity:				Q Cyc	le Activity:					
Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4	
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL		Decode	Read register 'f'	Proce Data		Write registers PRODH: PRODL	
<u>Example</u> :	MULLW	0xC4		Exam	<u>ple</u> :	MULWF	REG			
Before Instr WREG PRODH PRODL After Instruc WREG PRODH PRODL	$ \begin{array}{rcl} $	kE2 kC4 kAD k08			efore Instr WREG REG PRODH PRODL After Instruct WREG REG PRODH PRODL	= = = = tion = = =	0xC4 0xB5 ? ? 0xC4 0xB5 0x8A 0x94			

NEG	W	Negate W	1						
Synt	ax:	[<i>label</i>] N	EGW	f,s					
Ope	rands:	$0 \le f \le 255$ s $\in [0,1]$	5						
Ope	ration:		$\frac{WREG}{WREG} + 1 \rightarrow (f);$ WREG + 1 \rightarrow s						
Status Affected: OV, C, DC, Z									
Enco	oding:	0010	110s	ffff	ffff				
Des	cription:	n: WREG is negated using two's comple- ment. If 's' is 0, the result is placed in WREG and data memory location 'f'. If 's' is 1, the result is placed only in data memory location 'f'.							
Wor	ds:	1							
Cycl	es:	1							
QC	vcle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read register 'f'	Proce Dat	a re ar	Write gister 'f' nd other pecified egister				
			•	•					
Example: NEGW REG, 0									
Before Instruction WREG = 0011 1010 [0x3A],									

NOF)	No Opera	ation						
Synt	ax:	[label]	NOP						
Ope	rands:	None	None						
Ope	ration:	No operation							
Status Affected: None									
Enco	oding:	0000	0000	0000 000		0000			
Des	Description: No operation.								
Wor	ds:	1							
Cycl	es:	1							
QC	vcle Activity:								
	Q1	Q2 Q3 C				Q4			
	Decode	No operation	No operation		No operation				

Example:

None.

WREG	=	0011	1010 [0x3A] ,
REG	=	1010	1011 [0xAB]
After Instruct	tion		
WREG	=	1100	0110 [0xC6]
REG	=	1100	0110 [0xC6]

20.2

PIC17C7XX-16 (Commercial, Industrial, Extended) **DC Characteristics:** PIC17C7XX-33 (Commercial, Industrial, Extended) PIC17LC7XX-08 (Commercial, Industrial)

			Standard Operating Conditions (unless otherwise stated) Operating temperature						
DC CHAI	RACTER	ISTICS			-40°C -40°C 0°C	\leq TA \leq \leq TA \leq	+125°C for extended +85°C for industrial +70°C for commercial d in Section 20.1		
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
		Input Low Voltage							
	VIL	I/O ports							
D030		with TTL buffer (Note 6)	Vss	-	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
			Vss	-	0.2Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$		
D031		with Schmitt Trigger buffer							
		RA2, RA3	Vss	-	0.3Vdd	V	I ² C compliant		
		All others	Vss	-	0.2Vdd	V			
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	(Note 1)		
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	-	V			
		Input High Voltage							
	Vін	I/O ports							
D040		with TTL buffer (Note 6)	2.0	_	Vdd	V	$4.5V \le V \text{DD} \le 5.5V$		
			1+0.2VDD	-	Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$		
D041		with Schmitt Trigger buffer							
		RA2, RA3	0.7Vdd	-	Vdd	V	I ² C compliant		
		All others	0.8Vdd	-	Vdd	V			
D042		MCLR	0.8Vdd	-	Vdd	V	(Note 1)		
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	-	V			
D050	VHYS	Hysteresis of	0.15Vdd	-	-	V			
		Schmitt Trigger Inputs							

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

t Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specifications (Literature number DS TBD).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

			Standard Op Operating ter			(unles	s otherwise stated)			
DC CHAF	RACTER		$\begin{array}{rl} -40^{\circ}\text{C} &\leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ -40^{\circ}\text{C} &\leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial} \\ 0^{\circ}\text{C} &\leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial} \\ \end{array}$ Operating voltage VDD range as described in Section 20.1							
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
		Input Leakage Current (Notes 2, 3)								
D060	lıL	I/O ports (except RA2, RA3)	_	_	±1	μΑ	Vss ≤ VPIN ≤ VDD, I/O Pin (in digital mode) at hi-impedance PORTB weak pull-ups disabled			
D061		MCLR, TEST	-	_	±2	μΑ	VPIN = Vss or VPIN = VDD			
D062		RA2, RA3			±2	μΑ	$Vss \leq VRA2, \ VRA3 \leq 12V$			
D063		OSC1 (EC, RC modes)	-	_	±1	μΑ	$V\text{ss} \leq V\text{PIN} \leq V\text{DD}$			
D063B		OSC1 (XT, LF modes)	-	_	VPIN	μΑ	$R{\sf F} \geq 1~M\Omega$			
D064		MCLR, TEST	_	_	25	μΑ	VMCLR = VPP = 12V (when not programming)			
D070	IPURB	PORTB Weak Pull-up Current	85	130	260	μΑ	$\begin{array}{l} VPIN=VSS, \ \overline{RBPU}=0\\ 4.5V\leqVDD\leq5.5V \end{array}$			
		Output Low Voltage								
D080	Vol	I/O ports					IOL = VDD/1.250 mA			
			-	-	0.1Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D004			-	-	0.1VDD	V	VDD = 3.0V			
D081		with TTL buffer	_	_	0.4	V	IOL = 6 mA, VDD = 4.5V (Note 6)			
D082		RA2 and RA3	-	_	3.0	V V	IOL = 60.0 mA, VDD = 5.5 V			
D083		OSC2/CLKOUT	_	_	0.6 0.4	v V	IOL = 60.0 mA, VDD = 4.5V IOL = 1 mA, VDD = 4.5V			
D083 D084		(RC and EC osc modes)	_	_	0.4 0.1Vdd	V V	IOL = 1 IIIA, VDD = 4.5V IOL = VDD/5 mA (PIC17LC7XX only)			
		Output High Voltage (Note 3)								
D090	Vон	I/O ports (except RA2 and RA3)	0.9Vdd	_	_	V	IOH = -VDD/2.5 mA $4.5V \le VDD \le 5.5V$			
			0.9Vdd	_	_	V	VDD = 3.0V			
D091		with TTL buffer	2.4	-	_	V	IOH = -6.0 mA, VDD = 4.5V (Note 6)			
D093		OSC2/CLKOUT	2.4	_	_	V	IOH = -5 mA, VDD = 4.5V			
D094		(RC and EC osc modes)	0.9Vdd	_	_	V	IOH = -VDD/5 mA (PIC17LC7XX only)			

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specifications (Literature number DS TBD).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Param No.	Sym	Characteristic		Min	Max	Units	Conditions	
110	Tbuf	Bus free time	100 kHz mode	4.7	—	ms	Time the bus must be free	
			400 kHz mode	1.3	_	ms	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	ms	can start	
D102	Cb	Bus capacitive loading		_	400	pF		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode (400 KHz) I²C bus device can be used in a standard mode I²C bus system, but the parameter # 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Parameter #102 + #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

3: C_b is specified to be from 10-400pF. The minimum specifications are characterized with C_b =10pF. The rise time spec (t_r) is characterized with R_p = R_p min. The minimum fall time specification (t_f) is characterized with C_b =10pF,and R_p = R_p max. These are only valid for fast mode operation (VDD=4.5-5.5V) and where the SPM bit (SSPSTAT<7>) =1.)

4: Max specifications for these parameters are valid for falling edge only. Specs are characterized with R_p=R_p min and C_b=400pF for standard mode, 200pF for fast mode, and 10pF for 1MHz mode.

FIGURE 20-19: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 20-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic			Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)						
		Clock high to data out valid	PIC17 C XXX	—	—	50	ns	
			PIC17LCXXX	-	—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17 C XXX	—	—	25	ns	
		(Master mode)	PIC17 LC XXX	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17 C XXX	—	—	25	ns	
			PIC17 LC XXX	_	_	40	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

TABLE 20-20: MEMORY INTERFACE WRITE REQUIREMENTS

Param. No.	Sym	Characterist	ic	Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD<15:0> (address) valid to	PIC17 C XXX	0.25Tcy - 10	_		ns	
		ALE↓ (address setup time)	PIC17LCXXX	0.25Tcy - 10	—			
151	TalL2adl	ALE \downarrow to address out invalid	PIC17CXXX	0	_	_	ns	
		(address hold time)	PIC17LCXXX	0	_	_		
152	TadV2wrL	Data out valid to $\overline{WR}\downarrow$	PIC17CXXX	0.25Tcy - 40	_	_	ns	
		(data setup time)	PIC17LCXXX	0.25Tcy - 40	_	_		
153	TwrH2adl	WR↑ to data out invalid	PIC17 C XXX	—	0.25Tcy	—	ns	
		(data hold time)	PIC17LCXXX	—	0.25Tcy	—		
154	TwrL	WR pulse width	PIC17CXXX	—	0.25Tcy	—	ns	
			PIC17LCXXX	—	0.25Tcy	_		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

SEEVAL Evaluation and Programming System236
Serial Clock, SCK
Serial Clock, SCL
Serial Data Address, SDA
Serial Data In, SDI
Serial Data Out, SDO 137
SETF
SFR198
SFR (Special Function Registers)43
SFR As Source/Destination
Signed Math 11
Slave Select Synchronization
Slave Select, SS
SLEEP
SLEEP Mode, All Peripherals Disabled
SLEEP Mode, BOR Enabled
SMP
Software Simulator (MPLAB SIM)
SPBRG
SPBRG1
SPBRG2
SPE
Special Features of the CPU
Summary
SPI
Master Mode 139
Serial Clock
Serial Data In
Serial Data Out
Serial Peripheral Interface (SPI)
Slave Select
SPI clock
SPI Mode
SPI Clock Edge Select, CKE
SPI Data Input Sample Phase Select, SMP 134
SPI Master/Slave Connection
SPI Module
Master/Slave Connection
Slave Mode140
Slave Select Synchronization140
Slave Synch Timing 140
<u>SS</u> 137
SSP133
Block Diagram (SPI Mode)137
SPI Mode 137
SSPADD 144, 145
SSPBUF
SSPCON1
SSPCON2
SSPSR
SSPSTAT
SSP I ² C
SSP I ² C Operation
SSP Module SPI Master Mode
SPI Master Mode
SPI Master/Slave Connection
SSPCON1 Register
SSP Overliow Detect bit, SSPOV
SSFADD
SSFB0F
SSPCON1
SSPEN

SSPIE	36
SSPIF	. 38, 145
SSPM3:SSPM0	135
SSPOV 135,	144, 162
SSPSTAT	
ST Input	278
Stack	
Operation	
Pointer	
Stack	
START bit (S)	
START Condition Enabled bit, SAE	
STKAV	
STOP bit (P)	
STOP Condition Enable bit	136
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
Synchronous Master Mode	
Synchronous Master Reception	
Synchronous Master Transmission	107
Synchronous Serial Port	
Synchronous Serial Port Enable bit, SSPEN	
Synchronous Serial Port Interrupt	
Synchronous Serial Port Interrupt Enable, SSPIE	
Synchronous Serial Port Mode Select bits,	
SSPM3:SSPM0	
Synchronous Slave Mode	131
Т	
TOCKI	39
T0CKI Pin	40
T0CKIE	34
	••••••
TOCKIF	
TOCKIF	
	34 53, 97
TOCS	34 53, 97 34
TOCS TOIE	34 53, 97 34 34
T0CS T0IE T0IF	34 53, 97 34 34 53, 97
T0CS	
T0CS	34 53, 97 34 34 53, 97 53 101
TOCS	
TOCS	
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read	34 53, 97 34 53, 97 53 101 55 55
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example	34 53, 97 34 34 53, 97 53 101 55 55 64
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section	34 53, 97 34 53, 97 53 101 55 55 64 64
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example	34 53, 97 34 53, 97 53 101 55 55 64 64
TOCS	34
TOCS	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing	34
TOCS	34
TOCS	34
TOCS	34 53, 97 34 53, 97 53 101 55 55 64 64 64 64 62 62 62 227, 228 228, 229
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT	34 53, 97 34 53, 97 53 101 55 55 64 64 64 64 62 62 62 227, 228 228, 229 185
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL TBLPTRH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL TBLPTRH TBLPTRL TCLK12	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TCLK12 TCLK3	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TBLPTRH TCLK12 TCON1	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TAL TBLATH TBLATH TBLPTRH TCLK12 TCON1 TCON2	34
TOCS TOIE TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLRD TABLATL TBLATH TBLPTRH TCLK12 TCON1 TCON2 TCON2,TCON3	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TBLPTRL TCLK12 TCON1 TCON2 TCON3	34
TOCS TOIE TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLRD TABLATL TBLATH TBLPTRH TCLK12 TCON1 TCON2 TCON2,TCON3	34

 \odot 1998-2013 Microchip Technology Inc.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager Total Pages Sent
RE:	Reader Response
From	n: Name
	Company
	Address
	City / State / ZIP / Country
	Telephone: () FAX: ()
Appl	lication (optional):
Wou	Id you like a reply?YN
Devi	ce: PIC17C7XX Literature Number: DS30289C
Que	stions:
1. \	What are the best features of this document?
-	
-	
2. I	How does this document meet your hardware and software development needs?
-	
3. I	Do you find the organization of this data sheet easy to follow? If not, why?
-	
4.	What additions to the data sheet do you think would enhance the structure and subject?
-	
5.	What deletions from the data sheet could be made without affecting the overall usefulness?
-	
-	
6. I	Is there any incorrect or misleading information (what and where)?
-	
7. I	How would you improve this document?
-	
8. I	How would you improve our software, systems, and silicon products?