
Microchip Technology - PIC17C766-16E/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 66

Program Memory Size 32KB (16K x 16)

Program Memory Type OTP

EEPROM Size -

RAM Size 902 x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type External

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 80-TQFP

Supplier Device Package 80-TQFP (12x12)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic17c766-16e-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic17c766-16e-pt-4426200
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC17C7XX
NOTES:
DS30289C-page 22  1998-2013 Microchip Technology Inc.

PIC17C7XX
6.0 INTERRUPTS

PIC17C7XX devices have 18 sources of interrupt:

• External interrupt from the RA0/INT pin
• Change on RB7:RB0 pins
• TMR0 Overflow
• TMR1 Overflow
• TMR2 Overflow
• TMR3 Overflow
• USART1 Transmit buffer empty
• USART1 Receive buffer full
• USART2 Transmit buffer empty
• USART2 Receive buffer full
• SSP Interrupt
• SSP I2C bus collision interrupt
• A/D conversion complete
• Capture1
• Capture2
• Capture3
• Capture4
• T0CKI edge occurred

There are six registers used in the control and status of
interrupts. These are:

• CPUSTA
• INTSTA
• PIE1
• PIR1
• PIE2
• PIR2

The CPUSTA register contains the GLINTD bit. This is
the Global Interrupt Disable bit. When this bit is set, all
interrupts are disabled. This bit is part of the controller
core functionality and is described in the Section 6.4.

When an interrupt is responded to, the GLINTD bit is
automatically set to disable any further interrupts, the
return address is pushed onto the stack and the PC is
loaded with the interrupt vector address. There are four
interrupt vectors. Each vector address is for a specific
interrupt source (except the peripheral interrupts, which
all vector to the same address). These sources are:

• External interrupt from the RA0/INT pin
• TMR0 Overflow
• T0CKI edge occurred
• Any peripheral interrupt

When program execution vectors to one of these inter-
rupt vector addresses (except for the peripheral inter-
rupts), the interrupt flag bit is automatically cleared.
Vectoring to the peripheral interrupt vector address
does not automatically clear the source of the interrupt.
In the peripheral Interrupt Service Routine, the
source(s) of the interrupt can be determined by testing
the interrupt flag bits. The interrupt flag bit(s) must be
cleared in software before re-enabling interrupts to
avoid infinite interrupt requests.

When an interrupt condition is met, that individual inter-
rupt flag bit will be set, regardless of the status of its
corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt
latency. For two-cycle instructions, the latency could be
one instruction cycle longer.

The “return from interrupt” instruction, RETFIE, can be
used to mark the end of the Interrupt Service Routine.
When this instruction is executed, the stack is “POPed”
and the GLINTD bit is cleared (to re-enable interrupts).

FIGURE 6-1: INTERRUPT LOGIC
RBIF
RBIE

TMR3IF
TMR3IE

TMR2IF
TMR2IE

TMR1IF
TMR1IE

CA2IF
CA2IE

CA1IF
CA1IE

TX1IF
TX1IE

RC1IF
RC1IE

T0IF
T0IE

INTF
INTE

T0CKIF
T0CKIE

GLINTD (CPUSTA<4>)

PEIE

Wake-up (If in SLEEP mode)
or terminate long write

Interrupt to CPU

PEIF
SSPIF
SSPIE

BCLIF
BCLIE

ADIF
ADIE

CA4IF
CA4IE

CA3IF
CA3IE

TX2IF
TX2IE

RC2IF
RC2IE

P
IR

1
/P

IE
1

P
IR

2/
P

IE
2

INTSTA
 1998-2013 Microchip Technology Inc. DS30289C-page 33

PIC17C7XX
6.3 Peripheral Interrupt Request
Register1 (PIR1) and Register2
(PIR2)

These registers contains the individual flag bits for the
peripheral interrupts.

REGISTER 6-4: PIR1 REGISTER (ADDRESS: 16h, BANK 1)

Note: These bits will be set by the specified condi-
tion, even if the corresponding interrupt
enable bit is cleared (interrupt disabled), or
the GLINTD bit is set (all interrupts disabled).
Before enabling an interrupt, the user may
wish to clear the interrupt flag to ensure that
the program does not immediately branch to
the peripheral Interrupt Service Routine.

R/W-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R-0
RBIF TMR3IF TMR2IF TMR1IF CA2IF CA1IF TX1IF RC1IF

bit 7 bit 0

bit 7 RBIF: PORTB Interrupt-on-Change Flag bit
1 = One of the PORTB inputs changed (software must end the mismatch condition)
0 = None of the PORTB inputs have changed

bit 6 TMR3IF: TMR3 Interrupt Flag bit

If Capture1 is enabled (CA1/PR3 = 1):
1 = TMR3 overflowed
0 = TMR3 did not overflow

If Capture1 is disabled (CA1/PR3 = 0):
1 = TMR3 value has rolled over to 0000h from equalling the period register (PR3H:PR3L) value
0 = TMR3 value has not rolled over to 0000h from equalling the period register (PR3H:PR3L)
 value

bit 5 TMR2IF: TMR2 Interrupt Flag bit
1 = TMR2 value has rolled over to 0000h from equalling the period register (PR2) value
0 = TMR2 value has not rolled over to 0000h from equalling the period register (PR2) value

bit 4 TMR1IF: TMR1 Interrupt Flag bit

If TMR1 is in 8-bit mode (T16 = 0):
1 = TMR1 value has rolled over to 0000h from equalling the period register (PR1) value
0 = TMR1 value has not rolled over to 0000h from equalling the period register (PR1) value

If Timer1 is in 16-bit mode (T16 = 1):
1 = TMR2:TMR1 value has rolled over to 0000h from equalling the period register (PR2:PR1)
 value
0 = TMR2:TMR1 value has not rolled over to 0000h from equalling the period register (PR2:PR1)
 value

bit 3 CA2IF: Capture2 Interrupt Flag bit
1 = Capture event occurred on RB1/CAP2 pin
0 = Capture event did not occur on RB1/CAP2 pin

bit 2 CA1IF: Capture1 Interrupt Flag bit
1 = Capture event occurred on RB0/CAP1 pin
0 = Capture event did not occur on RB0/CAP1 pin

bit 1 TX1IF: USART1 Transmit Interrupt Flag bit (state controlled by hardware)
1 = USART1 Transmit buffer is empty
0 = USART1 Transmit buffer is full

bit 0 RC1IF: USART1 Receive Interrupt Flag bit (state controlled by hardware)
1 = USART1 Receive buffer is full
0 = USART1 Receive buffer is empty

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR Reset ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 1998-2013 Microchip Technology Inc. DS30289C-page 37

PIC17C7XX
TABLE 7-1: MODE MEMORY ACCESS The PIC17C7XX can operate in modes where the pro-
gram memory is off-chip. They are the Microprocessor
and Extended Microcontroller modes. The Micropro-
cessor mode is the default for an unprogrammed
device.

Regardless of the processor mode, data memory is
always on-chip.

FIGURE 7-2: MEMORY MAP IN DIFFERENT MODES

Operating
Mode

Internal
Program
Memory

Configuration Bits,
Test Memory,

Boot ROM

Microprocessor No Access No Access

Microcontroller Access Access

Extended
Microcontroller

Access No Access

Protected
Microcontroller

Access Access

Microprocessor
Mode

0000h

FFFFh

External
Program
Memory

External
Program
Memory

2000h

FFFFh

0000h

01FFFh

On-chip
Program
Memory

Extended
Microcontroller
Mode

Microcontroller
Modes

0000h

01FFFh
2000h

FE00h

FFFFh

ON-CHIP ON-CHIP ON-CHIP

OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP

P
R

O
G

R
A

M
 S

P
A

C
E

D
A

TA
 S

P
A

C
E

Config. Bits
Test Memory
Boot ROM

PIC17C752/762

0000h

FFFFh

External
Program
Memory

External
Program
Memory

FFFFh

0000h 0000h

3FFFh
4000h

FE00h

FFFFh

OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP

Config. Bits
Test Memory
Boot ROM

P
R

O
G

R
A

M
 S

P
A

C
E

D
A

TA
 S

P
A

C
E

ON-CHIPON-CHIP

00h

FFh 1FFh

120h

ON-CHIP

3FFFh

4000h

PIC17C756A/766

On-chip
Program
Memory

On-chip
Program
Memory

On-chip
Program
Memory

2FFh

220h

3FFh

320h

00h

FFh 1FFh

120h

2FFh

220h

3FFh

320h

00h

FFh 1FFh

120h

2FFh

220h

3FFh

320h

00h

FFh 1FFh

120h

00h

FFh 1FFh

120h

00h

FFh 1FFh

120h
DS30289C-page 44  1998-2013 Microchip Technology Inc.

PIC17C7XX
NOTES:
DS30289C-page 58  1998-2013 Microchip Technology Inc.

PIC17C7XX
8.1 Table Writes to Internal Memory

A table write operation to internal memory causes a
long write operation. The long write is necessary for
programming the internal EPROM. Instruction execu-
tion is halted while in a long write cycle. The long write
will be terminated by any enabled interrupt. To ensure
that the EPROM location has been well programmed,
a minimum programming time is required (see specifi-
cation #D114). Having only one interrupt enabled to ter-
minate the long write ensures that no unintentional
interrupts will prematurely terminate the long write.

The sequence of events for programming an internal
program memory location should be:

1. Disable all interrupt sources, except the source
to terminate EPROM program write.

2. Raise MCLR/VPP pin to the programming
voltage.

3. Clear the WDT.

4. Do the table write. The interrupt will terminate
the long write.

5. Verify the memory location (table read).

8.1.1 TERMINATING LONG WRITES

An interrupt source or RESET are the only events that
terminate a long write operation. Terminating the long
write from an interrupt source requires that the interrupt
enable and flag bits are set. The GLINTD bit only
enables the vectoring to the interrupt address.

If the T0CKI, RA0/INT, or TMR0 interrupt source is
used to terminate the long write, the interrupt flag of the
highest priority enabled interrupt, will terminate the long
write and automatically be cleared.

If a peripheral interrupt source is used to terminate the
long write, the interrupt enable and flag bits must be
set. The interrupt flag will not be automatically cleared
upon the vectoring to the interrupt vector address.

The GLINTD bit determines whether the program will
branch to the interrupt vector when the long write is ter-
minated. If GLINTD is clear, the program will vector, if
GLINTD is set, the program will not vector to the
interrupt address.

TABLE 8-1: INTERRUPT - TABLE WRITE INTERACTION

Note 1: Programming requirements must be
met. See timing specification in electrical
specifications for the desired device.
Violating these specifications (including
temperature) may result in EPROM
locations that are not fully programmed
and may lose their state over time.

2: If the VPP requirement is not met, the
table write is a 2-cycle write and the pro-
gram memory is unchanged.

Note 1: If an interrupt is pending, the TABLWT is
aborted (a NOP is executed). The highest
priority pending interrupt, from the
T0CKI, RA0/INT, or TMR0 sources that
is enabled, has its flag cleared.

2: If the interrupt is not being used for the
program write timing, the interrupt
should be disabled. This will ensure that
the interrupt is not lost, nor will it termi-
nate the long write prematurely.

Interrupt
Source

GLINTD
Enable

Bit
Flag
Bit

Action

RA0/INT,
TMR0,
T0CKI

0

0
1
1

1

1
0
1

1

0
x
1

Terminate long table write (to internal program memory),
branch to interrupt vector (branch clears flag bit).
None.
None.
Terminate long table write, do not branch to interrupt
vector (flag is automatically cleared).

Peripheral 0
0
1
1

1
1
0
1

1
0
x
1

Terminate long table write, branch to interrupt vector.
None.
None.
Terminate long table write, do not branch to interrupt
vector (flag remains set).
 1998-2013 Microchip Technology Inc. DS30289C-page 61

PIC17C7XX
10.6 PORTF and DDRF Registers

PORTF is an 8-bit wide bi-directional port. The corre-
sponding data direction register is DDRF. A '1' in DDRF
configures the corresponding port pin as an input. A '0'
in the DDRF register configures the corresponding port
pin as an output. Reading PORTF reads the status of
the pins, whereas writing to PORTF will write to the
respective port latch.

All eight bits of PORTF are multiplexed with 8 channels
of the 10-bit A/D converter.

Upon RESET, the entire Port is automatically config-
ured as analog inputs and must be configured in soft-
ware to be a digital I/O.

Example 10-6 shows an instruction sequence to initial-
ize PORTF. The Bank Select Register (BSR) must be
selected to Bank 5 for the port to be initialized. The fol-
lowing example uses the MOVLB instruction to load the
BSR register for bank selection.

EXAMPLE 10-6: INITIALIZING PORTF

FIGURE 10-13: BLOCK DIAGRAM OF RF7:RF0

 MOVLB 5 ; Select Bank 5
 MOVWF 0x0E ; Configure PORTF as
 MOVWF ADCON1 ; Digital
 CLRF PORTF, F ; Initialize PORTF data
 ; latches before
 ; the data direction
 ; register
 MOVLW 0x03 ; Value used to init
 ; data direction
 MOVWF DDRF ; Set RF<1:0> as inputs
 ; RF<7:2> as outputs

Data Bus

WR PORTF

WR DDRF

RD PORTF

Data Latch

DDRF Latch

P

VSS

I/O pin

PCFG3:PCFG0

QD

QCK

QD

QCK

EN

Q D

EN

N

ST
Input
Buffer

VDD

RD DDRF

To other pads
VAIN

CHS3:CHS0
To other pads

Note: I/O pins have protection diodes to VDD and VSS.
DS30289C-page 84  1998-2013 Microchip Technology Inc.

PIC17C7XX
13.1.3.1 PWM Periods

The period of the PWM1 output is determined by
Timer1 and its period register (PR1). The period of the
PWM2 and PWM3 outputs can be individually software
configured to use either Timer1 or Timer2 as the time-
base. For PWM2, when TM2PW2 bit (PW2DCL<5>) is
clear, the time base is determined by TMR1 and PR1
and when TM2PW2 is set, the time base is determined
by Timer2 and PR2. For PWM3, when TM2PW3 bit
(PW3DCL<5>) is clear, the time base is determined by
TMR1 and PR1, and when TM2PW3 is set, the time
base is determined by Timer2 and PR2.

Running two different PWM outputs on two different
timers allows different PWM periods. Running all
PWMs from Timer1 allows the best use of resources by
freeing Timer2 to operate as an 8-bit timer. Timer1 and
Timer2 cannot be used as a 16-bit timer if any PWM is
being used.

The PWM periods can be calculated as follows:

period of PWM1 = [(PR1) + 1] x 4TOSC

period of PWM2 = [(PR1) + 1] x 4TOSC or
[(PR2) + 1] x 4TOSC

period of PWM3 = [(PR1) + 1] x 4TOSC or
[(PR2) + 1] x 4TOSC

The duty cycle of PWMx is determined by the 10-bit
value DCx<9:0>. The upper 8-bits are from register
PWxDCH and the lower 2-bits are from PWxDCL<7:6>
(PWxDCH:PWxDCL<7:6>). Table 13-4 shows the
maximum PWM frequency (FPWM), given the value in
the period register.

The number of bits of resolution that the PWM can
achieve depends on the operation frequency of the
device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM
frequency:

where: FPWM = 1 / period of PWM

The PWMx duty cycle is as follows:

PWMx Duty Cycle = (DCx) x TOSC

where DCx represents the 10-bit value from
PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If
PRx = PWxDCH, then the PWM output will be low for
one to four Q-clocks (depending on the state of the
PWxDCL<7:6> bits). For a duty cycle to be 100%, the
PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are dou-
ble buffered. When the user writes to these registers,
they are stored in master latches. When TMR1 (or
TMR2) overflows and a new PWM period begins, the
master latch values are transferred to the slave latches
and the PWMx pin is forced high.

The user should also avoid any "read-modify-write"
operations on the duty cycle registers, such as:
ADDWF PW1DCH. This may cause duty cycle outputs
that are unpredictable.

TABLE 13-4: PWM FREQUENCY vs.
RESOLUTION AT 33 MHz

13.1.3.2 PWM INTERRUPTS

The PWM modules make use of the TMR1 and/or
TMR2 interrupts. A timer interrupt is generated when
TMR1 or TMR2 equals its period register and on the
following increment is cleared to zero. This interrupt
also marks the beginning of a PWM cycle. The user
can write new duty cycle values before the timer
rollover. The TMR1 interrupt is latched into the TMR1IF
bit and the TMR2 interrupt is latched into the TMR2IF
bit. These flags must be cleared in software.

log (FPWM

log (2)

FOSC)
bits=

Note: For PW1DCH, PW1DCL, PW2DCH,
PW2DCL, PW3DCH and PW3DCL regis-
ters, a write operation writes to the "master
latches", while a read operation reads the
"slave latches". As a result, the user may
not read back what was just written to the
duty cycle registers (until transferred to
slave latch).

PWM
Frequency

Frequency (kHz)

32.2 64.5 90.66 128.9 515.6

PRx Value 0xFF 0x7F 0x5A 0x3F 0x0F

High
Resolution

10-bit 9-bit 8.5-bit 8-bit 6-bit

Standard
Resolution

8-bit 7-bit 6.5-bit 6-bit 4-bit
DS30289C-page 108  1998-2013 Microchip Technology Inc.

PIC17C7XX
15.0 MASTER SYNCHRONOUS
SERIAL PORT (MSSP)
MODULE

The Master Synchronous Serial Port (MSSP) module is
a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be serial EEPROMs, shift registers, dis-
play drivers, A/D converters, etc. The MSSP module
can operate in one of two modes:

• Serial Peripheral Interface (SPI)

• Inter-Integrated CircuitTM (I2C)

Figure 15-1 shows a block diagram for the SPI mode,
while Figure 15-2 and Figure 15-3 show the block
diagrams for the two different I2C modes of operation.

FIGURE 15-1: SPI MODE BLOCK
DIAGRAM

FIGURE 15-2: I2C SLAVE MODE BLOCK
DIAGRAM

FIGURE 15-3: I2C MASTER MODE
BLOCK DIAGRAM

Read Write

Internal
Data Bus

SSPSR reg

SSPBUF reg

SSPM3:SSPM0

bit0 Shift
Clock

SS Control
Enable

Edge
Select

Clock Select

TMR2 Output

ToscPrescaler
4, 16, 64

2
Edge
Select

2

4

Data to TX/RX in SSPSR
Data Direction bit

2
SMP:CKE

SDI

SDO

SS

SCK

Read Write

SSPSR reg

Match Detect

SSPADD reg

START and
STOP bit Detect

SSPBUF reg

Internal
Data Bus

Addr Match

Set, Reset
S, P bits

(SSPSTAT reg)

SCL

Shift
Clock

MSb LSbSDA

or General
Call Detected

Read Write

SSPSR reg

Match detect

SSPADD reg

START and STOP bit
Detect/Generate

SSPBUF reg

Internal
Data Bus

Addr Match

Set/Clear S bit

Clear/Set P, bit
(SSPSTAT reg)

SCL

Shift
Clock

MSb LSbSDA

Baud Rate Generator

7
SSPADD<6:0>

and

and Set SSPIF

or General
Call Detected
 1998-2013 Microchip Technology Inc. DS30289C-page 133

PIC17C7XX
When the application software is expecting to receive
valid data, the SSPBUF should be read before the next
byte of data to transfer is written to the SSPBUF. Buffer
full bit, BF (SSPSTAT<0>), indicates when SSPBUF
has been loaded with the received data (transmission
is complete). When the SSPBUF is read, bit BF is
cleared. This data may be irrelevant if the SPI is only a
transmitter. Generally the MSSP interrupt is used to
determine when the transmission/reception has com-
pleted. The SSPBUF must be read and/or written. If the
interrupt method is not going to be used, then software
polling can be done to ensure that a write collision does
not occur. Example 15-1 shows the loading of the
SSPBUF (SSPSR) for data transmission.

EXAMPLE 15-1: LOADING THE SSPBUF
(SSPSR) REGISTER

The SSPSR is not directly readable, or writable and
can only be accessed by addressing the SSPBUF reg-
ister. Additionally, the MSSP status register (SSPSTAT)
indicates the various status conditions.

15.1.2 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN
(SSPCON1<5>), must be set. To reset or reconfigure
SPI mode, clear bit SSPEN, re-initialize the SSPCON
registers and then set bit SSPEN. This configures the
SDI, SDO, SCK and SS pins as serial port pins. For the
pins to behave as the serial port function, some must
have their data direction bits (in the DDR register)
appropriately programmed. That is:

• SDI is automatically controlled by the SPI module

• SDO must have DDRB<7> cleared

• SCK (Master mode) must have DDRB<6> cleared

• SCK (Slave mode) must have DDRB<6> set

• SS must have PORTA<2> set

Any serial port function that is not desired may be over-
ridden by programming the corresponding data direc-
tion (DDR) register to the opposite value.

15.1.3 TYPICAL CONNECTION

Figure 15-5 shows a typical connection between two
microcontrollers. The master controller (Processor 1)
initiates the data transfer by sending the SCK signal.
Data is shifted out of both shift registers on their pro-
grammed clock edge and latched on the opposite edge
of the clock. Both processors should be programmed to
same Clock Polarity (CKP), then both controllers would
send and receive data at the same time. Whether the
data is meaningful (or dummy data) depends on the
application software. This leads to three scenarios for
data transmission:

• Master sends data—Slave sends dummy data

• Master sends data—Slave sends data

• Master sends dummy data—Slave sends data

FIGURE 15-5: SPI MASTER/SLAVE CONNECTION

 MOVLB 6 ; Bank 6
LOOP BTFSS SSPSTAT, BF ; Has data been
 ; received
 ; (transmit
 ; complete)?
 GOTO LOOP ; No
 MOVPF SSPBUF, RXDATA ; Save in user RAM
 MOVFP TXDATA, SSPBUF ; New data to xmit

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

MSb LSb

SDO

SDI

PROCESSOR 1

SCK

SPI Master SSPM3:SSPM0 = 00xxb

Serial Input Buffer
(SSPBUF)

Shift Register
(SSPSR)

LSbMSb

SDI

SDO

PROCESSOR 2

SCK

SPI Slave SSPM3:SSPM0 = 010xb

Serial Clock
DS30289C-page 138  1998-2013 Microchip Technology Inc.

PIC17C7XX
The SSPSTAT register gives the status of the data
transfer. This information includes detection of a START
or STOP bit, specifies if the received byte was data or
address if the next byte is the completion of 10-bit
address and if this will be a read or write data transfer.

The SSPBUF is the register to which transfer data is
written to or read from. The SSPSR register shifts the
data in or out of the device. In receive operations, the
SSPBUF and SSPSR create a doubled buffered
receiver. This allows reception of the next byte to begin
before reading the last byte of received data. When the
complete byte is received, it is transferred to the
SSPBUF register and flag bit SSPIF is set. If another
complete byte is received before the SSPBUF register
is read, a receiver overflow has occurred and bit
SSPOV (SSPCON1<6>) is set and the byte in the
SSPSR is lost.

The SSPADD register holds the slave address. In
10-bit mode, the user needs to write the high byte of the
address (1111 0 A9 A8 0). Following the high byte
address match, the low byte of the address needs to be
loaded (A7:A0).

15.2.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be config-
ured as inputs. The MSSP module will override the
input state with the output data when required (slave-
transmitter).

When an address is matched or the data transfer after
an address match is received, the hardware automati-
cally will generate the acknowledge (ACK) pulse and
then load the SSPBUF register with the received value
currently in the SSPSR register.

There are certain conditions that will cause the MSSP
module not to give this ACK pulse. These are if either
(or both):

a) The buffer full bit BF (SSPSTAT<0>) was set
before the transfer was received.

b) The overflow bit SSPOV (SSPCON1<6>) was
set before the transfer was received.

If the BF bit is set, the SSPSR register value is not
loaded into the SSPBUF, but bit SSPIF and SSPOV are
set. Table 15-2 shows what happens when a data
transfer byte is received, given the status of bits BF and
SSPOV. The shaded cells show the condition where
user software did not properly clear the overflow condi-
tion. Flag bit BF is cleared by reading the SSPBUF reg-
ister, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and
low time for proper operation. The high and low times
of the I2C specification, as well as the requirement of
the MSSP module, are shown in timing parameter #100
and parameter #101 of the Electrical Specifications.
DS30289C-page 144  1998-2013 Microchip Technology Inc.

PIC17C7XX
A typical transmit sequence would go as follows:

a) The user generates a START Condition by set-
ting the START enable bit (SEN) in SSPCON2.

b) SSPIF is set. The module will wait the required
START time before any other operation takes
place.

c) The user loads the SSPBUF with address to
transmit.

d) Address is shifted out the SDA pin until all 8 bits
are transmitted.

e) The MSSP Module shifts in the ACK bit from the
slave device and writes its value into the
SSPCON2 register (SSPCON2<6>).

f) The module generates an interrupt at the end of
the ninth clock cycle by setting SSPIF.

g) The user loads the SSPBUF with eight bits of data.

h) DATA is shifted out the SDA pin until all 8 bits are
transmitted.

i) The MSSP Module shifts in the ACK bit from the
slave device, and writes its value into the
SSPCON2 register (SSPCON2<6>).

j) The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.

k) The user generates a STOP condition by setting
the STOP enable bit PEN in SSPCON2.

l) Interrupt is generated once the STOP condition
is complete.

15.2.8 BAUD RATE GENERATOR

In I2C Master mode, the reload value for the BRG is
located in the lower 7 bits of the SSPADD register
(Figure 15-18). When the BRG is loaded with this
value, the BRG counts down to 0 and stops until
another reload has taken place. The BRG count is dec-
remented twice per instruction cycle (TCY), on the Q2
and Q4 clock.

In I2C Master mode, the BRG is reloaded automatically.
If Clock Arbitration is taking place, for instance, the
BRG will be reloaded when the SCL pin is sampled
high (Figure 15-19).

FIGURE 15-18: BAUD RATE GENERATOR
BLOCK DIAGRAM

FIGURE 15-19: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

SSPM3:SSPM0

BRG Down CounterCLKOUT
FOSC/4

SSPADD<6:0>

SSPM3:SSPM0

SCL

Reload

Control

Reload

SDA

SCL

SCL de-asserted but slave holds

DX-1DX

BRG

SCL is sampled high, reload takes
place and BRG starts its count.

03h 02h 01h 00h (hold off) 03h 02h

Reload

BRG
Value

SCL low (clock arbitration).
SCL allowed to transition high.

BRG decrements
(on Q2 and Q4 cycles).
 1998-2013 Microchip Technology Inc. DS30289C-page 153

PIC17C7XX
FIGURE 15-24: REPEATED START CONDITION FLOW CHART (PAGE 2)

Force SDA = 0,
Load BRG with
SSPADD<6:0>

Yes

Repeated Start

Clear RSEN,

Yes

BRG
Rollover?

BRG
Rollover?

Yes

SDA = 0?
No

SCL = 1?
No

B

Set S

C A

No

No

Yes

Force SCL = 0,

Reset BRG

Set SSPIF.

SCL = '0'?

Reset BRG

No

Yes

condition done,
DS30289C-page 158  1998-2013 Microchip Technology Inc.

PIC17C7XX
15.2.18 MULTI -MASTER COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION

Multi-Master mode support is achieved by bus arbitra-
tion. When the master outputs address/data bits onto
the SDA pin, arbitration takes place when the master
outputs a '1' on SDA, by letting SDA float high and
another master asserts a '0'. When the SCL pin floats
high, data should be stable. If the expected data on
SDA is a '1' and the data sampled on the SDA pin = '0',
then a bus collision has taken place. The master will
set the Bus Collision Interrupt Flag, BCLIF and reset
the I2C port to its IDLE state (Figure 15-34).

If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDA and SCL lines are de-asserted and
the SSPBUF can be written to. When the user ser-
vices the bus collision Interrupt Service Routine and if
the I2C bus is free, the user can resume communica-
tion by asserting a START condition.

If a START, Repeated Start, STOP, or Acknowledge
condition was in progress when the bus collision
occurred, the condition is aborted, the SDA and SCL
lines are de-asserted and the respective control bits in
the SSPCON2 register are cleared. When the user
services the bus collision Interrupt Service Routine,
and if the I2C bus is free, the user can resume commu-
nication by asserting a START condition.

The master will continue to monitor the SDA and SCL
pins and if a STOP condition occurs, the SSPIF bit will
be set.

A write to the SSPBUF will start the transmission of
data at the first data bit, regardless of where the trans-
mitter left off when bus collision occurred.

In Multi-Master mode, the interrupt generation on the
detection of START and STOP conditions allows the
determination of when the bus is free. Control of the
I2C bus can be taken when the P bit is set in the SSP-
STAT register, or the bus is idle and the S and P bits
are cleared.

FIGURE 15-34: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

SDA

SCL

BCLIF

SDA released

SDA line pulled low
by another source.

Sample SDA. While SCL is high
data doesn’t match what is driven

Bus collision has occurred.

Set bus collision
interrupt.

by the master.

by master.

Data changes
while SCL = 0.
DS30289C-page 170  1998-2013 Microchip Technology Inc.

PIC17C7XX
17.6 In-Circuit Serial Programming

The PIC17C7XX group of the high-end family
(PIC17CXXX) has an added feature that allows serial
programming while in the end application circuit. This is
simply done with two lines for clock and data and three
other lines for power, ground, and the programming
voltage. This allows customers to manufacture boards
with unprogrammed devices and then program the
microcontroller just before shipping the product. This
also allows the most recent firmware, or a custom firm-
ware to be programmed.

 Devices may be serialized to make the product unique;
“special” variants of the product may be offered and
code updates are possible. This allows for increased
design flexibility.

To place the device into the Serial Programming Test
mode, two pins will need to be placed at VIHH. These
are the TEST pin and the MCLR/VPP pin. Also, a
sequence of events must occur as follows:

1. The TEST pin is placed at VIHH.

2. The MCLR/VPP pin is placed at VIHH.

There is a setup time between step 1 and step 2 that
must be met.

After this sequence, the Program Counter is pointing to
program memory address 0xFF60. This location is in
the Boot ROM. The code initializes the USART/SCI so
that it can receive commands. For this, the device must
be clocked. The device clock source in this mode is the
RA1/T0CKI pin. After delaying to allow the USART/SCI
to initialize, commands can be received. The flow is
shown in these 3 steps:

1. The device clock source starts.

2. Wait 80 device clocks for Boot ROM code to
configure the USART/SCI.

3. Commands may now be sent.

For complete details of serial programming, please
refer to the PIC17C7XX Programming Specification.
(Contact your local Microchip Technology Sales Office
for availability.)

FIGURE 17-3: TYPICAL IN-CIRCUIT
SERIAL PROGRAMMING
CONNECTION

TABLE 17-3: ICSP INTERFACE PINS

External
Connector
Signals

To Normal
Connections

To Normal
Connections

PIC17C7XX

VDD

VSS

MCLR/VPP

RA1/T0CKI

RA4/RX1/DT1

+5V

0V

VPP

Dev. CLK

Data I/O

VDD

RA5/TX1/CK1Data CLK

TESTTEST CNTL

During Programming

Name Function Type Description

RA4/RX1/DT1 DT I/O Serial Data

RA5/TX1/CK1 CK I Serial Clock

RA1/T0CKI OSCI I Device Clock Source

TEST TEST I Test mode selection control input, force to VIHH

MCLR/VPP MCLR/VPP P Master Clear Reset and Device Programming Voltage

VDD VDD P Positive supply for logic and I/O pins

VSS VSS P Ground reference for logic and I/O pins
DS30289C-page 196  1998-2013 Microchip Technology Inc.

PIC17C7XX
18.0 INSTRUCTION SET SUMMARY

The PIC17CXXX instruction set consists of 58 instruc-
tions. Each instruction is a 16-bit word divided into an
OPCODE and one or more operands. The opcode
specifies the instruction type, while the operand(s) fur-
ther specify the operation of the instruction. The
PIC17CXXX instruction set can be grouped into three
types:

• byte-oriented

• bit-oriented

• literal and control operations

These formats are shown in Figure 18-1.

Table 18-1 shows the field descriptions for the
opcodes. These descriptions are useful for understand-
ing the opcodes in Table 18-2 and in each specific
instruction descriptions.

For byte-oriented instructions, 'f' represents a file
register designator and 'd' represents a destination
designator. The file register designator specifies which
file register is to be used by the instruction.

The destination designator specifies where the result of
the operation is to be placed. If 'd' = '0', the result is
placed in the WREG register. If 'd' = '1', the result is
placed in the file register specified by the instruction.

For bit-oriented instructions, 'b' represents a bit field
designator which selects the number of the bit affected
by the operation, while 'f' represents the number of the
file in which the bit is located.

For literal and control operations, 'k' represents an 8-
or 13-bit constant or literal value.

The instruction set is highly orthogonal and is grouped
into:

• byte-oriented operations

• bit-oriented operations

• literal and control operations

All instructions are executed within one single instruc-
tion cycle, unless:

• a conditional test is true

• the program counter is changed as a result of an
instruction

• a table read or a table write instruction is executed
(in this case, the execution takes two instruction
cycles with the second cycle executed as a NOP)

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 25 MHz, the normal
instruction execution time is 160 ns. If a conditional test
is true or the program counter is changed as a result of
an instruction, the instruction execution time is 320 ns.

TABLE 18-1: OPCODE FIELD
DESCRIPTIONS

Field Description

f Register file address (00h to FFh)

p Peripheral register file address (00h to 1Fh)

i Table pointer control i = '0' (do not change)
i = '1' (increment after instruction execution)

t Table byte select t = '0' (perform operation on lower
byte)
t = '1' (perform operation on upper byte literal field,
constant data)

WREG Working register (accumulator)

b Bit address within an 8-bit file register

k Literal field, constant data or label

x Don't care location (= '0' or '1')
The assembler will generate code with x = '0'. It is
the recommended form of use for compatibility with
all Microchip software tools.

d Destination select
0 = store result in WREG
1 = store result in file register f
Default is d = '1'

u Unused, encoded as '0'

s Destination select
0 = store result in file register f and in the WREG
1 = store result in file register f
Default is s = '1'

label Label name

C,DC,
Z,OV

ALU status bits Carry, Digit Carry, Zero, Overflow

GLINTD Global Interrupt Disable bit (CPUSTA<4>)

TBLPTR Table Pointer (16-bit)

TBLAT Table Latch (16-bit) consists of high byte (TBLATH)
and low byte (TBLATL)

TBLATL Table Latch low byte

TBLATH Table Latch high byte

TOS Top-of-Stack

PC Program Counter

BSR Bank Select Register

WDT Watchdog Timer Counter

TO Time-out bit

PD Power-down bit

dest Destination either the WREG register or the speci-
fied register file location

[] Options

() Contents

 Assigned to

< > Register bit field

 In the set of

italics User defined term (font is courier)
 1998-2013 Microchip Technology Inc. DS30289C-page 197

PIC17C7XX

CPFSLT
Compare f with WREG,
skip if f < WREG

Syntax: [label] CPFSLT f

Operands: 0  f  255

Operation: (f) –WREG),
skip if (f) < (WREG)
(unsigned comparison)

Status Affected: None

Encoding: 0011 0000 ffff ffff

Description: Compares the contents of data memory
location 'f' to the contents of WREG by
performing an unsigned subtraction.

If the contents of 'f' are less than the
contents of WREG, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
two-cycle instruction.

Words: 1

Cycles: 1 (2)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example: HERE CPFSLT REG
NLESS :
LESS :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction
If REG < WREG;
PC = Address (LESS)
If REG  WREG;
PC = Address (NLESS)

DAW Decimal Adjust WREG Register

Syntax: [label] DAW f,s

Operands: 0  f  255
s  [0,1]

Operation: If [[WREG<7:4> > 9].OR.[C = 1]].AND.
[WREG<3:0> > 9]
then
WREG<7:4> + 7 f<7:4>, s<7:4>;

If [WREG<7:4> > 9].OR.[C = 1]
then
WREG<7:4> + 6 f<7:4>, s<7:4>;
else
WREG<7:4> f<7:4>, s<7:4>;

If [WREG<3:0> > 9].OR.[DC = 1]
then
WREG<3:0> + 6 f<3:0>, s<3:0>;
else
WREG<3:0> f<3:0>, s<3:0>

Status Affected: C

Encoding: 0010 111s ffff ffff

Description: DAW adjusts the eight-bit value in
WREG, resulting from the earlier addi-
tion of two variables (each in packed
BCD format) and produces a correct
packed BCD result.
s = 0: Result is placed in Data

memory location 'f' and
 WREG.

s = 1: Result is placed in Data
memory location 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write
register 'f'
and other
specified
register

Example: DAW REG1, 0

Before Instruction
WREG = 0xA5
REG1 = ??
C = 0
DC = 0

After Instruction
WREG = 0x05
REG1 = 0x05
C = 1
DC = 0
DS30289C-page 210  1998-2013 Microchip Technology Inc.

PIC17C7XX

SLEEP Enter SLEEP mode

Syntax: [label] SLEEP

Operands: None

Operation: 00h  WDT;
0  WDT postscaler;
1  TO;
0  PD

Status Affected: TO, PD

Encoding: 0000 0000 0000 0011

Description: The power-down status bit (PD) is
cleared. The time-out status bit (TO) is
set. Watchdog Timer and its post-
scaler are cleared.

The processor is put into SLEEP
mode with the oscillator stopped.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

Process
Data

Go to
sleep

Example: SLEEP

Before Instruction
TO = ?
PD = ?

After Instruction
TO = 1 †
PD = 0

† If WDT causes wake-up, this bit is cleared

SUBLW Subtract WREG from Literal

Syntax: [label] SUBLW k

Operands: 0 k 255

Operation: k – (WREG) WREG)

Status Affected: OV, C, DC, Z

Encoding: 1011 0010 kkkk kkkk

Description: WREG is subtracted from the eight-bit
literal 'k'. The result is placed in
WREG.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
Data

Write to
WREG

Example 1: SUBLW 0x02

Before Instruction
WREG = 1
C = ?

After Instruction
WREG = 1
C = 1 ; result is positive
Z = 0

Example 2:

Before Instruction
WREG = 2
C = ?

After Instruction
WREG = 0
C = 1 ; result is zero
Z = 1

Example 3:

Before Instruction
WREG = 3
C = ?

After Instruction
WREG = FF ; (2’s complement)
C = 0 ; result is negative
Z = 0
 1998-2013 Microchip Technology Inc. DS30289C-page 225

PIC17C7XX

XORLW
Exclusive OR Literal with
WREG

Syntax: [label] XORLW k

Operands: 0 k 255

Operation: (WREG) .XOR. k WREG)

Status Affected: Z

Encoding: 1011 0100 kkkk kkkk

Description: The contents of WREG are XOR’ed
with the 8-bit literal 'k'. The result is
placed in WREG.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Process
Data

Write to
WREG

Example: XORLW 0xAF

Before Instruction
WREG = 0xB5

After Instruction
WREG = 0x1A

XORWF Exclusive OR WREG with f

Syntax: [label] XORWF f,d

Operands: 0  f  255
d  [0,1]

Operation: (WREG) .XOR. (f) dest)

Status Affected: Z

Encoding: 0000 110d ffff ffff

Description: Exclusive OR the contents of WREG
with register 'f'. If 'd' is 0, the result is
stored in WREG. If 'd' is 1, the result is
stored back in the register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write to
destination

Example: XORWF REG, 1

Before Instruction
REG = 0xAF 1010 1111
WREG = 0xB5 1011 0101

After Instruction
REG = 0x1A 0001 1010
WREG = 0xB5
 1998-2013 Microchip Technology Inc. DS30289C-page 231

PIC17C7XX
FIGURE 20-24: MEMORY INTERFACE WRITE TIMING

TABLE 20-20: MEMORY INTERFACE WRITE REQUIREMENTS

OSC1

ALE

OE

WR

AD<15:0>

Q1 Q2 Q3 Q4 Q1 Q2

150

151

152 153

154

addr out data out addr out

Q1

Param.
No.

Sym Characteristic Min Typ† Max
Unit

s
Conditions

150 TadV2alL AD<15:0> (address) valid
to

PIC17CXXX 0.25TCY - 10 — — ns

ALE (address setup
time)

PIC17LCXXX 0.25TCY - 10 — —

151 TalL2adI ALE to address out invalid PIC17CXXX 0 — — ns

(address hold time) PIC17LCXXX 0 — —

152 TadV2wrL Data out valid to WR PIC17CXXX 0.25TCY - 40 — — ns

(data setup time) PIC17LCXXX 0.25TCY - 40 — —

153 TwrH2adI WR to data out invalid PIC17CXXX — 0.25TCY — ns

(data hold time) PIC17LCXXX — 0.25TCY —

154 TwrL WR pulse width PIC17CXXX — 0.25TCY — ns

PIC17LCXXX — 0.25TCY —

† Data in “Typ” column is at 5V, 25C unless otherwise stated.
 1998-2013 Microchip Technology Inc. DS30289C-page 265

