

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c762t-16i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1 and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-8.

4.3 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO), then two cycles are required to complete the instruction (Example 4-1).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-1: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	Tcy2	TCY3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. CALL SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush	
5. Instruction @ addre	ss SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetched instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

7.7 Program Counter Module

The Program Counter (PC) is a 16-bit register. PCL, the low byte of the PC, is mapped in the data memory. PCL is readable and writable just as is any other register. PCH is the high byte of the PC and is not directly addressable. Since PCH is not mapped in data or program memory, an 8-bit register PCLATH (PC high latch) is used as a holding latch for the high byte of the PC. PCLATH is mapped into data memory. The user can read or write PCH through PCLATH.

The 16-bit wide PC is incremented after each instruction fetch during Q1 unless:

- Modified by a GOTO, CALL, LCALL, RETURN, RETLW, or RETFIE instruction
- · Modified by an interrupt response
- Due to destination write to PCL by an instruction

"Skips" are equivalent to a forced NOP cycle at the skipped address.

Figure 7-7 and Figure 7-8 show the operation of the program counter for various situations.

FIGURE 7-7: PROGRAM COUNTER OPERATION

FIGURE 7-8: PROGRAM COUNTER USING THE CALL AND GOTO INSTRUCTIONS

Using Figure 7-7, the operations of the PC and PCLATH for different instructions are as follows:

- a) <u>LCALL instructions</u>: An 8-bit destination address is provided in the instruction (opcode). PCLATH is unchanged. PCLATH → PCH Opcode<7:0> → PCL
- b) Read instructions on PCL: Any instruction that reads PCL. PCL \rightarrow data bus \rightarrow ALU or destination PCH \rightarrow PCLATH
- c) Write instructions on PCL: Any instruction that writes to PCL.
 8-bit data → data bus → PCL PCLATH → PCH
- d) <u>Read-Modify-Write instructions on PCL:</u> Any instruction that does a read-write-modify operation on PCL, such as ADDWF PCL. Read: PCL → data bus → ALU Write: 8-bit result → data bus → PCL
- PCLATH \rightarrow PCH e) <u>RETURN instruction:</u> Stack<MRU> \rightarrow PC<15:0>

Using Figure 7-8, the operation of the PC and PCLATH for GOTO and CALL instructions is as follows:

<u>CALL, GOTO instructions</u>: A 13-bit destination address is provided in the instruction (opcode). Opcode<12:0> \rightarrow PC<12:0> PC<15:13> \rightarrow PCLATH<7:5> Opcode<12:8> \rightarrow PCLATH<4:0>

The read-modify-write only affects the PCL with the result. PCH is loaded with the value in the PCLATH. For example, ADDWF PCL will result in a jump within the current page. If PC = 03F0h, WREG = 30h and PCLATH = 03h before instruction, PC = 0320h after the instruction. To accomplish a true 16-bit computed jump, the user needs to compute the 16-bit destination address, write the high byte to PCLATH and then write the low value to PCL.

The following PC related operations do not change PCLATH:

- a) LCALL, RETLW, and RETFIE instructions.
- b) Interrupt vector is forced onto the PC.
- c) Read-modify-write instructions on PCL (e.g. BSF PCL).

8.2 Table Writes to External Memory

Table writes to external memory are always two-cycle instructions. The second cycle writes the data to the external memory location. The sequence of events for an external memory write are the same for an internal write.

8.2.1 TABLE WRITE CODE

The "i" operand of the TABLWT instruction can specify that the value in the 16-bit TBLPTR register is automatically incremented (for the next write). In Example 8-1, the TBLPTR register is not automatically incremented.

EXAMPLE 8-1: TABLE WRITE

CLRWDT		;	Clear WDT
MOVLW	HIGH (TBL_ADDR)	;	Load the Table
MOVWF	TBLPTRH	;	address
MOVLW	LOW (TBL_ADDR)	;	
MOVWF	TBLPTRL	;	
MOVLW	HIGH (DATA)	;	Load HI byte
TLWT	1, WREG	;	in TABLATH
MOVLW	LOW (DATA)	;	Load LO byte
TABLWT	0,0,WREG	;	in TABLATL
		;	and write to
		;	program memory
		;	(Ext. SRAM)

FIGURE 8-5: TABLWT WRITE TIMING (EXTERNAL MEMORY)

NOTES:

10.3 PORTC and DDRC Registers

PORTC is an 8-bit bi-directional port. The corresponding data direction register is DDRC. A '1' in DDRC configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTC reads the status of the pins, whereas writing to PORTC will write to the port latch. PORTC is multiplexed with the system bus. When operating as the system bus, PORTC is the low order byte of the address/data bus (AD7:AD0). The timing for the system bus is shown in the Electrical Specifications section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 10-3 shows an instruction sequence to initialize PORTC. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-3: INITIALIZING PORTC

MOVLB	1	;	Select Bank 1
CLRF	PORTC,	F;	Initialize PORTC data
		;	latches before setting
		;	the data direction reg
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRC	;	Set RC<3:0> as inputs
		;	RC<5:4> as outputs
		;	RC<7:6> as inputs

FIGURE 10-9: BLOCK DIAGRAM OF RC7:RC0 PORT PINS

10.5 PORTE and DDRE Register

PORTE is a 4-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to PORTE will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (OE) and Write (WR). The control signals OE and WR are active low signals. The timing for the system bus is shown in the Electrical Specifications section.

Note: Three pins of this port are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. The other pin is a general purpose I/O or Capture4 pin. In the two other microcontroller modes, RE2:RE0 are general purpose I/O pins. Example 10-5 shows an instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-5: INITIALIZING PORTE

MOVLB	1		;	Select Bank 1
CLRF	PORTE,	F	;	Initialize PORTE data
			;	latches before setting
			;	the data direction
			;	register
MOVLW	0x03		;	Value used to initialize
			;	data direction
MOVWF	DDRE		;	Set RE<1:0> as inputs
			;	RE<3:2> as outputs
			;	RE<7:4> are always
			;	read as '0'

FIGURE 10-11: BLOCK DIAGRAM OF RE2:RE0 (IN I/O PORT MODE)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
16h, Bank 7	TCON3	—	CA4OVF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
10h, Bank 2	TMR1	Timer1's F	Register							XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2's F	Timer2's Register						xxxx xxxx	uuuu uuuu	
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	-	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
14h, Bank 2	PR1	Timer1 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
15h, Bank 2	PR2	Timer2 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	—	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	_	-	_	_	xx0	uu0
10h, Bank 7	PW3DCL	DC1	DC0	TM2PW3	_	_	-	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
11h, Bank 7	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 13-3: SUMMARY OF TIMER1, TIMER2 AND TIMER3 REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0', q = value depends on condition. Shaded cells are not used by Timer1 or Timer2.

REGISTER 15-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 13h, BANK 6) R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP CKE D/A Р S R/W UA BF bit 7 bit 0 bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in Slave mode In I²C Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High Speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select (Figure 15-6, Figure 15-8 and Figure 15-9) CKP = 0: 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK CKP = 1: 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK bit 5 D/A: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address P: STOP bit bit 4 (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last bit 3 S: START bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last **R/W**: Read/Write bit Information (I²C mode only) bit 2 This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or not ACK bit. In I²C Slave mode: 1 = Read 0 = WriteIn I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress Or'ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. bit 1 **UA**: Update Address (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit Receive (SPI and I²C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I²C mode only) 1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the \overline{ACK} and STOP bits), SSPBUF is empty Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

15.1 SPI Mode

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)

15.1.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON1 register (SSPCON1<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase
 (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 15-4 shows the block diagram of the MSSP module when in SPI mode.

FIGURE 15-4:

MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR. until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and the interrupt flag bit SSPIF (PIR2<7>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON1<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 15-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER

	MOVLB	6		;	Bank 6
LOOP	BTFSS	SSPSTAT	, BF	;	Has data been
				;	received
				;	(transmit
				;	complete)?
	GOTO	LOOP		;	No
	MOVPF	SSPBUF,	RXDATA	;	Save in user RAM
	MOVFP	TXDATA,	SSPBUF	;	New data to xmit

The SSPSR is not directly readable, or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT) indicates the various status conditions.

15.1.2 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the DDR register) appropriately programmed. That is:

- SDI is automatically controlled by the SPI module
- SDO must have DDRB<7> cleared
- SCK (Master mode) must have DDRB<6> cleared
- SCK (Slave mode) must have DDRB<6> set
- SS must have PORTA<2> set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (DDR) register to the opposite value.

15.1.3 TYPICAL CONNECTION

Figure 15-5 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 15-5: SPI MASTER/SLAVE CONNECTION

Figure 16-2 shows the conversion sequence and the terms that are used. Acquisition time is the time that the A/D module's holding capacitor is connected to the external voltage level. Then, there is the conversion time of 12 TAD, which is started when the GO bit is set. The sum of these two times is the sampling time. There is a minimum acquisition time to ensure that the holding capacitor is charged to a level that will give the desired accuracy for the A/D conversion.

FIGURE 16-2: A/D CONVERSION SEQUENCE

Acquisition Time	A/D Conversion Time
	A/D conversion complete, result is loaded in ADRES register. Holding capacitor begins acquiring voltage level on selected channel, ADIF bit is set.
V (\$	/hen A/D conversion is started setting the GO bit).
When A/D holding cap After A/D conversion, c	acitor starts to charge. r when new A/D channel is selected.

Table 18-2 lists the instructions recognized by the MPASM assembler.

Note 1: Any unused opcode is Reserved. Use of any reserved opcode may cause unexpected operation.

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 18-1: GENERAL FORMAT FOR INSTRUCTIONS

18.1 Special Function Registers as Source/Destination

The PIC17C7XX's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

18.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA and then set the Z bit leaving 0000 0100b in the register.

18.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCH \to PCLATH; PCL \to dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	PCL \rightarrow ALU operand PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

18.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write (R-M-W)). The user should keep this in mind when operating on some special function registers, such as ports.

Note:	Status bits that are manipulated by the								
	device (including the interrupt flag bits) are								
	set or cleared in the Q1 cycle. So, there is								
	no issue on doing R-M-W instructions on								
	registers which contain these bits								

19.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

19.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC MCU devices. It can also set code protection in this mode.

19.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

19.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

19.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

FIGURE 20-5: PARAMETER MEASUREMENT INFORMATION

TABLE 20-9: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	-	ns	
71A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30	_	-	ns	
72A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	Ι	Ι	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	—	_	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	_	_	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
78	TscR	SCK output rise time (Master m	node)	—	10	25	ns	
79	TscF	SCK output fall time (Master mode)		—	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		—	Ι	50	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK	edge	Тсу	-	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

FIGURE 20-25: MEMORY INTERFACE READ TIMING

TABLE 20-21: MEMORY INTERFACE READ REQUIREMENTS

Param. No.	Sym	Characteristic	c	Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD15:AD0 (address) valid to	PIC17 C XXX	0.25Tcy - 10	_	—	ns	
		ALE↓ (address setup time)	PIC17LCXXX	0.25Tcy - 10	_	—		
151	TalL2adl	ALE \downarrow to address out invalid	PIC17 C XXX	5	_	—	ns	
		(address hold time)	PIC17LCXXX	5		_		
160	TadZ2oeL	AD15:AD0 hi-impedance to	PIC17 C XXX	0	_	—	ns	
		OE↓	PIC17LCXXX	0		_		
161	ToeH2ad	OE [↑] to AD15:AD0 driven	PIC17 C XXX	0.25Tcy - 15		_	ns	
	D		PIC17LCXXX	0.25Tcy - 15		_		
162	TadV2oeH	Data in valid before \overline{OE}^{\uparrow}	PIC17 C XXX	35		_	ns	
		(data setup time)	PIC17 LC XXX	45		_		
163	ToeH2adl	OE [↑] to data in invalid	PIC17 C XXX	0	_	—	ns	
		(data hold time)	PIC17LCXXX	0	_	_		
164	TalH	ALE pulse width	PIC17 C XXX	_	0.25TCY	—	ns	
			PIC17LCXXX	—	0.25TCY	—		
165	ToeL	OE pulse width	PIC17 C XXX	0.5Tcy - 35	_	_	ns	
			PIC17LCXXX	0.5Tcy - 35		—		
166	TalH2alH	ALE↑ to ALE↑(cycle time)	PIC17 C XXX	—	Тсү	—	ns	
			PIC17LCXXX	_	Тсү	—		
167	Tacc	Address access time	PIC17 C XXX	_	_	0.75Tcy - 30	ns	
			PIC17LCXXX		_	0.75Tcy - 45		
168	Toe	Output enable access time	PIC17 C XXX		_	0.5Tcy - 45	ns	
		(OE low to data valid)	PIC17LCXXX	_		0.5Tcy - 75		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

FIGURE 21-13: TYPICAL AND MAXIMUM △IPD vs. VDD (SLEEP MODE, WDT ENABLED, -40°C to +125°C)

FIGURE 21-14: TYPICAL AND MAXIMUM △IRBPU vs. VDD (MEASURED PER INPUT PIN, -40°C TO +125°C)

FIGURE 21-17: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

Timer0	97
Timer1	
16-bit Mode)5
Clock Source Select10)1
On bit)3
Section)4
Timer2	
16-bit Mode)5
Clock Source Select)1
On hit 102 10)3
Section 101, 10	14
Timer3	
Clock Source Select 10	11
	וי מו
On bit	
Section	U
TOONO	5
TCON3TU	13
A/D Conversion	<i>i</i> 4
Acknowledge Sequence Timing16	55
Asynchronous Master Transmission 12	23
Asynchronous Reception12	26
Back to Back Asynchronous Master Transmission 12	24
Baud Rate Generator with Clock Arbitration 15	53
BRG Reset Due to SDA Collision17	'2
Bus Collision	
START Condition Timing17	′1
Bus Collision During a RESTART Condition	
(Case 1)	' 3
Bus Collision During a BESTART Condition	-
(Case 2) 17	73
Bus Collision During a START Condition	Ű
(SCI = 0) 17	70
(SOL = 0)	2
STOD Condition 17	7 /
STOP Condition	4
Bus Collision for Transmit and Acknowledge	0
External Parallel Resonant Crystal Oscillator Circuit	9
External Program Memory Access4	5
1°C Bus Data	9
1 ² C Bus START/STOP bits	8
I ² C Master Mode First START bit Timing	54
I ² C Master Mode Reception Timing16	54
I ² C Master Mode Transmission Timing16	51
Interrupt (INT, TMR0 Pins)4	10
Master Mode Transmit Clock Arbitration16	60
Oscillator Start-up Time2	24
PIC17C752/756 Capture Timing25	53
PIC17C752/756 CLKOUT and I/O25	60
PIC17C752/756 External Clock24	9
PIC17C752/756 Memory Interface Read26	6
PIC17C752/756 Memory Interface Write	55
PIC17C752/756 PWM Timing	53
PIC17C752/756 Reset, Watchdog Timer, Oscillator	-
Start-up Timer and Power-up Timer	51
PIC17C752/756 Timer0 Clock 25	52
PIC17C752/756 Timer1 Timer2 and Timer3 Clock 25	52
PIC17C752/756 LISABT Module Synchronous	~
Popoivo 26	
PIC17C752/756 LISART Modulo	51
PIC17C752/756 USART Module	51 :0
PIC17C752/756 USART Module Synchronous Transmission	50
PIC17C752/756 USART Module Synchronous Transmission	51 50 56
PIC17C752/756 USART Module Synchronous Transmission	50 56 10
PIC17C752/756 USART Module Synchronous Transmission	50 56 40 57
PIC17C752/756 USART Module Synchronous Transmission 26 Repeat START Condition 15 Slave Synchronization 14 STOP Condition Receive or Transmit 16 Synchronous Reception 12 Subscription 12	50 56 40 57 29
PIC17C752/756 USART Module Synchronous Transmission 26 Repeat START Condition 15 Slave Synchronization 14 STOP Condition Receive or Transmit 16 Synchronous Reception 12 Synchronous Transmission 12 Synchronous Transmission 12	50 56 10 57 29 28

	98. 99
IMR0 Read/Write in Limer Mode	100
TMR1, TMR2, and TMR3 in Timer Mode	115
Wake-Up from SLEEP	194
TLRD	229
TLWT	230
TMR0	
16-bit Read	99
16-bit Write	
Module	
Operation	
Overview	95
Prescaler Assignments	
Read/Write Considerations	
Read/Write in Timer Mode	100
	98, 99
I MRU Status/Control Register (1051A)	
I MIKI	28, 49
8-Dil Mode	104
Timer Mode	
Two 8-bit Timer/Counter Mode	104
Using with PWM	107
TMR1 Overflow Interrupt	
TMR1CS	101
TMR1IE	
TMR1IF	
TMR1ON	102
TMR2	28, 49
8-bit Mode	104
External Clock Input	104
In Timer Mode	115
Two 8-bit Timer/Counter Mode	104
Using with PWM	107
TMR2 Overflow Interrupt	37
TMR2CS	101
TMR2IE	35
TMR2IE TMR2IF	
TMR2IE TMR2IF TMR2ON	101 35 37 102
TMR2IE TMR2IF TMR2ON TMR3	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Beading/Writing	101 35 37 102 114 114 114 115 110 95 114
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Elag bit TMR3IE	101 35 37 102 114 114 114 115 110 95 114 37
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3CS	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE.	101 307 307 307 307 307 307 307 307
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IF	101 307 307 307 307 102 102 102 102 102 104 105 105 105 105 105 105 105 105
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IE TMR3L.	101 307 307 307 307 102 102 102 102 104 114 115 110 95 114 37 101, 110 28, 49 35 37, 110 28, 49
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IE TMR3L TMR3ON	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IE TMR3L TMR3ON TO	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H. TMR3IE. TMR3IF. TMR3IF. TMR3ON	101, 110
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3I Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3ON TO 52, Transmit Status and Control Register	101, 110
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IE TMR3IF TMR3L TMR3ON TO	101, 110
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3I Interrupt Flag bit, TMR3IF TMR3H TMR3IE. TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register TSTFSZ TTL INPUT Turning on 16-bit Timer	101, 110
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3I Interrupt Flag bit, TMR3IF TMR3H TMR3IE. TMR3IF. TMR3IF. TMR3ON TO 52, Transmit Status and Control Register TSTFSZ. TTL INPUT Turning on 16-bit Timer	101 35 37 102 114 114 114 115 110 95 114 37 101, 110 28, 49 102, 110 193, 194 102, 110 193, 194 117 230 278 105 35
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE. TMR3IF. TMR3ON TO 52, Transmit Status and Control Register TSTFSZ. TTL INPUT TX1IE TX1IF	101, 110
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE. TMR3IF. TMR3ON TO 52, Transmit Status and Control Register TSTFSZ. TTL INPUT TX1IE TX1IF TX2IE.	101, 110
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3I Interrupt Flag bit, TMR3IF TMR3H TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register TSTFSZ TTL INPUT TX1IE TX1IE TX2IF	101, 110
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3CS TMR3IE. TMR3IF. TMR3IF. TMR3ON TO 52, Transmit Status and Control Register. TSTFSZ TTL INPUT TX1IE TX1IE TX2IF TX2IF. TX2IF. TXREG	101, 110