

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	16KB (8K × 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c762t-33i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams cont.'d

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC17CXXX can be attributed to a number of architectural features, commonly found in RISC microprocessors. To begin with, the PIC17CXXX uses a modified Harvard architecture. This architecture has the program and data accessed from separate memories. So, the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC17CXXX opcodes are 16-bits wide, enabling single word instructions. The full 16-bit wide program memory bus fetches a 16-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (121 ns @ 33 MHz), except for program branches and two special instructions that transfer data between program and data memory.

The PIC17CXXX can address up to 64K x 16 of program memory space.

The **PIC17C752** and **PIC17C762** integrate 8K x 16 of EPROM program memory on-chip.

The **PIC17C756A** and **PIC17C766** integrate 16K x 16 EPROM program memory on-chip.

A simplified block diagram is shown in Figure 3-1. The descriptions of the device pins are listed in Table 3-1.

Program execution can be internal only (Microcontroller or Protected Microcontroller mode), external only (Microprocessor mode), or both (Extended Microcontroller mode). Extended Microcontroller mode does not allow code protection.

The PIC17CXXX can directly or indirectly address its register files or data memory. All special function registers, including the Program Counter (PC) and Working Register (WREG), are mapped in data memory. The PIC17CXXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC17CXXX simple, yet efficient. In addition, the learning curve is reduced significantly.

One of the PIC17CXXX family architectural enhancements from the PIC16CXX family, allows two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the WREG register, thus increasing performance and decreasing program memory usage.

The PIC17CXXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The WREG register is an 8-bit working register used for ALU operations.

All PIC17CXXX devices have an 8 x 8 hardware multiplier. This multiplier generates a 16-bit result in a single cycle.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), Zero (Z) and Overflow (OV) bits in the ALUSTA register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Signed arithmetic is comprised of a magnitude and a sign bit. The overflow bit indicates if the magnitude overflows and causes the sign bit to change state. That is, if the result of 8-bit signed operations is greater than 127 (7Fh), or less than -128 (80h).

Signed math can have greater than 7-bit values (magnitude), if more than one byte is used. The overflow bit only operates on bit6 (MSb of magnitude) and bit7 (sign bit) of each byte value in the ALU. That is, the overflow bit is not useful if trying to implement signed math where the magnitude, for example, is 11-bits.

If the signed math values are greater than 7-bits (such as 15-, 24-, or 31-bit), the algorithm must ensure that the low order bytes of the signed value ignore the overflow status bit.

Example 3-1 shows two cases of doing signed arithmetic. The Carry (C) bit and the Overflow (OV) bit are the most important status bits for signed math operations.

EXAMPLE 3-1: 8-BIT MATH ADDITION

Hex Value	Signed Values	Unsigned Values
FFh	-1	255
+ 01h	+ 1	+ 1
= 00h		= 256 \rightarrow 00h
C bit = 1	C bit = 1	C bit = 1
OV bit = 0	OV bit = 0	OV bit = 0
DC bit = 1	DC bit = 1	DC bit = 1
Z bit = 1	Z bit = 1	Z bit = 1
Hey Value	Signed Values	Unsigned Values
Hex Value	Signed Values	Unsigned Values
Hex Value	Signed Values	Unsigned Values
	127	-
7Fh	127	127 + 1
7Fh + 01h = 80h	127 + 1	127 + 1 = 128
7Fh + 01h = 80h C bit = 0	$\begin{array}{r} 127\\ \pm 1\\ = 128 \rightarrow 00h \end{array}$	127 + 1 = 128 C bit = 0
7Fh + 01h = 80h C bit = 0 OV bit = 1	127 $+ 1$ $= 128 \rightarrow 00h$ C bit = 0	127 <u>+ 1</u> = 128 C bit = 0 OV bit = 1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
Unbanke	ed										
00h	INDF0	Uses conte	ents of FSR	0 to address	Data Memo	ry (not a phy	sical registe	r)			
01h	FSR0	Indirect Da	ata Memory	Address Poi	nter 0					XXXX XXXX	uuuu uuuu
02h	PCL	Low order	8-bits of PC	;						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding Re	egister for u	pper 8-bits o	f PC					0000 0000	uuuu uuuu
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu
05h	TOSTA	INTEDG	T0SE	TOCS	T0PS3	T0PS2	T0PS1	T0PS0		0000 000-	0000 000-
06h ⁽²⁾	CPUSTA		_	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qqui
07h	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	TOCKIE	T0IE	INTE	0000 0000	0000 0000
08h	INDF1	Uses conte	ents of FSR	1 to address	Data Memo	ry (not a phy	sical registe	r)			
09h	FSR1	Indirect Da	ata Memory	Address Poi	nter 1		-			XXXX XXXX	uuuu uuuu
0Ah	WREG	Working R	egister							XXXX XXXX	uuuu uuuu
0Bh	TMR0L	TMR0 Reg	gister; Low E	Byte						XXXX XXXX	uuuu uuuu
0Ch	TMR0H	TMR0 Reg	jister; High I	Byte						XXXX XXXX	uuuu uuuu
0Dh	TBLPTRL	Low Byte of	of Program	Memory Tab	le Pointer					0000 0000	0000 0000
0Eh	TBLPTRH	High Byte	of Program	Memory Tab	le Pointer					0000 0000	0000 0000
0Fh	BSR	Bank Sele	ct Register							0000 0000	0000 0000
Bank 0	•									•	
10h	PORTA ^(4,6)	RBPU	—	RA5/TX1/ CK1	RA4/RX1/ DT1	RA3/SDI/ SDA	RA2/SS/ SCL	RA1/T0CKI	RA0/INT	0-xx 11xx	0-uu 11uu
11h	DDRB	Data Direc	tion Registe	er for PORTE	3					1111 1111	1111 1111
12h	PORTB ⁽⁴⁾	RB7/	RB6/	RB5/	RB4/	RB3/	RB2/	RB1/	RB0/	xxxx xxxx	uuuu uuuu
13h	RCSTA1	SDO SPEN	SCK RX9	TCLK3 SREN	TCLK12 CREN	PWM2	PWM1 FERR	CAP2 OERR	CAP1 RX9D	0000 -00x	0000 -000
13h	RCREG1	-	Receive Re		CREN	_	FERR	OEKK	KA9D		
140 15h	TXSTA1	CSRC	TX9	TXEN	SYNC			TRMT	TX9D	xxxx xxxx 00001x	uuuu uuuu 00001u
16h	TXREG1		-	egister (for L		_	_		1 Yan	xxxx xxxx	uuuu uuuu
17h	SPBRG1			Register (for	,					0000 0000	0000 0000
Bank 1	SF BILG I	Dauu Nale	Generator		USARTI)					0000 0000	0000 0000
	DDRC ⁽⁵⁾	Data Direa	tion Desists		`						
10h 11h	PORTC ^(4,5)		0	er for PORTC RC5/AD5	, RC4/AD4	RC3/AD3	RC2/AD2	RC1/AD1	RC0/AD0	1111 1111	1111 1111
	DDRD ⁽⁵⁾					RC3/AD3	RUZ/ADZ	RC1/AD1	RCU/ADU	XXXX XXXX	uuuu uuuu
12h		Data Direc RD7/	RD6/	er for PORTE RD5/	RD4/	RD3/	RD2/	1	-	1111 1111	1111 1111
13h	PORTD ^(4,5)	AD15	AD14	AD13	AD12	AD11	AD10	RD1/AD9	RD0/AD8	xxxx xxxx	սսսս սսսս
14h	DDRE ⁽⁵⁾	Data Direc	tion Registe	er for PORTE						1111	1112
15h	PORTE ^(4,5)	-	—	—	—	RE3/ CAP4	RE2/WR	RE1/OE	RE0/ALE	xxxx	uuui
16h	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 001
17h	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000

TABLE 7-3: SPECIAL FUNCTION REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition.

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

NOTES:

NOTES:

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 - 00x	0000 -00u
14h, Bank 0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	_	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	17h, Bank 4 SPBRG2 Baud Rate Generator Register								0000 0000	0000 0000	

TABLE 14-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous master reception.

REGISTER 15-2: SSPCON1: SYNC SERIAL PORT CONTROL REGISTER1 (ADDRESS 11h, BANK 6)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit

Master mode:

1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started

0 = No collision

<u>Slave mode:</u>

1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

0 = No collision

bit 6

SSPOV: Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set, since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be cleared in software.)
- 0 = No overflow
- In I²C mode:
- 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)
- 0 = No overflow

bit 5 SSPEN: Synchronous Serial Port Enable bit

In both modes, when enabled, these pins must be properly configured as input or output.

In SPI mode:

1 = Enables serial port and configures SCK, SDO, SDI and \overline{SS} as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode:

- 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins
 - **Note:** In SPI mode, these pins must be properly configured as input or output.

bit 4 **CKP**: Clock Polarity Select bit

In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level

- In I²C Slave mode: SCK release control
- 1 = Enable clock

0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

In I²C Master mode:

Unused in this mode

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

- 0000 = SPI Master mode, clock = Fosc/4
- 0001 = SPI Master mode, clock = FOSC/16
- 0010 = SPI Master mode, clock = FOSC/64
- 0011 = SPI Master mode, clock = TMR2 output/2
- 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled
- 0101 =SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - $0110 = I^2C$ Slave mode, 7-bit address
 - $0111 = I^2C$ Slave mode, 10-bit address
 - $1000 = I^2C$ Master mode, clock = Fosc / (4 * (SSPADD+1))
 - 1xx1 = Reserved
 - 1x1x = Reserved

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit PEN (SSPCON2<2>). At the end of a receive/ transmit the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to '0'. When the baud rate generator times out, the SCL pin will be brought high and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-31).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

15.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.2.18.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to '0'. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0'). If, however, SDA is sampled high, then the BRG is reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If, however, SCL goes from high to low before the BRG times out and SDA has not already been asserted, then a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low, the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete (Figure 15-38).

FIGURE 15-38: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 15-39: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

17.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered and disabled, when possible.

17.5 Code Protection

The code in the program memory can be protected by selecting the microcontroller in Code Protected mode (PM2:PM0 = '000').

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to, or reading from, program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

17.6 In-Circuit Serial Programming

The PIC17C7XX group of the high-end family (PIC17CXXX) has an added feature that allows serial programming while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware to be programmed.

Devices may be serialized to make the product unique; "special" variants of the product may be offered and code updates are possible. This allows for increased design flexibility.

To place the device into the Serial Programming Test mode, two pins will need to be placed at VIHH. These are the TEST pin and the MCLR/VPP pin. Also, a sequence of events must occur as follows:

- 1. The TEST pin is placed at VIHH.
- 2. The MCLR/VPP pin is placed at VIHH.

There is a setup time between step 1 and step 2 that must be met.

After this sequence, the Program Counter is pointing to program memory address 0xFF60. This location is in the Boot ROM. The code initializes the USART/SCI so that it can receive commands. For this, the device must be clocked. The device clock source in this mode is the RA1/T0CKI pin. After delaying to allow the USART/SCI to initialize, commands can be received. The flow is shown in these 3 steps:

- 1. The device clock source starts.
- 2. Wait 80 device clocks for Boot ROM code to configure the USART/SCI.
- 3. Commands may now be sent.

		During Programming					
Name	Function	Туре	Description				
RA4/RX1/DT1	DT	I/O	Serial Data				
RA5/TX1/CK1	СК	I	Serial Clock				
RA1/T0CKI	OSCI	I	Device Clock Source				
TEST	TEST	1	Test mode selection control input, force to VIHH				
MCLR/VPP	MCLR/VPP	Р	Master Clear Reset and Device Programming Voltage				
Vdd	Vdd	Р	Positive supply for logic and I/O pins				
Vss	Vss	Р	Ground reference for logic and I/O pins				

TABLE 17-3: ICSP INTERFACE PINS

For complete details of serial programming, please refer to the PIC17C7XX Programming Specification. (Contact your local Microchip Technology Sales Office for availability.)

FIGURE 17-3:

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

MULLW	Multiply	Literal with \	WREG	MULV	VF	Multiply	WREG w	vith f	
Syntax:	[label]	MULLW k		Syntax	C.	[label]	MULWF	f	
Operands:	$0 \le k \le 25$	5		Opera	nds:	$0 \le f \le 2$	55		
Operation:	(k x WRE	$G) \rightarrow PROD$	H:PRODL	Opera	tion:	(WREG	$x f) \rightarrow PR$	ODH:	PRODL
Status Affected:	None			Status	Affected:	None			
Encoding:	1011	1100 kk	kk kkkk	Encod	ding:	0011	0100	ffff	ffff
Description:	out betwee and the 8-t result is pla register pa high byte. WREG is u None of the Note that n is possible	ed multiplicatio in the contents bit literal 'k'. Th aced in PRODH ir. PRODH con unchanged. e status flags a either overflow in this operatio ssible, but not	of WREG e 16-bit H:PRODL atains the are affected. v, nor carry on. A zero	Descr	iption:	out betwee and the r 16-bit res PRODH: PRODH Both WR None of t Note that is possible	ned multipli een the con egister file l sult is stored PRODL reg contains the EG and 'f' a he status fl neither ove le in this op possible, bu	itents o location d in the jister pa e high b are uncl ags are erflow, r eration	f WREG a'r'. The air. byte. hanged. e affected. nor carry . A zero
Words:	1			Words	3:	1			
Cycles:	1			Cycle	s:	1			
Q Cycle Activity:				Q Cyc	le Activity:				
Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL		Decode	Read register 'f'	Proce Data		Write registers PRODH: PRODL
<u>Example</u> :	MULLW	0xC4		Exam	<u>ple</u> :	MULWF	REG		
Before Instr WREG PRODH PRODL After Instruc WREG PRODH PRODL	$ \begin{array}{rcl} = & 0; \\ = & ?; \\ = & ?; \\ ction \\ = & 0; \\ I & = & 0; \\ $	kE2 kC4 kAD k08			efore Instr WREG REG PRODH PRODL After Instruct WREG REG PRODH PRODL	= = = = tion = = =	0xC4 0xB5 ? ? 0xC4 0xB5 0x8A 0x94		

RLNCF	Rotate L	Rotate Left f (no carry)						
Syntax:	[label]	RLNCF	f,d		Synt			
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	5			Ope			
Operation:	$f < n > \rightarrow d$ $f < 7 > \rightarrow d$,			Ope			
Status Affected:	None							
Encoding:	0010	001d	fff	f ffff	Statu			
Description:	one bit to t placed in \	he left. If 'c	d' is 0, d' is 1,	are rotated the result is the result is	D 000			
		regis	ster f					
Words:	1							
Cycles:	1				14/			
Q Cycle Activity:					Wor			
Q1	Q2	Q3		Q4	Cycl			
Decode	Read register 'f'	Process Data	-	Write to destination	QC			
Example:	RLNCF	REG,	, 1					
Before Instr	uction				Буа			
C REG	= 0 = 1110 1	.011			<u>Exar</u>			
After Instruc C REG	tion = = 1101 0	111						

RCF	Rotate Ri	ght f th	rough C	arry			
Syntax:	[label]	RRCF	f,d				
)perands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$						
Operation:	$f < 0 > \rightarrow C$	$f < n > \rightarrow d < n-1 >;$ $f < 0 > \rightarrow C;$ $C \rightarrow d < 7 >$					
Status Affected:	С						
ncoding:	0001	100d	ffff	ffff			
Description: Vords:	The conten one bit to th Flag. If 'd' is WREG. If 'c back in reg	ne right the r s 0, the r t' is 1, the ister 'f'.	hrough the	e Carry aced in			
Cycles:	1						
Q Cycle Activity:	•						
Q1	Q2	Q	3	Q4			
Decode	Read register 'f'	Proce Dat		Write to estination			
xample:	RRCF REG	1,0					
Before Instru	ction						

REG1 = 1110 0110

WREG = 0111 0011

= 0

= 0

1110 0110

С

С

After Instruction REG1 =

TABLWT	Table Writ	е		
Example1:	TABLWT 1	, 1,	REG	
Before Instruc	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	•
TBLPTR		=	0xA35	-
MEMORY(,	=	0xFFF	-
After Instruction	on (table wri	te co		n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	_
TBLPTR		=	0xA35	
MEMORY(TBLPTR - 1)	=	0x535	5
Example 2:	TABLWT 0	, 0,	REG	
Before Instruc	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY((TBLPTR)	=	0xFFF	F
After Instruction	on (table wri	te co	mpletic	n)
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xAA5	3
	1			
Program Memory	15		0	Data

TLRD	Table Late	ch Read					
Syntax:	[label] T	LRD t,f					
Operands:	0 ≤ f ≤ 255 t ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ t \in [0,1] \end{array}$					
Operation:	If t = 0, TBLATL → If t = 1,	If $t = 0$, TBLATL $\rightarrow f$;					
	TBLATH –	→ f					
Status Affected:	None						
Encoding:	1010	00tx fff	f ffff				
Description:	(TBLAT) into is unaffecte If t = 1; high	Read data from 16-bit table latch (TBLAT) into file register 'f'. Table Latch is unaffected. If t = 1; high byte is read If t = 0; low byte is read					
	This instruc with TABLR	tion is used in D to transfer d pry to data me	ata from pro-				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register TBLATH or TBLATL	Process Data	Write register 'f'				
Example:	TLRD t	, RAM					
Before Instr							
t RAM TBLAT	= 0 = ? = 0x00AF	(TBLATH = (TBLATL =	,				
After Instruc	tion						
RAM TBLAT	= 0xAF = 0x00AF	(TBLATH = (TBLATL =					
Before Instr							
t RAM TBLAT	= 1 = ? = 0x00AF	(TBLATH = (TBLATL =					
After Instruc	tion						
RAM TBLAT	= 0x00 = 0x00AF	(TBLATH = (TBLATL =	,				
Program Memory	15	0	Data Memory				
			·····				
16 bits		BLAT	8 bits				

© 1998-2013 Microchip Technology Inc.

FIGURE 20-13: SPI MASTER MODE TIMING (CKE = 0)

TABLE 20-8: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30		—	ns	
71A		(Slave mode)	Single Byte	40		—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	—	ns	
72A		(Slave mode)	Single Byte	40		—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	—	—	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	_	—	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
78	TscR	SCK output rise time (Master mode)		_	10	25	ns	
79	TscF	SCK output fall time (Master mode)		_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		_	—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

TABLE 20-11:	SPI MODE REQUIREMENTS (SLAVE MODE, CKE = 1)
--------------	---

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30		—	ns	
71A		(Slave mode)	Single Byte	40		—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	—	—	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance		10		50	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge			—	50	ns	
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	—	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

TABLE 20-19: A/D CONVERSION REQUIREMENTS

Param. No.	Sym	Charae	cteristic	Min	Тур†	Max	Units	Conditions		
130	TAD	A/D clock period	PIC17CXXX	1.6	—	—	μs	Tosc based, VREF $\geq 3.0V$		
			PIC17LCXXX	3.0	—	_	μs	Tosc based, VREF full range		
			PIC17CXXX	2.0	4.0	6.0	μs	A/D RC mode		
			PIC17LCXXX	3.0	6.0	9.0	μs	A/D RC mode		
131	TCNV	Conversion time (not including acqui	sition time) (Note 1)	11	_	12	Tad			
132	TACQ	Acquisition time		(Note 2)	20		μS			
				10	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).		
134	TGO	Q4 to ADCLK start		—	Tosc/2		_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.1 for minimum conditions when input voltage has changed more than 1 LSb.

FIGURE 21-21: TYPICAL, MAXIMUM AND MINIMUM VIN vs. VDD (TTL INPUT, -40°C to 125°C)

