

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c766-16-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	PINC		SCRIP	TIONS	(CON	TINUE	D)	
	PIC17C75X PIC17C76X							
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
								PORTG is a bi-directional I/O Port.
RG0/AN3	32	34	24	42	30	I/O	ST	RG0 can also be analog input 3.
RG1/AN2	31	33	23	41	29	I/O	ST	RG1 can also be analog input 2.
RG2/AN1/VREF-	30	32	22	40	28	I/O	ST	RG2 can also be analog input 1, or the ground reference voltage.
RG3/AN0/VREF+	29	31	21	39	27	I/O	ST	RG3 can also be analog input 0, or the positive reference voltage.
RG4/CAP3	35	38	27	46	33	I/O	ST	RG4 can also be the Capture3 input pin.
RG5/PWM3	36	39	28	47	34	I/O	ST	RG5 can also be the PWM3 output pin.
RG6/RX2/DT2	38	41	30	49	36	I/O	ST	RG6 can also be selected as the USART2 (SCI) Asynchronous Receive or USART2 (SCI) Synchronous Data.
RG7/TX2/CK2	37	40	29	48	35	I/O	ST	RG7 can also be selected as the USART2 (SCI) Asynchronous Transmit or USART2 (SCI) Synchronous Clock.
								PORTH is a bi-directional I/O Port. PORTH is only
RH0	—	—	—	10	79	I/O	ST	available on the PIC17C76X devices.
RH1	—	—	—	11	80	I/O	ST	
RH2	—	—	—	12	1	I/O	ST	
RH3	—	—	—	13	2	I/O	ST	
RH4/AN12	—	—	—	31	19	I/O	ST	RH4 can also be analog input 12.
RH5/AN13	—	—	—	32	20	I/O	ST	RH5 can also be analog input 13.
RH6/AN14	—	—	—	33	21	I/O	ST	RH6 can also be analog input 14.
RH7/AN15	_	_	—	34	22	I/O	ST	RH7 can also be analog input 15.
								PORTJ is a bi-directional I/O Port. PORTJ is only available on the PIC17C76X devices.
RJ0	—	—	—	52	39	I/O	ST	
RJ1	—	—	—	53	40	I/O	ST	
RJ2	—	—	—	54	41	I/O	ST	
RJ3	—	—	—	55	42	I/O	ST	
RJ4	—	—	—	73	59	I/O	ST	
RJ5	—	—	—	74	60	I/O	ST	
RJ6	—	—	—	75	61	I/O	ST	
RJ7			—	76	62	I/O	ST	
TEST	16	17	8	21	10	Ι	ST	Test mode selection control input. Always tie to Vss for normal operation.
Vss	17, 33, 49, 64	19, 36, 53, 68	9, 25, 41, 56	23, 44, 65, 84	11, 31, 51, 70	Р		Ground reference for logic and I/O pins.
Vdd	1, 18, 34, 46	2, 20, 37, 49,	10, 26, 38, 57	24, 45, 61, 2	12, 32, 48, 71	Ρ		Positive supply for logic and I/O pins.
AVss	28	30	20	38	26	Р		Ground reference for A/D converter. This pin MUST be at the same potential as Vss.
AVdd	27	29	19	37	25	Р		Positive supply for A/D converter. This pin MUST be at the same potential as VDD.
NC	_	1, 18, 35, 52	_	1, 22, 43, 64	_			No Connect. Leave these pins unconnected.

TABLE 3-1: PINOUT DESCRIPTIONS (CONTINUED)

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

TABLE 5-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS						
Register	Address	Power-on Reset Brown-out Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through Interrupt		
Unbanked						
INDF0	00h	N/A	N/A	N/A		
FSR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PCL	02h	0000h	0000h	PC + 1 (2)		
PCLATH	03h	0000 0000	uuuu uuuu	uuuu uuuu		
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu		
TOSTA	05h	0000 000-	0000 000-	0000 000-		
CPUSTA ⁽³⁾	06h	11 11qq	11 qquu	uu qquu		
INTSTA	07h	0000 0000	0000 0000	սսսս սսսս(1)		
INDF1	08h	N/A	N/A	N/A		
FSR1	09h	XXXX XXXX	uuuu uuuu	uuuu uuuu		
WREG	0Ah	XXXX XXXX	uuuu uuuu	uuuu uuuu		
TMR0L	0Bh	XXXX XXXX	uuuu uuuu	uuuu uuuu		
TMR0H	0Ch	XXXX XXXX	uuuu uuuu	uuuu uuuu		
TBLPTRL	0Dh	0000 0000	0000 0000	uuuu uuuu		
TBLPTRH	0Eh	0000 0000	0000 0000	uuuu uuuu		
BSR	0Fh	0000 0000	0000 0000	սսսս սսսս		
Bank 0						
PORTA ^(4,6)	10h	0-xx 11xx	0-uu 11uu	u-uu uuuu		
DDRB	11h	1111 1111	1111 1111	uuuu uuuu		
PORTB ⁽⁴⁾	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
RCSTA1	13h	0000 -00x	0000 -00u	uuuu -uuu		
RCREG1	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TXSTA1	15h	00001x	00001u	uuuuuu		
TXREG1	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
SPBRG1	17h	0000 0000	0000 0000	uuuu uuuu		
legend: 11 = un	changed $x = unknown$	own = unimplemented, rea	ad as '0' g = value depend	ds on condition		

 TABLE 5-4:
 INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

- 3: See Table 5-3 for RESET value of specific condition.
- 4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

10.2 PORTB and DDRB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to PORTB will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any RESET.

PORTB also has an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB0 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'd together to set the PORTB Interrupt Flag bit, RBIF (PIR1<7>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt by:

- a) Read-Write PORTB (such as: MOVPF PORTB, PORTB). This will end the mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading, then writing PORTB, will end the mismatch condition and allow the RBIF bit to be cleared.

This interrupt-on-mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a keypad and makes it possible for wakeup on key depression. For an example, refer to Application Note AN552, "Implementing Wake-up on Keystroke."

The interrupt-on-change feature is recommended for wake-up on operations, where PORTB is only used for the interrupt-on-change feature and key depression operations.

Note: On a device RESET, the RBIF bit is indeterminate, since the value in the latch may be different than the pin.

FIGURE 10-5: BLOCK DIAGRAM OF RB5:RB4 AND RB1:RB0 PORT PINS

Example 10-2 shows an instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-2: INITIALIZING PORTB

MOVLB	0		; Select Bank 0
CLRF	PORTB,	F	; Init PORTB by clearing
			; output data latches
MOVLW	0xCF		; Value used to initialize
			; data direction
MOVWF	DDRB		; Set RB<3:0> as inputs
			; RB<5:4> as outputs
			; RB<7:6> as inputs

FIGURE 10-6: BLOCK DIAGRAM OF RB3:RB2 PORT PINS

	U-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		CA40VF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	
	bit 7							bit 0	
bit 7	Unimplen	nented: Rea	d as '0'						
bit 6	CA4OVF : Capture4 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (CA4H:CA4L) before the next capture event occurred. The capture register retains the oldest unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the TMR3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture4 registers 0 = No overflow occurred on Capture4 registers								
bit 5	CA3OVF : Capture3 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (CA3H:CA3L) before the next capture event occurred. The capture register retains the oldest unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the TMR3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture3 registers 0 = No overflow occurred on Capture3 registers								
bit 4-3	CA4ED1:0 00 = Capt 01 = Capt 10 = Capt	CA4ED0 : Ca ure on every ure on every ure on every	apture4 Mode falling edge rising edge 4th rising e	e Select bits dge					
bit 2-1	 11 = Capture on every 16th rising edge CA3ED1:CA3ED0: Capture3 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge 								
bit 0	 PWM3ON: PWM3 On bit PWM3 is enabled (the RG5/PWM3 pin ignores the state of the DDRG<5> bit) PWM3 is disabled (the RG5/PWM3 pin uses the state of the DDRG<5> bit for data direction) 								
	Legend:								

'1' = Bit is set

'0' = Bit is cleared

REGISTER 13-3: TCON3 REGISTER (ADDRESS: 16h, BANK 7)

- n = Value at POR Reset

x = Bit is unknown

13.1 Timer1 and Timer2

13.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock (TcY), or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1, or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin and the counters will increment on every falling edge of the RB4/TCLK12 pin.

The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled/ disabled by setting/clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be set (PEIE = '1') and global interrupt must be enabled (GLINTD = '0').

The timers can be turned on and off under software control. When the timer on control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

13.1.1.1 External Clock Input for Timer1 and Timer2

When TMRxCS is set, the clock source is the RB4/ TCLK12 pin, and the counter will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

15.1.5 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the interrupt flag bit SSPIF (PIR2<7>) is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in SLEEP mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from SLEEP.

15.1.6 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The RA2 Data Latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and

the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE = '1', then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to 0. This can be done by either forcing the \overline{SS} pin to a high level, or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function), since it cannot create a bus conflict.

FIGURE 15-7: SLAVE SYNCHRONIZATION WAVEFORM

15.1.7 SLEEP OPERATION

In Master mode, all module clocks are halted, and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode and data to be shifted into the SPI transmit/receive shift register. When all 8-bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from SLEEP.

15.1.8 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

TABLE 15-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
07h, Unbanked	INTSTA	PEIF	T0CKIF	TOIF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
14h, Bank 6	SSPBUF	Synchro	onous Ser	ial Port Re	eceive Bu	uffer/Trans	smit Regis	ter		xxxx xxxx	uuuu uuuu
11h, Bank 6	SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
13h, Bank 6	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

15.2.12 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note:	The SSP Module must be in an IDLE
	STATE before the RCEN bit is set, or the
	RCEN bit will be disregarded.

The baud rate generator begins counting and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag is set, the SSPIF is set and the baud rate generator is suspended from counting, holding SCL low. The SSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag is automatically cleared. The user can then send an acknowledge bit at the end of reception, by setting the acknowledge sequence enable bit, ACKEN (SSPCON2<4>).

15.2.12.1 BF Status Flag

In receive operation, BF is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when SSPBUF is read.

15.2.12.2 SSPOV Status Flag

In receive operation, SSPOV is set when 8 bits are received into the SSPSR, and the BF flag is already set from a previous reception.

15.2.12.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

EXAMPLE 15-2: INTERFACING TO A 24LC01B SERIAL EEPROM (USING MPLAB C17)

```
void ACKPoll(void)
{
                                             // Send start bit
         StartI2C();
        IdleI2C();
                                            // Wait for idle condition
        WriteI2C(CONTROL);
                                            // Send control byte
        IdleI2C();
                                            // Wait for idle condition
         // Poll the ACK bit coming from the 24LC01B
         // Loop as long as the 24LC01B NACKs \,
        while (SSPCON2bits.ACKSTAT)
         {
                                         // Send a restart bit
                 RestartI2C();
                 IdleI2C(); // Wait for idle condition
WriteI2C(CONTROL); // Send control byte
IdleI2C(); // Wait for idle condition
         }
         IdleI2C();
                                            // Wait for idle condition
                                            // Send stop bit
         StopI2C();
         IdleI2C();
                                            // Wait for idle condition
         return;
}
```

REGISTER 16-2: ADCON1 REGISTER (ADDRESS 15h, BANK 5)

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS1	ADCS0	ADFM	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits

- 00 = Fosc/8
- 01 = Fosc/32
- 10 = Fosc/64
- 11 = FRC (clock derived from an internal RC oscillator)
- bit 5 **ADFM**: A/D Result Format Select 1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'. 0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.
- bit 4 Unimplemented: Read as '0'
- bit 3-1 PCFG3:PCFG1: A/D Port Configuration Control bits
- bit 0 PCFG0: A/D Voltage Reference Select bit
 - 1 = A/D reference is the VREF+ and VREF- pins
 - 0 = A/D reference is AVDD and AVSS

Note: When this bit is set, ensure that the A/D voltage reference specifications are met.

PCFG3:PCFG0	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
000x	А	Α	А	А	А	А	А	А	А	А	А	А	А	А	А	Α
001x	D	А	А	А	А	А	А	А	D	А	А	А	А	А	А	А
010x	D	D	А	А	А	А	А	А	D	D	А	А	А	А	А	А
011x	D	D	D	А	А	А	А	А	D	D	D	А	А	А	А	А
100x	D	D	D	D	А	А	А	А	D	D	D	D	А	А	А	А
101x	D	D	D	D	D	А	А	А	D	D	D	D	D	А	А	А
110x	D	D	D	D	D	D	А	А	D	D	D	D	D	D	А	А
111x	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input D = Digital I/O

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 16-3. The maximum recommended impedance for analog sources is 10 k Ω . As the impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 16-1 shows the calculation of the minimum required acquisition time (TACQ). This is based on the following application system assumptions.

CHOLD	=	120 pF
Rs	=	10 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
		(see graph in Figure 16-3)
Temperature	=	50°C (system max.)
VHOLD	=	0V @ time = 0

EQUATION 16-1: ACQUISITION TIME

TACQ =	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
=	TAMP + TC + TCOFF

EQUATION 16-2: A/D MINIMUM CHARGING TIME

VHOLD = $(V_{REF} - (V_{REF}/2048)) \cdot (1 - e^{(-T_c/C_{HOLD}(R_{IC} + R_{SS} + R_S))})$ or TC = $-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 16-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ =	TAMP + TC + TCOFF
Temperat	ture coefficient is only required for temperatures > 25° C.
TACQ =	$2 \ \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$
Tc =	-CHOLD (RIC + RSS + RS) $\ln(1/2047)$ -120 pF (1 k Ω + 7 k Ω + 10 k Ω) $\ln(0.0004885)$ -120 pF (18 k Ω) $\ln(0.0004885)$ -2.16 μ s (-7.6241) 16.47 μ s
TACQ =	2 μs + 16.47 μs + [(50×C - 25°C)(0.05 μs/°C)] 18.447 μs + 1.25 μs 19.72 μs

Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

© 1998-2013 Microchip Technology Inc.

BTF	SS	Bit Test,	, sł	kip if Se	et		
Synt	ax:	[label]	ΒT	FSS f,t)		
Ope	rands:	$0 \le f \le 12$ $0 \le b < 7$					
Ope	ration:	skip if (f<		-) = 1			
Statu	us Affected:	None					
Enco	oding:	1001	0bbb ffff ff				ffff
Desc	cription:	If bit 'b' in instructior If bit 'b' is fetched du cution is d instead, m instructior	n is 1, t urin lisc nak	skipped. then the ng the cui arded an	next ir rrent ir id a NC	nstru nstru DP is	ction ction exe- executed
Word	ds:	1					
Cycl	es:	1(2)					
QC	cle Activity:						
	Q1	Q2		Q3	5		Q4
	Decode	Read register 'f	e,	Proce Data		op	No peration
lf ski	p:						
	Q1	Q2		Q3			Q4
	No	No		-	No		No
	operation	operation	1	operat	tion	op	peration
<u>Exar</u>	<u>nple</u> :	HERE FALSE TRUE	B1 : :	FSS	FLAG	,1	
	Before Instru PC		add	ress (HE	RE)		
	After Instructi If FLAG< PC If FLAG<7 PC	1> = 0 = a 1> = 1	;	ress (FA ress (TR			

BTG	Bit Toggl	e i			
Syntax:	[<i>label</i>] B	TG f,b			
Operands:	0 ≤ f ≤ 255 0 ≤ b < 7	5			
Operation:	$(\overline{f}\!\!<\!\!b\!\!>) ightarrow (f\!\!<\!\!b\!\!>)$				
Status Affected:	None				
Encoding:	0011	1bbb	ff	ff	ffff
Description:	Bit 'b' in da inverted.	ta memory	loca	ition 'f	' is
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		(ຊ4
Decode	Read register 'f'	Proces Data	S		/rite ster 'f'
Evenale					
Example:	BTG I	PORTC,	4		
Before Instru PORTC		0101 [0x75	5]		
After Instruct	ion:				

After Instruction: PORTC = 0110 0101 [0x65]

RLNCF	Rotate L	eft f (no c	carry)	1	RRC
Syntax:	[label]	RLNCF	f,d		Synt
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	5	Ope		
Operation:	$f < n > \rightarrow d$ $f < 7 > \rightarrow d$,			Ope
Status Affected:	None				
Encoding:	0010	001d	fff	f ffff	Statu
Description:	one bit to t placed in \	he left. If 'c	d' is 0, d' is 1,	are rotated the result is the result is	D 000
		regis	ster f		
Words:	1				
Cycles:	1				14/
Q Cycle Activity:					Wor
Q1	Q2	Q3		Q4	Cycl
Decode	Read register 'f'	Process Data	-	Write to destination	QC
Example:	RLNCF	REG,	, 1		
Before Instr	uction				Буа
C REG	= 0 = 1110 1	.011			<u>Exar</u>
After Instruc C REG	tion = = 1101 0	111			

RCF	Rotate Ri	ght f th	rough C	arry		
Syntax:	[label]	RRCF	f,d			
)perands:	$0 \le f \le 255$ $d \in [0,1]$	5				
Operation:	$f < n > \rightarrow d < f < 0 > \rightarrow C$ $f < 0 > \rightarrow C$					
Status Affected:	С					
ncoding:	0001	100d	ffff	ffff		
Description: Vords:	The conten one bit to th Flag. If 'd' is WREG. If 'c back in reg	ne right the r s 0, the r t' is 1, the ister 'f'.	hrough the esult is pl	e Carry aced in		
Cycles:	1					
Q Cycle Activity:	•					
Q1	Q2	Q	3	Q4		
Decode	Read register 'f'	Proce Dat		Write to estination		
xample:	RRCF REG	1,0				
Before Instruction						

REG1 = 1110 0110

WREG = 0111 0011

= 0

= 0

1110 0110

С

С

After Instruction REG1 =

Param No.	Sym	Characte	ristic	Min	Max	Units	Conditions
110	Tbuf	Bus free time	100 kHz mode	4.7	—	ms	Time the bus must be free
			400 kHz mode	1.3	_	ms	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	ms	can start
D102	Cb	Bus capacitive loading		_	400	pF	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode (400 KHz) I²C bus device can be used in a standard mode I²C bus system, but the parameter # 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Parameter #102 + #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

3: C_b is specified to be from 10-400pF. The minimum specifications are characterized with C_b =10pF. The rise time spec (t_r) is characterized with R_p = R_p min. The minimum fall time specification (t_f) is characterized with C_b =10pF,and R_p = R_p max. These are only valid for fast mode operation (VDD=4.5-5.5V) and where the SPM bit (SSPSTAT<7>) =1.)

4: Max specifications for these parameters are valid for falling edge only. Specs are characterized with R_p=R_p min and C_b=400pF for standard mode, 200pF for fast mode, and 10pF for 1MHz mode.

FIGURE 20-19: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 20-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)						
		Clock high to data out valid	PIC17 C XXX	—	—	50	ns	
			PIC17LCXXX	-	—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17 C XXX	—	—	25	ns	
		(Master mode)	PIC17 LC XXX	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17 C XXX	—	—	25	ns	
			PIC17 LC XXX	—	_	40	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

FIGURE 20-25: MEMORY INTERFACE READ TIMING

TABLE 20-21: MEMORY INTERFACE READ REQUIREMENTS

Param. No.	Sym	Characteristic	;	Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD15:AD0 (address) valid to	PIC17 C XXX	0.25Tcy - 10	_	_	ns	
		ALE \downarrow (address setup time)	PIC17 LC XXX	0.25Tcy - 10	—			
151	TalL2adl	ALE \downarrow to address out invalid	PIC17 C XXX	5	—		ns	
		(address hold time)	PIC17LCXXX	5	—	_		
160	TadZ2oeL	AD15:AD0 hi-impedance to	PIC17 C XXX	0	—		ns	
		OE↓	PIC17LCXXX	0	—	_		
161	ToeH2ad	OE [↑] to AD15:AD0 driven	PIC17 C XXX	0.25Tcy - 15	_	_	ns	
	D		PIC17 LC XXX	0.25Tcy - 15	—	—		
162	TadV2oeH	Data in valid before \overline{OE}^{\uparrow}	PIC17 C XXX	35	_	_	ns	
		(data setup time)	PIC17LCXXX	45		_		
163	ToeH2adl	OE [↑] to data in invalid	PIC17 C XXX	0	_	_	ns	
		(data hold time)	PIC17LCXXX	0	_	_		
164	TalH	ALE pulse width	PIC17 C XXX	—	0.25TCY	_	ns	
			PIC17LCXXX	—	0.25TCY	_		
165	ToeL	OE pulse width	PIC17 C XXX	0.5TCY - 35	_	_	ns	
			PIC17LCXXX	0.5Tcy - 35	—	_		
166	TalH2alH	ALE↑ to ALE↑(cycle time)	PIC17 C XXX	—	Тсү	_	ns	
			PIC17LCXXX	—	Тсү	_		
167	Tacc	Address access time	PIC17 C XXX	_	—	0.75Tcy - 30	ns	
			PIC17LCXXX	_	_	0.75Tcy - 45		
168	Toe	Output enable access time	PIC17 C XXX	_	_	0.5Tcy - 45	ns	
		(OE low to data valid)	PIC17LCXXX	_	_	0.5Tcy - 75		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

F

Family of Devices PIC17C75X
FERR
Flowcharts
Acknowledge166
Master Receiver163
Master Transmit
RESTART Condition157
Start Condition 155
STOP Condition 168
FOSC0
FOSC1 191
FS0
FS1
FS2
FS3
FSR0
FSR154 G
GCE
General Call Address Sequence
General Call Address Support
General Format for Instructions
General Purpose RAM
General Purpose RAM Bank
General Purpose Register (GPR)
GLINTD
Global Interrupt Disable bit, GLINTD
GOTO
GPR (General Purpose Register) 46
GPR Banks
Graphs
RC Oscillator Frequency vs. VDD (CEXT = 100 pF) 268
RC Oscillator Frequency vs. VDD (CEXT = 22 pF) 268
RC Oscillator Frequency vs. VDD (CEXT = 300 pF)269
Transconductance of LF Oscillator vs.VDD
Transconductance of XT Oscillator vs. VDD
Typical RC Oscillator vs. Temperature
H
Hardware Multiplier
I/O Ports
Bi-directional
I/O Ports71 Programming Considerations
Read-Modify-Write Instructions
Successive Operations
I ² C
I2C Input
I ² C Master Mode Receiver Flow Chart
I ² C Master Mode Reception
I ² C Master Mode RESTART Condition
I ² C Mode Selection
I ² C Module
Acknowledge Flow Chart 166
Acknowledge Sequence Timing165
Addressing145
Baud Rate Generator
Block Diagram151
5
BRG Block Diagram 153
BRG Block Diagram
BRG Block Diagram 153

Bus Collision	170
Acknowledge	
RESTART Condition	
RESTART Condition Timing (Case1)	
RESTART Condition Timing (Case2)	173
START Condition	
START Condition Timing 171,	
STOP Condition	
STOP Condition Timing (Case1)	
STOP Condition Timing (Case2)	
Transmit Timing	
Bus Collision Timing	
Clock Arbitration	
Clock Arbitration Timing (Master Transmit)	169
Conditions to not give ACK Pulse	144
General Call Address Support	149
Master Mode	
Master Mode 7-bit Reception timing	
Master Mode Operation	152
Master Mode Start Condition	
Master Mode Transmission	
Master Mode Transmit Sequence	
Master Transmit Flowchart	
Multi-Master Communication	
Multi-master Mode	
Operation	
Repeat Start Condition timing	156
RESTART Condition Flowchart	
Slave Mode	
Slave Reception	145
Slave Transmission	
SSPBUF	
Start Condition Flowchart	155
Stop Condition Flowchart	168
Stop Condition Receive or Transmit timing	168 167
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 167
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception	168 167 167 146
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission	168 167 167 146 146
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD	168 167 167 146 146 144
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode	168 167 167 146 146 144 144
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF	168 167 167 146 146 144 144 213
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSNZ	168 167 146 146 144 144 213 214
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ	168 167 146 146 144 144 213 214 213
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ INCFSZ In-Circuit Serial Programming	168 167 146 146 144 144 213 214 213 196
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ INCFSZ In-Circuit Serial Programming INDF0	168 167 146 146 144 144 213 214 213 196 . 54
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCF INCFSZ In-Circuit Serial Programming INDF0 INDF1	168 167 146 146 144 144 213 214 213 196 . 54
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 . 54 . 54
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 196 . 54 . 54
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 146 144 213 214 213 214 213 196 . 54 . 54 . 55
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 214 213 . 54 . 54 . 55 . 54
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 75
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 78
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 78 . 80
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ In-Circuit Serial Programming INDF0 INDF1 Indirect Addressing Indirect Addressing Indirect Addressing Intitializing PORTB Initializing PORTC Initializing PORTE 82, 84	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 78 . 80 . 86
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 196 . 54 . 54 . 55 . 54 . 55 . 75 . 78 . 80 . 86 . 48
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 196 . 54 . 54 . 55 . 54 . 55 . 75 . 78 . 80 . 86 . 48
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 75 . 78 . 80 . 88 . 21
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 75 . 78 . 80 . 88 . 21 202
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 78 . 80 . 88 . 21 202 202
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 78 . 80 . 88 . 21 202 203
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 214 213 196 . 54 . 55 . 55 . 55 . 78 . 80 . 80 . 88 . 21 202 203 203 203
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 55 . 78 . 80 . 88 . 21 202 203 203 204
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 167 146 144 144 213 214 213 214 213 196 . 54 . 55 . 55 . 55 . 78 . 80 . 80 . 88 . 21 202 203 203 204 204 204
Stop Condition Receive or Transmit timing Stop Condition timing	168 167 146 146 144 213 214 213 214 213 214 213 214 213 214 213 55 54 55 55 55 55 55 55 55 55 57 57 80 57 80 58 202 202 203 204 204 205

TXREG2
TXSTA
TXSTA Register
TXEN Bit
TXSTA1
TXSTA2
U
UA
Update Address, UA 134
Upward Compatibility
USART
Asynchronous Master Transmission 123
Asynchronous Mode 123
Asynchronous Receive 125
Asynchronous Transmitter 123
Baud Rate Generator120
Synchronous Master Mode 127
Synchronous Master Reception 129
Synchronous Master Transmission 127
Synchronous Slave Mode 131
Synchronous Slave Transmit 131
Transmit Enable (TXEN Bit)
USART1 Receive Interrupt
USART1 Transmit Interrupt
USART2 Receive Interrupt Enable, RC2IE
USART2 Receive Interrupt Flag bit, RC2IF
USART2 Receive Interrupt Flag bit, TX2IF
USART2 Transmit Interrupt Enable, TX2IE
V
VDD
Voн vs. Ioн 276
VOL VS. IOL

w

~~
Wake-up from SLEEP 194
Wake-up from SLEEP Through Interrupt 194
Watchdog Timer 193
Waveform for General Call Address Sequence 149
Waveforms
External Program Memory Access 45
WCOL 135, 154, 159, 162, 165, 167
WCOL Status Flag 154
WDT 193
Clearing the WDT 193
Normal Timer 193
Period 193
Programming Considerations 193
WDT PERIOD
WDTPS0 191
WDTPS1 191
Write Collision Detect bit, WCOL 135
WWW, On-Line Support 5
X
XORLW
XORWF
Z
Z 11, 51
Zero (Z) 11

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769317

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.