

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c762-33-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

8.2 Table Writes to External Memory

Table writes to external memory are always two-cycle instructions. The second cycle writes the data to the external memory location. The sequence of events for an external memory write are the same for an internal write.

8.2.1 TABLE WRITE CODE

The "i" operand of the TABLWT instruction can specify that the value in the 16-bit TBLPTR register is automatically incremented (for the next write). In Example 8-1, the TBLPTR register is not automatically incremented.

EXAMPLE 8-1: TABLE WRITE

CLRWDT		;	Clear WDT
MOVLW	HIGH (TBL_ADDR)	;	Load the Table
MOVWF	TBLPTRH	;	address
MOVLW	LOW (TBL_ADDR)	;	
MOVWF	TBLPTRL	;	
MOVLW	HIGH (DATA)	;	Load HI byte
TLWT	1, WREG	;	in TABLATH
MOVLW	LOW (DATA)	;	Load LO byte
TABLWT	0,0,WREG	;	in TABLATL
		;	and write to
		;	program memory
		;	(Ext. SRAM)

FIGURE 8-5: TABLWT WRITE TIMING (EXTERNAL MEMORY)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
16h, Bank 7	TCON3	—	CA4OVF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
10h, Bank 2	TMR1	Timer1's F	Register	•						XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2's F	Register							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
14h, Bank 2	PR1	Timer1 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
15h, Bank 2	PR2	Timer2 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	—	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	_		—	_	xx0	uu0
10h, Bank 7	PW3DCL	DC1	DC0	TM2PW3	_	_		—	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
11h, Bank 7	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

TABLE 13-3: SUMMARY OF TIMER1, TIMER2 AND TIMER3 REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0', q = value depends on condition. Shaded cells are not used by Timer1 or Timer2.

13.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TIMER1 AND TIMER2

Three high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time base, while PWM2 and PWM3 may independently be software configured to use either Timer1 or Timer2 as the time base. The PWM outputs are on the RB2/PWM1, RB3/PWM2 and RG5/PWM3 pins.

Each PWM output has a maximum resolution of 10bits. At 10-bit resolution, the PWM output frequency is 32.2 kHz (@ 32 MHz clock) and at 8-bit resolution the PWM output frequency is 128.9 kHz. The duty cycle of the output can vary from 0% to 100%.

Figure 13-3 shows a simplified block diagram of a PWM module.

The duty cycle registers are double buffered for glitch free operation. Figure 13-4 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output, irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin and the PWM3ON (TCON3<0>) bit controls the configuration of the RG5/PWM3 pin.

FIGURE 13-3: SIMPLIFIED PWM BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	x00-000x	0000 -00u
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
16h, Bank 0	TXREG1	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	_	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 - 00x	0000 -00u
16h, Bank 4	TXREG2	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register						0000 0000	0000 0000

TABLE 14-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous slave transmission.

TABLE 14-11:	REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION
--------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	x00-000x	0000 -00u
14h, Bank0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 - 00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register						0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous slave reception.

15.1.7 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode and data to be shifted into the SPI transmit/receive shift register. When all 8-bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from SLEEP.

15.1.8 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

TABLE 15-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
07h, Unbanked	INTSTA	PEIF	T0CKIF	TOIF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
14h, Bank 6	SSPBUF	Synchro	onous Ser	ial Port Re	eceive Bu	uffer/Trans	smit Regis	ter		xxxx xxxx	uuuu uuuu
11h, Bank 6	SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
13h, Bank 6	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

15.2 MSSP I²C Operation

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Refer to Application Note AN578, "Use of the SSP Module in the I^2 C Multi-Master Environment."

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency.

FIGURE 15-11: I²C MASTER MODE BLOCK DIAGRAM

Two pins are used for data transfer. These are the SCL pin, which is the clock and the SDA pin, which is the data. The SDA and SCL pins are automatically configured when the I^2C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON1<5>).

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register1 (SSPCON1)
- SSP Control Register2 (SSPCON2)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode, clock = OSC/4 (SSPADD +1)

Before selecting any I^2C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate DDR bits. Selecting an I^2C mode, by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I^2C mode.

15.2.5 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 15-17: SSP BLOCK DIAGRAM (I²C MASTER MODE)

15.2.10 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG while SCL is high. Following this, the RSEN bit in the SSPCON2 register will be automatically cleared and the baud rate generator is not reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If the RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

15.2.10.1 WCOL status flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 15-22: REPEAT START CONDITION WAVEFORM

FIGURE 15-32: STOP CONDITION FLOW CHART

15.3 Connection Considerations for I²C Bus

For standard mode I^2C bus devices, the values of resistors $R_p R_s$ in Figure 15-42 depends on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current)

The supply voltage limits the minimum value of resistor R_p due to the specified minimum sink current of 3 mA at VoL max = 0.4V for the specified output stages. For

example, with a supply voltage of VDD = $5V \pm 10\%$ and VOL max = 0.4V at 3 mA, $R_p \min$ = (5.5-0.4)/0.003 = 1.7 k Ω . VDD as a function of R_p is shown in Figure 15-42. The desired noise margin of 0.1 VDD for the low level, limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 15-42).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

FIGURE 15-42: SAMPLE DEVICE CONFIGURATION FOR I²C BUS

16.3 Configuring Analog Port Pins

The ADCON1, and DDR registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding DDR bits set (input). If the DDR bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the DDR bits.

- Note 1: When reading the port register, any pin configured as an analog input channel will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN15:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

16.4 A/D Conversions

Example 16-2 shows how to perform an A/D conversion. The PORTF and lower four PORTG pins are configured as analog inputs. The analog references (VREF+ and VREF-) are the device AVDD and AVSS. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RG3/AN0 pin (channel 0).

Note:	
	the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/ D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started.

In Figure 16-4, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

	MOVLB CLRF	5 ADCON1, F		Bank 5 Configure A/D inputs, All analog, TAD = Fosc/8, left just.
1	MOVLW	0x01		A/D is on, Channel 0 is selected
ľ	MOVWF	ADCON0	;	
ľ	MOVLB	4	;	Bank 4
I	BCF	PIR2, ADIF	;	Clear A/D interrupt flag bit
I	BSF	PIE2, ADIE	;	Enable A/D interrupts
I	BSF	INTSTA, PEIE	;	Enable peripheral interrupts
I	BCF	CPUSTA, GLINTD	;	Enable all interrupts
;				
; Ens	sure tha	at the required sam	np	ling time for the selected input channel has elapsed.
; The	en the d	conversion may be a	sta	arted.
;				
ľ	MOVLB	5	;	Bank 5
I	BSF	ADCON0, GO	;	Start A/D Conversion
	:		;	The ADIF bit will be set and the GO/DONE bit
	:		;	is cleared upon completion of the A/D Conversion

FIGURE 16-4: A/D CONVERSION TAD CYCLES

EXAMPLE 16-2: A/D CONVERSION

BTF	SS	Bit Test,	, sł	kip if Se	et				
Synt	ax:	[label]	ΒT	FSS f,t)				
Ope	rands:	$0 \le f \le 12$ $0 \le b < 7$							
Ope	ration:	skip if (f<		-) = 1					
Statu	us Affected:	None							
Enco	oding:	1001		0bbb	fff	f	ffff		
Desc	cription:	instructior If bit 'b' is fetched du cution is d	If bit 'b' in register 'f' is 1, then the next instruction is skipped. If bit 'b' is 1, then the next instruction fetched during the current instruction exe- cution is discarded and a NOP is executed instead, making this a two-cycle						
Word	ds:	1							
Cycl	es:	1(2)							
QC	cle Activity:								
	Q1	Q2		Q3	5		Q4		
	Decode	Read register 'f	e,	Proce Data		op	No peration		
lf ski	p:								
	Q1	Q2		Q3	5		Q4		
	No	No		No			No		
	operation	operation	1	operat	tion	op	peration		
<u>Exar</u>	<u>nple</u> :	HERE FALSE TRUE	B1 : :	FSS	FLAG	,1			
	Before Instru PC		add	ress (HE	RE)				
	After Instructi If FLAG< PC If FLAG<7 PC	1> = 0 = a 1> = 1	;	ress (FA ress (TR					

BTG	Bit Toggl	e i			
Syntax:	[<i>label</i>] B	TG f,b			
Operands:	0 ≤ f ≤ 255 0 ≤ b < 7	5			
Operation:	$(\overline{f} < b >) \rightarrow ($	(f)			
Status Affected:	None				
Encoding:	0011	1bbb	ff	ff	ffff
Description:	Bit 'b' in da inverted.	ta memory	loca	ition 'f	' is
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		(ຊ4
Decode	Read register 'f'	Proces Data	S		/rite ster 'f'
Evenale					
Example:	BTG I	PORTC,	4		
Before Instru PORTC		0101 [0x75	5]		
After Instruct	ion:				

After Instruction: PORTC = 0110 0101 [0x65]

INCF	Incremen	tf							
Syntax:	[label]	INCF f	,d						
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$							
Operation:	(f) + 1 \rightarrow ((f) + 1 \rightarrow (dest)							
Status Affected:	OV, C, DC	;, Z							
Encoding:	0001	010d	ffff	ffff					
Description:	The conten mented. If ' WREG. If 'c back in regi	d' is 0, th l' is 1, the	e result is	placed in					
Words:	1	1							
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proce Dat		Vrite to stination					
Example:	INCF	CNT,	1						
Before Instr									
CNT Z C	= 0xFF = 0 = ?								
After Instruc	tion								
CNT Z C	= 0x00 = 1 = 1								

INC	FSZ	Incremen	Increment f, skip if 0							
Synt	ax:	[label]	[label] INCFSZ f,d							
		$0 \le f \le 255$ d $\in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$							
Ope	ration:		(f) + 1 \rightarrow (dest) skip if result = 0							
Status Affected:		None	None							
Enc	oding:	0001	111d ff	ff ffff						
Des	cription:	mented. If ' WREG. If 'd back in regi If the result which is alr and a NOP i	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction.							
Wor	ds:	1	•							
Cyc	es:	1(2)	1(2)							
QC	ycle Activity:									
	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process Data	Write to destination						
lf sk	ip:									
	Q1	Q2	Q3	Q4						
	No operation	No operation	No operation	No operation						
Example:		NZERO	INCFSZ C :	NT, 1						
Before Instruc PC			(HERE)							
	After Instruct CNT If CNT PC	= CNT + = 0;	l S(ZERO)							

- If CNT \neq 0;
 - PC = Address (NZERO)

FIGURE 20-21: USART ASYNCHRONOUS MODE START BIT DETECT

TABLE 20-16: USART ASYNCHRONOUS MODE START BIT DETECT REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур	Max	Unit s	Conditions
120A	TdtL2ckH	Time to ensure that the RX pin is sampled low			_	TCY	ns	
121A	TdtRF	Data rise time and fall time	Receive	_	—	(Note 1)	ns	
			Transmit	_	_	40	ns	
123A	TckH2bckL	Time from RX pin sampled low to first rising edge of x16 clock		_	_	Тсү	ns	

Note 1: Schmitt trigger will determine logic level.

FIGURE 20-22: USART ASYNCHRONOUS RECEIVE SAMPLING WAVEFORM

TABLE 20-17: USART ASYNCHRONOUS RECEIVE SAMPLING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур	Max	Unit s	Conditions
125A	TdtL2ckH	Setup time of RX pin to first data sampled	TCY	—		ns	
126A	TdtL2ckH	Hold time of RX pin from last data sam- pled	Тсү			ns	

TABLE 20-19: A/D CONVERSION REQUIREMENTS

Param. No.	Sym			Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC17CXXX	1.6	—	—	μs	Tosc based, VREF $\geq 3.0V$
		PIC17LCXXX		3.0	—	_	μs	Tosc based, VREF full range
		PIC17 C XXX		2.0	4.0	6.0	μs	A/D RC mode
			PIC17LCXXX	3.0	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including acqui	sition time) (Note 1)	11	_	12	Tad	
132	TACQ	Acquisition time		(Note 2)	20		μS	
				10	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to ADCLK start		—	Tosc/2		_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.1 for minimum conditions when input voltage has changed more than 1 LSb.

NOTES:

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES		MILLIMETERS*			
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		64			64	
Pitch	р		.020			0.50	
Pins per Side n1			16			16	
Overall Height	А	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039			1.00	
Foot Angle	¢	0	3.5	7	0	3.5	7
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.005	.007	.009	0.13	0.18	0.23
Lead Width	В	.007	.009	.011	0.17	0.22	0.27
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-085

INDEX

Α
A/D
Accuracy/Error
ADCON0 Register179
ADCON1 Register
ADIF bit
Analog Input Model Block Diagram
Analog-to-Digital Converter
Block Diagram
Configuring Analog Port Pins
Configuring the Interrupt
Configuring the Module
Connection Considerations
Conversion Clock
Converter Characteristics
Delays
Effects of a RESET
Equations
Flow Chart of A/D Operation
GO/DONE bit
Internal Sampling Switch (Rss) Impedence
Operation During SLEEP 188
Sampling Requirements
Sampling Time
Source Impedence
Time Delays
Transfer Function
A/D Interrupt
A/D Interrupt Flag bit, ADIF
A/D Module Interrupt Enable, ADIE
ACK
Acknowledge Data bit, AKD
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWFC203ADIE36
Acknowledge Data bit, AKD.136Acknowledge Pulse.144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWF203ADIE36ADIF38
Acknowledge Data bit, AKD.136Acknowledge Pulse.144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWF203ADIE36ADIF38ADRES Register179
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADDWF 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49
Acknowledge Data bit, AKD.136Acknowledge Pulse.144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWF203ADIE36ADIF38ADRES Register179
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWF 202 ADWF 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADDWF 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136, 159
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADDWF 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 ALU 11
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWF 202 ADWF 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWF 202 ADWF 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 ALU 11 ALUSTA 198 ALUSTA Register 51
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKD 136 AKE 136 AKD 136 AKE 136 ALU 11 ALUSTA Register
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKD 136 AKE 136 AKD 136 AKS 136 AKS 136 AKS 136 AKS 136 ALU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AUU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 204
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 ANDESI 49 ANDUM 136 AKE 136 AKE 136 AUU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 74
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKS 136 ANDRESL 49 ALUSTA 136 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 74 Application Note AN578, "Use of the SSP Module 74
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKE 136 AKS 136 AUU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 00 NKeystroke.' 74 Application Note AN578, "Use of the SSP Module 143
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 AKS 136 AKE 138 AUUSTA 198 ALUSTA Registe
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0. 49 ADCON1 49 ADDLW. 202 ADDWF. 202 ADDWFC 203 ADIE 36 ADIF. 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKS 136 ACOTA 198 ALUSTA Re
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKE 136 AKS 136 AKS 136 AKS 136 AKS 136 AKS 136 AKS 136 ALUSTA 198 ALUSTA Register 51 ANDWF 204 Application Note AN552, 'Implementing Wake-up 74 Application Note AN578, "Use of the SSP Module 143 Assembler 233 MPASM Assembler 233 Asynchronous Master Transmission 123 <
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0. 49 ADCON1 49 ADDLW. 202 ADDWF. 202 ADDWFC 203 ADIE 36 ADIF. 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKS 136 ACOTA 198 ALUSTA Re

в

Bank Select Register (BSR) 57
Banking
Baud Rate Formula 120
Baud Rate Generator 153
Baud Rate Generator (BRG) 120
Baud Rates
Asynchronous Mode 122
Synchronous Mode 121
BCF
BCLIE
BCLIF
BF 134, 144, 159, 162
Bit Manipulation 198
Block Diagrams
A/D 181
Analog Input Model 184
Baud Rate Generator 153
BSR Operation57
External Brown-out Protection Circuit (Case1)
External Power-on Reset Circuit
External Program Memory Connection
I ² C Master Mode 151
I ² C Module143
Indirect Addressing54
On-chip Reset Circuit
PORTD
PORTE 82, 90, 91
Program Counter Operation 56
PWM
RA0 and RA172
RA2
RA3
RA4 and RA5
RB3:RB2 Port Pins
RB7:RB4 and RB1:RB0 Port Pins
RC7:RC0 Port Pins
SSP (I ² C Mode)
SSP (SPI Mode)
SSP Module (I ² C Master Mode)
SSP Module (I ² C Slave Mode)
SSP Module (SPI Mode) 133
Timer3 with One Capture and One Period Register. 110
TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104
TMR3 with Two Capture Registers
Using CALL, GOTO
WDT
BODEN
BRG 120, 153
Brown-out Protection
Brown-out Protection
BSE 205
BSF
BSR Operation
•
BTFSC
BTFSS
BIG
Buffer Full Status bit, BF 134
Builer Full Status bit, BF
Bus Collision
Section