

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

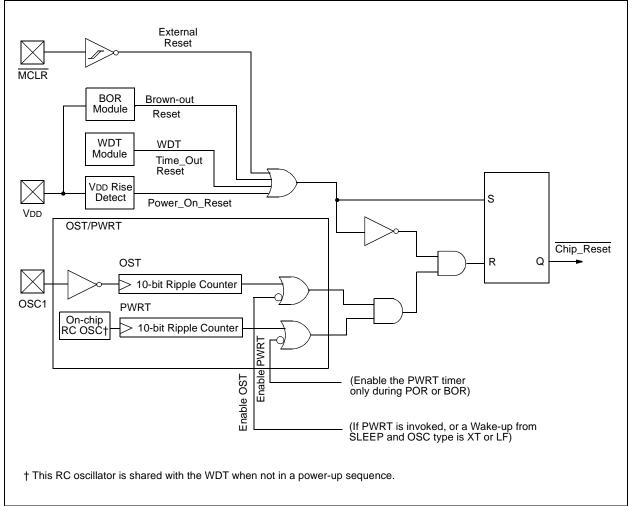
Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c762-33e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.0 RESET

The PIC17CXXX differentiates between various kinds of RESET:


- Power-on Reset (POR)
- Brown-out Reset
- MCLR Reset
- WDT Reset

Some registers are not affected in any RESET condition, their status is unknown on POR and unchanged in any other RESET. Most other registers are forced to a "RESET state". The TO and PD bits are set or cleared differently in different RESET situations, as indicated in Table 5-3. These bits, in conjunction with the POR and BOR bits, are used in software to determine the nature of the RESET. See Table 5-4 for a full description of the RESET states of all registers.

When the device enters the "RESET state", the Data Direction registers (DDR) are forced set, which will make the I/O hi-impedance inputs. The RESET state of some peripheral modules may force the I/O to other operations, such as analog inputs or the system bus.

Note: While the device is in a RESET state, the internal phase clock is held in the Q1 state. Any processor mode that allows external execution will force the RE0/ALE pin as a low output and the RE1/OE and RE2/WR pins as high outputs.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Bank 8^(1,4)

DDRH PORTH

DDRJ

PORTJ

_

_

_

_

FIGURE 7-5: PIC17C7XX REGISTER FILE MAP

Addr	Unbanked				
00h	INDF0				
01h	FSR0				
02h	PCL				
03h	PCLATH				
04h	ALUSTA				
05h	TOSTA				
06h	CPUSTA				
07h	INTSTA				
08h	INDF1				
09h	FSR1				
0Ah	WREG				
0Bh	TMR0L				
0Ch	TMR0H				
0Dh	TBLPTRL				
0Eh	TBLPTRH				
0Fh	BSR				
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾	Bank
10h	PORTA	DDRC	TMR1	PW1DCL	PIR
11h	DDRB	PORTC	TMR2	PW2DCL	PIE
12h	PORTB	DDRD	TMR3L	PW1DCH	—
13h	RCSTA1	PORTD	TMR3H	PW2DCH	RCST
14h	RCREG1	DDRE	PR1	CA2L	RCRE
15h	TXSTA1	PORTE	PR2	CA2H	TXST
16h	TXREG1	PIR1	PR3L/CA1L	TCON1	TXRE
17h	SPBRG1	PIE1	PR3H/CA1H	TCON2	SPBR
	Unbanked				
18h	PRODL				
19h	PRODH				
1Ah	General				
	Purpose				
1Fh	RAM		1		1
	Bank 0 ⁽²⁾	Bank 1 ⁽²⁾	Bank 2 ⁽²⁾	Bank 3 ^(2,3)	
20h					1
	General	General	General	General	
	Purpose	Purpose	Purpose	Purpose	
	RAM	RAM	RAM	RAM	
FFh					

Note 1: SFR file locations 10h - 17h are banked. The lower nibble of the BSR specifies the bank. All unbanked SFRs ignore the Bank Select Register (BSR) bits.

2: General Purpose Registers (GPR) locations 20h - FFh, 120h - 1FFh, 220h - 2FFh, and 320h - 3FFh are banked. The upper nibble of the BSR specifies this bank. All other GPRs ignore the Bank Select Register (BSR) bits.

Bank 5⁽¹⁾

DDRF

PORTF

DDRG

PORTG

ADCON0

ADCON1

ADRESL

ADRESH

Bank 6⁽¹⁾

SSPADD

SSPCON1

SSPCON2

SSPSTAT

SSPBUF

_

_

_

Bank 7⁽¹⁾

PW3DCL

PW3DCH

CA3L

CA3H

CA4L

CA4H

TCON3

_

3: RAM bank 3 is not implemented on the PIC17C752 and the PIC17C762. Reading any unimplemented register reads '0's.

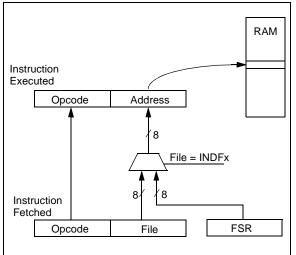
4: Bank 8 is only implemented on the PIC17C76X devices.

7.3 Stack Operation

PIC17C7XX devices have a 16 x 16-bit hardware stack (Figure 7-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC (Program Counter) is "PUSH'd" onto the stack when a CALL or LCALL instruction is executed, or an interrupt is acknowledged. The stack is "POP'd" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all RESETS. There is a stack available bit (STKAV) to allow software to ensure that the stack will not overflow. The STKAV bit is set after a device RESET. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device RESET.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the Top-of-Stack.
 - 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt vector.
 - 3: After a RESET, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device RESET will cause this bit to set.


After the device is "PUSH'd" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

7.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 7-6 shows the operation of indirect addressing. This depicts the moving of the value to the data memory address specified by the value of the FSR register.

Example 7-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 7-6: INDIRECT ADDRESSING

7.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C7XX has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

TABLE 10-17: PORTJ FUNCTIONS

Name	Bit	Buffer Type	Function
RJ0	bit0	ST	Input/output
RJ1	bit1	ST	Input/output
RJ2	bit2	ST	Input/output
RJ3	bit3	ST	Input/output
RJ4	bit4	ST	Input/output
RJ5	bit5	ST	Input/output
RJ6	bit6	ST	Input/output
RJ7	bit7	ST	Input/output

Legend: ST = Schmitt Trigger input

TABLE 10-18: REGISTERS/BITS ASSOCIATED WITH PORTJ

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on, POR, BOR	MCLR, WDT
12h, Bank 8	DDRJ	Data D	Data Direction Register for PORTJ							1111 1111	1111 1111
13h, Bank 8	PORTJ	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged

PIC17C7XX

NOTES:

12.0 TIMER0

The Timer0 module consists of a 16-bit timer/counter, TMR0. The high byte is register TMR0H and the low byte is register TMR0L. A software programmable 8-bit prescaler makes Timer0 an effective 24-bit overflow timer. The clock source is software programmable as either the internal instruction clock, or an external clock on the RA1/T0CKI pin. The control bits for this module are in register T0STA (Figure 12-1).

REGISTER 12-1: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	INTEDG	TOSE	TOCS	T0PS3	T0PS2	T0PS1	T0PS0	_
	bit 7							bit 0
bit 7		A0/INT Pin I						
		ects the edge				J.		
		edge of RAC						
bit 6		er0 Clock Inp						
	This bit sele	ects the edge	e upon whicł	n TMR0 will i	ncrement.			
		S = 0 (Extern		·				
						sets the T0CK sets the T0CK		
	-	<u>S = 1 (Intern</u>	-					
	Don't care	<u> </u>	<u>a. 0.00</u>					
bit 5		er0 Clock So						
		ects the cloc						
		al clock input						
bit 4-1	T0PS3:T0F	SO : Timer0	Prescale Se	lection bits				
	These bits	select the pr	escale value	for TMR0.				
	T0PS3:T0	PS0 Presc	ale Value					
	0000	1:						
	0001 0010	1:						
	0011	1:	8					
	0100 0101		16 32					
	0110		64					
	0111		128					
	1xxx		256					
bit 0	Unimplem	ented: Read	as '0'					
	Legend:							
	R = Readat	ole bit	W = W	ritable bit	U = Unin	nplemented bit,	read as '0'	

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR Reset

x = Bit is unknown

REGISTER 15-2: SSPCON1: SYNC SERIAL PORT CONTROL REGISTER1 (ADDRESS 11h, BANK 6)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit

Master mode:

1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started

0 = No collision

<u>Slave mode:</u>

1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

0 = No collision

bit 6

SSPOV: Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set, since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be cleared in software.)
- 0 = No overflow
- In I²C mode:
- 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)
- 0 = No overflow

bit 5 SSPEN: Synchronous Serial Port Enable bit

In both modes, when enabled, these pins must be properly configured as input or output.

In SPI mode:

1 = Enables serial port and configures SCK, SDO, SDI and \overline{SS} as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode:

- 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins
 - **Note:** In SPI mode, these pins must be properly configured as input or output.

bit 4 **CKP**: Clock Polarity Select bit

In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level

- In I²C Slave mode: SCK release control
- 1 = Enable clock

0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

In I²C Master mode:

Unused in this mode

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

- 0000 = SPI Master mode, clock = Fosc/4
- 0001 = SPI Master mode, clock = FOSC/16
- 0010 = SPI Master mode, clock = FOSC/64
- 0011 = SPI Master mode, clock = TMR2 output/2
- 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled
- 0101 =SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - $0110 = I^2C$ Slave mode, 7-bit address
 - $0111 = I^2C$ Slave mode, 10-bit address
 - $1000 = I^2C$ Master mode, clock = Fosc / (4 * (SSPADD+1))
 - 1xx1 = Reserved
 - 1x1x = Reserved

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a START bit detect, 8-bits are shifted into SSPSR and the address is compared against SSPADD and is also compared to the general call address, fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF flag is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific, or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set, while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the acknowledge (Figure 15-16).

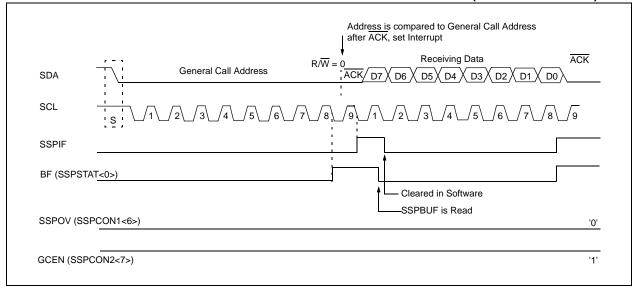


FIGURE 15-16: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

15.2.6 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored for arbitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A START Condition
- A Repeated Start Condition
- An Acknowledge Condition

15.2.7 I²C MASTER MODE SUPPORT

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. Once Master mode is enabled, the user has six options.

- · Assert a START condition on SDA and SCL.
- Assert a Repeated Start condition on SDA and SCL.
- Write to the SSPBUF register initiating transmission of data/address.
- Generate a STOP condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.

Note:	The MSSP Module, when configured in I ² C						
	Master mode, does not allow queueing of						
	events. For instance: The user is not						
	allowed to initiate a START condition and						
	immediately write the SSPBUF register to						
	initiate transmission before the START						
	condition is complete. In this case, the						
	SSPBUF will not be written to and the						
	WCOL bit will be set, indicating that a write						
	to the SSPBUF did not occur.						

15.2.7.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I²C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSP-BUF. Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state

17.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The PD bit is cleared and the TO bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance input).

The MCLR/VPP pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the MCLR/VPP pin low.

17.4.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- Power-on Reset
- · Brown-out Reset
- External RESET input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some peripheral interrupts

The following peripheral interrupts can wake the device from SLEEP:

- Capture interrupts
- · USART synchronous slave transmit interrupts
- · USART synchronous slave receive interrupts
- A/D conversion complete
- · SPI slave transmit/receive complete
- I²C slave receive

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any RESET event will cause a device RESET. Any interrupt event is considered a continuation of program execution. The TO and PD bits in the CPUSTA register can be used to determine the cause of a device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if WDT time-out occurred (and caused a RESET).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note:	If the global interrupt is disabled (GLINTD
	is set), but any interrupt source has both its
	interrupt enable bit and the corresponding
	interrupt flag bit set, the device will imme-
	diately wake-up from SLEEP. The \overline{TO} bit is
	set and the \overline{PD} bit is cleared.

The WDT is cleared when the device wakes from SLEEP, regardless of the source of wake-up.

17.4.1.1 Wake-up Delay

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in RESET for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

Q4

FIGURE 17-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT Q1 | Q2 | Q3 | Q4 | Q1 Q2 Q3 OSC1 MMM Tost(2) CLKOUT⁽⁴⁾ '0' or '1 INT (RA0/INT pin) Interrupt Latency(2) **INTF Flag** GLINTD bit Processor in SLEEP INSTRUCTION FLOW PC PC+2 0004h PC+1 0005h

Inst (PC+2) Inst (PC) = SLEEP Inst (PC+1) Fetched Instruction Inst (PC+1) SLEEP Inst (PC-1) Executed Note 1: XT or LF oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale). This delay will not be there for RC osc mode.

3: When GLINTD = 0, processor jumps to interrupt routine after wake-up. If GLINTD = 1, execution will continue in line. 4: CLKOUT is not available in these osc modes, but shown here for timing reference.

Instruction

Dummy Cycle

INCF	Incremen	tf		
Syntax:	[label]	INCF f	,d	
Operands:				
Operation:	(f) + 1 \rightarrow (dest)		
Status Affected:	OV, C, DC	;, Z		
Encoding:	0001	010d	ffff	ffff
Description:	The conten mented. If ' WREG. If 'c back in regi	d' is 0, th l' is 1, the	e result is	placed in
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce Dat		Vrite to stination
Example:	INCF	CNT,	1	
Before Instr				
CNT Z C	= 0xFF = 0 = ?			
After Instruc	tion			
CNT Z C	= 0x00 = 1 = 1			

INC	FSZ	Incremen	t f, skip if O)				
Synt	ax:	[label]	INCFSZ f,o	d				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$	5					
Ope	ration:	(f) + 1 \rightarrow (skip if resu						
State	us Affected:	None						
Enco	oding:	0001	111d ff	ff ffff				
Des	cription:	mented. If ' WREG. If 'c back in regi If the result which is alr	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched is discarded and a NOP is executed instead, making it a two sucle instruction					
Wor	ds:	1	1					
Cycl	es:	1(2)	1(2)					
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
lf sk	ip:							
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Exa</u>	<u>mple</u> :	NZERO	INCFSZ C : :	NT, 1				
	Before Instru PC		G (HERE)					
	After Instruct CNT If CNT PC	= CNT + = 0;	1 S(ZERO)					

- If CNT \neq 0;
 - PC = Address (NZERO)

PIC17C7XX

MO\	/PF	Move p t	Move p to f					
Synt	ax:	[<i>label</i>] N	[<i>label</i>] MOVPF p,f					
Ope	rands:	$0 \le f \le 25$ $0 \le p \le 31$	-					
Ope	ration:	$(p) \to (f)$						
Statu	us Affected:	Z						
Enco	oding:	010p	pppp	ffff	ffff			
Des	cription:	Move data 'p' to data n 'f' can be a space (00h to 1Fh. Either 'p' o special situ MOVPF is p ring a perip or an I/O p tion. Both ' addressed	memory lo nywhere i n to FFh), r 'f' can bo uation). particularly oheral reg ort) to a c f' and 'p' o	pocation 'f', in the 256 while 'p' c e WREG y useful fo jister (e.g lata mem	Location byte data an be 00h (a useful, or transfer- the timer ory loca-			
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register 'p'	Proce Dat		Write egister 'f'			

Example:	MOVPF	REG1,	REG2
Before Instruc	tion		
REG1	=	0x11	
REG2	=	0x33	
After Instruction	on		

=

=

0x11

0x11

REG1

REG2

MOVWF	Move WR	Move WREG to f						
Syntax:	[label]	MOVWF	f					
Operands:	$0 \le f \le 255$	5						
Operation:	(WREG) -	→ (f)						
Status Affected:	None							
Encoding:	0000	0001	ffff	ffff				
Description:	Move data Location 'f' byte data s	can be an	0					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proces Data		Write gister 'f'				
Example:	MOVWF	REG	·					

Before Instruction								
WREG	=	0x4F						
REG	=	0xFF						
After Instruc	tion							

	lion	
WREG	=	0x4F
REG	=	0x4F

PIC17C7XX

SWA	APF	Swap f					
Synt	tax:	[label]	SWAPF	f,d			
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \left[0,1\right] \end{array}$	5				
Ope	ration:	$f<3:0> \rightarrow f<7:4> \rightarrow$,			
State	us Affected:	None					
Enc	oding:	0001	110d	ffff	ffff		
Des	cription:	The upper 'f' are exch placed in V placed in re	anged. If VREG. If '	'd' is 0, th d' is 1, th	e result is		
Wor	ds:	1					
Cycl	les:	1	1				
QC	ycle Activity:						
	Q1	Q2	Q2 Q3		Q4		
	Decode	Read register 'f'	Proce Dat		Vrite to stination		
<u>Exa</u>	mple: Before Instru REG After Instruct REG	iction = 0x53	REG,	0			

ТАВ	LRD	Tab	le Rea	ad			
Synt	ax:	[<i>la</i>	[label] TABLRD t,i,f				
Ope	rands:	i∈	f ≤ 258 [0,1] [0,1]	5			
Ope	ration:	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR If i = 0, TBLPTR is unchanged					
Statu	us Affected	: No	ne				
Enco	oding:	1	010	10ti	ffff	ffff	
Desc	cription:	1.	is mov If t = 1	ved to reg : the high	ble latch (ister file 'f' byte is m byte is mo	oved;	
		2.	gram by th (TBLF	memory lo ne 16-bit PTR) are	tents of t ocation po Table loaded i ch (TBLA	nted to Pointer nto the	
		3.		: TBLPTI : TBLPTI increme		nented;	
Wor	ds:	1					
Cycl	es:	2 (3	8-cycle	if f = PC	L)		
QC	cle Activity	/:					
	Q1	Q	2	Q3	(Q4	
	Decode	Re regi: TBLA	ster	Proces Data	-	/rite ister 'f'	

Decode	Read	Process	Write
	register	Data	register 'f'
	TBLATH or		
	TBLATL		
No	No	No	No
operation	operation	operation	operation
	(Table Pointer		(OE goes low)
	on Address		
	bus)		

19.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

19.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

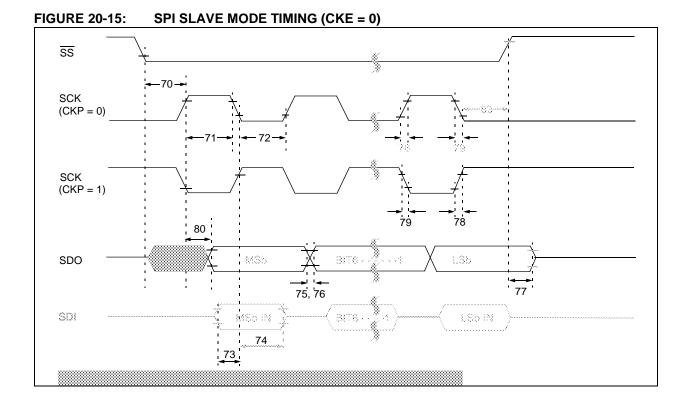
- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

19.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.


The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

19.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

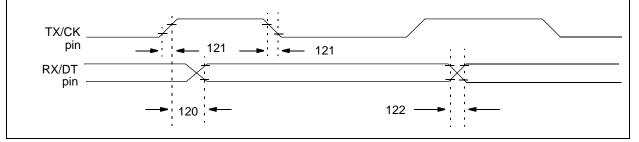
For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

TABLE 20-10: SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	—	ns	
71A		(Slave mode)	Single Byte	40		—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to	SCK edge	100	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the of Byte2	1.5Tcy + 40	—	—	ns	(Note 1)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	SCK edge	100	—	_	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
77	TssH2doZ	SS [↑] to SDO output hi-impedan	се	10	_	50	ns	
78	TscR	SCK output rise time (Master m	iode)	_	10	25	ns	
79	TscF	SCK output fall time (Master me	ode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge			—	50	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	—	ns	
†	Data in "Typ"	column is at 5V, 25°C unless oth	erwise stated.					

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

Param No.	Sym	Characteristic		Min	Max	Units	Conditions
110	Tbuf	Bus free time	100 kHz mode	4.7	—	ms	Time the bus must be free
			400 kHz mode	1.3	_	ms	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	ms	can start
D102	Cb	Bus capacitive loading		_	400	pF	

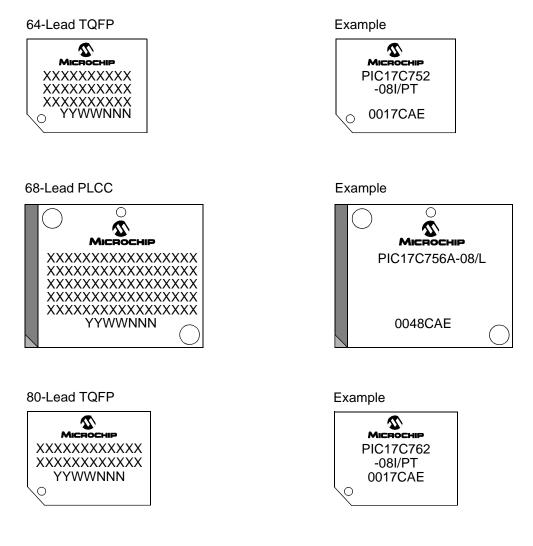

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode (400 KHz) I²C bus device can be used in a standard mode I²C bus system, but the parameter # 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Parameter #102 + #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

3: C_b is specified to be from 10-400pF. The minimum specifications are characterized with C_b =10pF. The rise time spec (t_r) is characterized with R_p = R_p min. The minimum fall time specification (t_f) is characterized with C_b =10pF,and R_p = R_p max. These are only valid for fast mode operation (VDD=4.5-5.5V) and where the SPM bit (SSPSTAT<7>) =1.)

4: Max specifications for these parameters are valid for falling edge only. Specs are characterized with R_p=R_p min and C_b=400pF for standard mode, 200pF for fast mode, and 10pF for 1MHz mode.

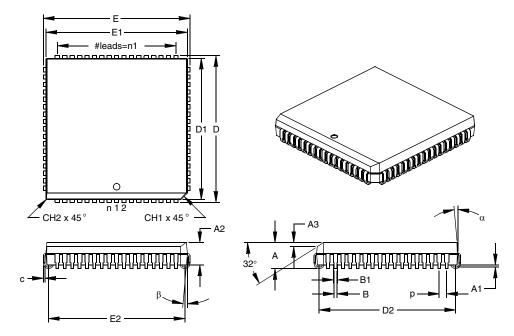
FIGURE 20-19: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING


TABLE 20-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic			Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)						
		Clock high to data out valid	PIC17 C XXX	—	—	50	ns	
			PIC17LCXXX	-	—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17 C XXX	—	—	25	ns	
		(Master mode)	PIC17 LC XXX	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17 C XXX	—	—	25	ns	
			PIC17 LC XXX	_	_	40	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

22.0 PACKAGING INFORMATION


22.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

68-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

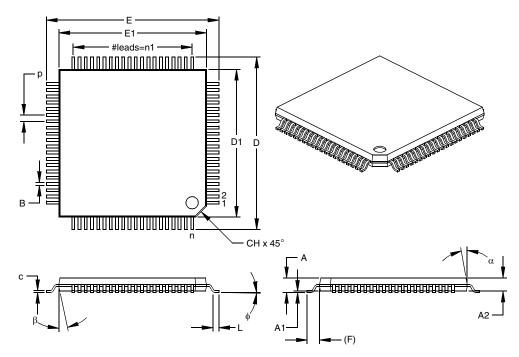
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		68			68	
Pitch	р		.050			1.27	
Pins per Side	n1		17			17	
Overall Height	А	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.985	.990	.995	25.02	25.15	25.27
Overall Length	D	.985	.990	.995	25.02	25.15	25.27
Molded Package Width	E1	.950	.954	.958	24.13	24.23	24.33
Molded Package Length	D1	.950	.954	.958	24.13	24.23	24.33
Footprint Width	E2	.890	.920	.930	22.61	23.37	23.62
Footprint Length	D2	.890	.920	.930	22.61	23.37	23.62
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter

§ Significant Characteristic

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-047

Drawing No. C04-049

80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES		М	MILLIMETERS*	
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		80			80	
Pitch	р		.020			0.50	
Pins per Side	n1		20			20	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039			1.00	
Foot Angle	ф	0	3.5	7	0	3.5	7
Overall Width	Е	.541	.551	.561	13.75	14.00	14.25
Overall Length	D	.541	.551	.561	13.75	14.00	14.25
Molded Package Width	E1	.463	.472	.482	11.75	12.00	12.25
Molded Package Length	D1	.463	.472	.482	11.75	12.00	12.25
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.007	.009	.011	0.17	0.22	0.27
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-092

R	
R/W	
R/W bit	145
R/W bit	145
RA1/T0CKI pin	
RBIE	
<u>RBIF</u>	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RC1IE	
RC1IF	÷ · · · · · ·
RC2IE	
RC2IF	
RCE, Receive Enable bit, RCE	
RCREG	
RCREG1	,
RCREG2	
RCSTA	, ,
RCSTA1	,
	, -
Read/Write bit, R/W	
Reading 16-bit Value	
Receive Overflow Indicator bit, SSPOV	
Receive Status and Control Register	
Register File Map	
ADCON0	40
ADCONU	
ADRESH	•••••
ADRESH	
AURESL	
BRG	, ,
BSR	
CA2H	,
CA2L	
CA3H	
CA3L	
CA4H	
CA4L	
CPUSTA	
DDRB	,
DDRC	
DDRD	
DDRE	
DDRF	
DDRG	
FSR0	
FSR1	-) -
INDF0	
INDF1	,
INSTA	
INTSTA	
PCL	
PCLATH	-
PIE1	,
PIE2	,
PIR1	- , -
PIR2	,
PORTA	
PORTB	-
PORTC	
PORTD	
PORTE	-
PORTF	
PORTG	

PR14	19
PR24	19
PR3H/CA1H4	19
PR3L/CA1L	19
PRODH	50
PRODL	
PW1DCH	
PW1DCL	-
PW2/DCL	
PW2DCH	
PW3DCH	
PW3DCL	
RCREG14 RCREG2	
RCSTA1	-
RCSTA2	-
SPBRG1	-
SPBRG2	-
SSPADD	
SSPBUF	50
SSPCON15	
SSPCON25	50
SSPSTAT 50, 13	34
T0STA 48, 53, 9	97
TBLPTRH4	
TBLPTRL	
TCON1 49, 10	
TCON2	
TCON3 50, 10	
TMR0H	
TMR1	-
TMR3H	
	τυ.
TMR3I 4	19
TMR3L	-
TMR3L	18
TXREG1	18 19
TXREG1	18 19 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 4	18 19 18 19
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 2	18 19 18 19 19 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters TMROL	18 19 18 19 19 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters TMR0L Reset 2	18 19 18 19 18 19
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2	18 19 18 19 18 19 18 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2	18 19 18 19 18 19 18 18 18 18 23 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2	18 19 18 19 18 19 18 19 18 18 23 25 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2	18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 25 25 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13	18 19 18 19 18 19 18 19 18 18 18 25 25 25 25 36
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22	18 19 18 19 18 19 18 19 18 18 25 25 25 25 25 25 25 25 25 25 25 25 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22	18 19 18 19 18 19 18 18 23 25 26 21
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22	18 19 18 19 18 19 18 18 23 25 26 21 22
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22 RLCF 22	18 19 18 19 18 19 18 19 18 23 25 26 21 22 22 23 24 25 26 21 22
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22 RLOF 22 RLNOF 22	18 18 19 18 19 18 19 18 19 18 19 18 19 18 18 25 25 26 21 22 23
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22 RLCF 22	18 18 19 18 19 18 19 18 19 18 19 18 23 25 26 21 22 23 23
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 TMROL 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RLOF 22 RRCF 22 RRNCF 22 RSE 13	18 18 19 18 19 18 25 25 26 21 22 23 24 36
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RLCF 22 RLCF 22 RRCF 22 RRNCF 22	18 18 19 18 19 18 25 25 26 21 22 23 24 36
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 TMROL 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 REUF 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12	18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 19 19 10 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 TMROL 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13	18 19 18 19 18 19 18 19 18 19 18 19 18 19 19 10 18 19 19 10 18 19 10 10 18 19 10 10 19 10 10 10 19 10 10 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RECF 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13	18 19 19 10 19 10 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 Sampling 14	18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 39, 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RLCF 22 RRCF 22 RRCF 22 RSE 13 SXP in Sampling Scheme 12 S 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2	18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 SAE 13 SAE 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 24	18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2 SCL 14	18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2 SCK 13 SDA 14	189 1
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2 SCL 14	189 1