

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c766-16i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 DEVICE VARIETIES

Each device has a variety of frequency ranges and packaging options. Depending on application and production requirements, the proper device option can be selected using the information in the PIC17C7XX Product Selection System section at the end of this data sheet. When placing orders, please use the "PIC17C7XX Product Identification System" at the back of this data sheet to specify the correct part number. When discussing the functionality of the device, memory technology and voltage range does not matter.

There are two memory type options. These are specified in the middle characters of the part number.

- 1. **C**, as in PIC17**C**756A. These devices have EPROM type memory.
- 2. **CR**, as in PIC17**CR**756A. These devices have ROM type memory.

All these devices operate over the standard voltage range. Devices are also offered which operate over an extended voltage range (and reduced frequency range). Table 2-1 shows all possible memory types and voltage range designators for a particular device. These designators are in **bold** typeface.

TABLE 2-1:	DEVICE MEMORY	VARIETIES
------------	----------------------	-----------

Memory Type		Voltage Range		
		Standard	Extended	
EPROM		PIC17CXXX	PIC17LCXXX	
ROM		PIC17CRXXX	PIC17LCRXXX	
Note:	Not all memory technologies are available			
1	for a particular device.			

2.1 UV Erasable Devices

The UV erasable version, offered in CERQUAD package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Third party programmers also are available; refer to the *Third Party Guide* for a list of sources.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround Production (SQTPsm) Devices

Microchip offers a unique programming service, where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

ROM devices do not allow serialization information in the program memory space.

For information on submitting ROM code, please contact your regional sales office.

Note: Presently, NO ROM versions of the PIC17C7XX devices are available.

5.1.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: First, the internal POR signal goes high when the POR trip point is reached. If MCLR is high, then both the OST and PWRT timers start. In general, the PWRT time-out is longer, except with low frequency crystals/resonators. The total time-out also varies based on oscillator configuration. Table 5-1 shows the times that are associated with the oscillator configuration. Figure 5-5 and Figure 5-6 display these time-out sequences.

If the device voltage is not within electrical specification at the end of a time-out, the MCLR/VPP pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications.

The time-out sequence begins from the first rising edge of $\overline{\text{MCLR}}$.

Table 5-3 shows the RESET conditions for some special registers, while Table 5-4 shows the initialization conditions for all the registers.

TABLE 5-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	POR, BOR	Wake-up from SLEEP	MCLR Reset
XT, LF	Greater of: 96 ms or 1024Tosc	1024Tosc	—
EC, RC	Greater of: 96 ms or 1024Tosc	—	—

TABLE 5-2: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR ⁽¹⁾	то	PD	Event
0	0	1	1	Power-on Reset
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
1	1	0	1	WDT Reset during normal operation
1	1	0	0	WDT Wake-up during SLEEP
1	1	1	1	MCLR Reset during normal operation
1	0	1	1	Brown-out Reset
0	0	0	x	Illegal, TO is set on POR
0	0	x	0	Illegal, PD is set on POR
х	х	1	1	CLRWDT instruction executed

Note 1: When BODEN is enabled, else the BOR status bit is unknown.

TABLE 5-3: RESET CONDITION FOR THE PROGRAM COUNTER AND THE CPUSTA REGISTER

Event	PCH:PCL	CPUSTA ⁽⁴⁾	OST Active	
Power-on Reset		0000h	11 1100	Yes
Brown-out Reset		0000h	11 1110	Yes
MCLR Reset during normal oper	ration	0000h	11 1111	No
MCLR Reset during SLEEP		0000h	11 1011	Yes ⁽²⁾
WDT Reset during normal operation		0000h	11 0111	No
WDT Reset during SLEEP ⁽³⁾		0000h	11 0011	Yes ⁽²⁾
Interrupt Wake-up from SLEEP	GLINTD is set	PC + 1	11 1011	Yes ⁽²⁾
	GLINTD is clear	PC + 1 ⁽¹⁾	10 1011	Yes ⁽²⁾

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0'

Note 1: On wake-up, this instruction is executed. The instruction at the appropriate interrupt vector is fetched and then executed.

2: The OST is only active (on wake-up) when the oscillator is configured for XT or LF modes.

- **3:** The Program Counter = 0; that is, the device branches to the RESET vector and places SFRs in WDT Reset states. This is different from the mid-range devices.
- 4: When BODEN is enabled, else the BOR status bit is unknown.

^{© 1998-2013} Microchip Technology Inc.

6.3 Peripheral Interrupt Request Register1 (PIR1) and Register2 (PIR2)

These registers contains the individual flag bits for the peripheral interrupts.

Note: These bits will be set by the specified condition, even if the corresponding interrupt enable bit is cleared (interrupt disabled), or the GLINTD bit is set (all interrupts disabled). Before enabling an interrupt, the user may wish to clear the interrupt flag to ensure that the program does not immediately branch to the peripheral Interrupt Service Routine.

REGISTER 6-4: PIR1 REGISTER (ADDRESS: 16h, BANK 1)

	R/W-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R-0
	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF
	bit 7							bit 0
bit 7	RBIF : POF 1 = One of 0 = None of	RTB Interrupt f the PORTB of the PORTE	:-on-Change inputs chan B inputs have	Flag bit ged (software e changed	e must end t	he mismatch c	condition)	
bit 6	TMR3IF: T	TMR3 Interrup	pt Flag bit					
	<u>If Capture</u> 1 = TMR3 0 = TMR3	<u>1 is enabled (</u> overflowed did not overf	<u>(CA1/PR3 =</u>	<u>1):</u>				
	<u>If Capture</u> 1 = TMR3 0 = TMR3 value	<u>1 is disabled (</u> value has rol value has no	(CA1/PR3 = lled over to 0 ot rolled over	<u>0):</u>)000h from e to 0000h fro	qualling the m equalling	period register the period reg	r (PR3H:PR ister (PR3F	t3L) value I:PR3L)
bit 5	TMR2IF : TMR2 Interrupt Flag bit 1 = TMR2 value has rolled over to 0000h from equalling the period register (PR2) value 0 = TMR2 value has not rolled over to 0000h from equalling the period register (PR2) value							
bit 4	TMR1IF: T	MR1 Interrup	pt Flag bit					
	<u>If TMR1 is</u> 1 = TMR1 0 = TMR1	in 8-bit mode value has rol value has no	$\frac{2}{2} (T16 = 0)$: lied over to 0 ot rolled over)000h from e to 0000h fro	qualling the m equalling	period register the period reg	r (PR1) valı jister (PR1)	le value
	<u>If Timer1 is</u> 1 = TMR2: value 0 = TMR2: value	<u>s in 16-bit mo</u> :TMR1 value :TMR1 value l	<u>vde (T16 = 1)</u> has rolled ov has not rolle	<u>):</u> ver to 0000h d over to 000	from equalli Oh from equ	ing the period r alling the perio	register (PF od register (I	₹2:PR1) PR2:PR1)
bit 3	CA2IF : Ca 1 = Captur 0 = Captur	apture2 Interra re event occu re event did r	upt Flag bit ırred on RB1 not occur on	/CAP2 pin RB1/CAP2 p	vin			
bit 2	CA1IF : Ca 1 = Captur 0 = Captur	apture1 Interro re event occu re event did r	upt Flag bit ırred on RB0 not occur on)/CAP1 pin RB0/CAP1 p	bin			
bit 1	TX1IF : USART1 Transmit Interrupt Flag bit (state controlled by hardware) 1 = USART1 Transmit buffer is empty 0 = USART1 Transmit buffer is full							
bit 0	RC1IF : US 1 = USAR 0 = USAR	SART1 Receiv T1 Receive b T1 Receive b	ve Interrupt I ouffer is full ouffer is emp	Flag bit (state ty	controlled	by hardware)		
	Leaend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unirr	nplemented bit	, read as '0	,

'1' = Bit is set

- n = Value at POR Reset

x = Bit is unknown

'0' = Bit is cleared

7.2.2.2 CPU Status Register (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register has a bit that is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the Interrupt Status (INTSTA) register and the Peripheral Interrupt Enable (PIE) registers. The CPUSTA register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device

logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

The $\overrightarrow{\text{POR}}$ bit allows the differentiation between a Power-on Reset, external $\overrightarrow{\text{MCLR}}$ Reset, or a WDT Reset. The BOR bit indicates if a Brown-out Reset occurred.

Note 1: The BOR status bit is a don't care and is not necessarily predictable if the Brown-out circuit is disabled (when the BODEN bit in the Configuration word is programmed).

REGISTER 7-2: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

U-0	U-0	R-1	R/W-1	R-1	R-1	R/W-0	R/W-1
_	—	STKAV	GLINTD	TO	PD	POR	BOR
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5	STKAV: Stack Available bit
	This bit indicates that the 4-bit stack pointer value is Fh, or has rolled over from Fh \rightarrow 0h
	(stack overflow).
	 0 = Stack is full, or a stack overflow may have occurred (once this bit has been cleared by a stack overflow, only a device RESET will set this bit)
bit 4	GLINTD: Global Interrupt Disable bit
	This bit disables all interrupts. When enabling interrupts, only the sources with their enable bits set can cause an interrupt.
	1 = Disable all interrupts
1.11.0	
bit 3	TO: WD1 Time-out Status bit
	0 = A Watchdog Timer time-out occurred
bit 2	PD: Power-down Status bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set by software)
bit 0	BOR: Brown-out Reset Status bit
	When BODEN Configuration bit is set (enabled):
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set by software)
	When BODEN Configuration bit is clear (disabled):
	Don't care
	Legend:

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'	
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

13.1.3.1 PWM Periods

The period of the PWM1 output is determined by Timer1 and its period register (PR1). The period of the PWM2 and PWM3 outputs can be individually software configured to use either Timer1 or Timer2 as the timebase. For PWM2, when TM2PW2 bit (PW2DCL<5>) is clear, the time base is determined by TMR1 and PR1 and when TM2PW2 is set, the time base is determined by Timer2 and PR2. For PWM3, when TM2PW3 bit (PW3DCL<5>) is clear, the time base is determined by TMR1 and PR1, and when TM2PW3 is set, the time base is determined by Timer2 and PR2.

Running two different PWM outputs on two different timers allows different PWM periods. Running all PWMs from Timer1 allows the best use of resources by freeing Timer2 to operate as an 8-bit timer. Timer1 and Timer2 cannot be used as a 16-bit timer if any PWM is being used.

The PWM periods can be calculated as follows:

period of PWM1 = $[(PR1) + 1] \times 4TOSC$

period of PWM2 = $[(PR1) + 1] \times 4TOSC$ or $[(PR2) + 1] \times 4TOSC$

period of PWM3 =
$$[(PR1) + 1] \times 4TOSC$$
 or
 $[(PR2) + 1] \times 4TOSC$

The duty cycle of PWMx is determined by the 10-bit value DCx<9:0>. The upper 8-bits are from register PWxDCH and the lower 2-bits are from PWxDCL<7:6> (PWxDCH:PWxDCL<7:6>). Table 13-4 shows the maximum PWM frequency (FPWM), given the value in the period register.

The number of bits of resolution that the PWM can achieve depends on the operation frequency of the device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log\left(2\right)} \quad \text{bits}$$

where: FPWM = 1 / period of PWM

The PWMx duty cycle is as follows:

PWMx Duty Cycle = $(DCx) \times TOSC$

where DCx represents the 10-bit value from PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx = PWxDCH, then the PWM output will be low for one to four Q-clocks (depending on the state of the PWxDCL<7:6> bits). For a duty cycle to be 100%, the PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are double buffered. When the user writes to these registers, they are stored in master latches. When TMR1 (or TMR2) overflows and a new PWM period begins, the master latch values are transferred to the slave latches and the PWMx pin is forced high.

Note:	For PW1DCH, PW1DCL, PW2DCH,
	PW2DCL, PW3DCH and PW3DCL regis-
	ters, a write operation writes to the "master
	latches", while a read operation reads the
	"slave latches". As a result, the user may
	not read back what was just written to the
	duty cycle registers (until transferred to
	slave latch).

The user should also avoid any "read-modify-write" operations on the duty cycle registers, such as: ADDWF PW1DCH. This may cause duty cycle outputs that are unpredictable.

TABLE 13-4:	PWM FREQUENCY vs.
	RESOLUTION AT 33 MHz

PWM	Frequency (kHz)								
Frequency	32.2	64.5	90.66	128.9	515.6				
PRx Value	0xFF	0x7F	0x5A	0x3F	0x0F				
High Resolution	10-bit	9-bit	8.5-bit	8-bit	6-bit				
Standard Resolution	8-bit	7-bit	6.5-bit	6-bit	4-bit				

13.1.3.2 PWM INTERRUPTS

The PWM modules make use of the TMR1 and/or TMR2 interrupts. A timer interrupt is generated when TMR1 or TMR2 equals its period register and on the following increment is cleared to zero. This interrupt also marks the beginning of a PWM cycle. The user can write new duty cycle values before the timer rollover. The TMR1 interrupt is latched into the TMR1IF bit and the TMR2 interrupt is latched into the TMR2IF bit. These flags must be cleared in software.

14.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULES

Each USART module is a serial I/O module. There are two USART modules that are available on the PIC17C7XX. They are specified as USART1 and USART2. The description of the operation of these modules is generic in regard to the register names and pin names used. Table 14-1 shows the generic names that are used in the description of operation and the actual names for both USART1 and USART2. Since the control bits in each register have the same function, their names are the same (there is no need to differentiate).

The Transmit Status and Control Register (TXSTA) is shown in Figure 14-1, while the Receive Status and Control Register (RCSTA) is shown in Figure 14-2.

TABLE 14-1: USART MODULE GENERIC NAMES

Generic Name	USART1 Name	USART2 Name					
Registers							
RCSTA	RCSTA1	RCSTA2					
TXSTA	TXSTA1	TXSTA2					
SPBRG	SPBRG1	SPBRG2					
RCREG	RCREG1	RCREG2					
TXREG	TXREG1	TXREG2					
In	Interrupt Control Bits						
RCIE	RC1IE	RC2IE					
RCIF	RC1IF	RC2IF					
TXIE	TX1IE	TX2IE					
TXIF	TX1IF	TX2IF					
	Pins						
RX/DT	RA4/RX1/DT1	RG6/RX2/DT2					
TX/CK	RA5/TX1/CK1	RG7/TX2/CK2					

REGISTER 14-1: TXSTA1 REGISTER (ADDRESS: 15h, BANK 0) TXSTA2 REGISTER (ADDRESS: 15h, BANK 4)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R-1	R/W-x
	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D
	bit 7							bit 0
bit 7	CSRC: Clo	ock Source Se	lect bit					
	<u>Synchronous mode:</u> 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source)							
	<u>Asynchron</u> Don't care	ious mode:						
bit 6	TX9 : 9-bit 1 = Select: 0 = Select:	Transmit Sele s 9-bit transmi s 8-bit transmi	ct bit ssion ssion					
bit 5	TXEN : Transmit Enable bit 1 = Transmit enabled 0 = Transmit disabled SREN/CREN overrides TXEN in SYNC mode							
bit 4	SYNC: USART Mode Select bit (Synchronous/Asynchronous) 1 = Synchronous mode 0 = Asynchronous mode							
bit 3-2	Unimplem	nented: Read	as '0'					
bit 1	TRMT : Tra 1 = TSR e 0 = TSR fu	nsmit Shift Re mpty JII	gister (TSF	२) Empty bit				
bit 0	TX9D : 9th	bit of Transmi	t Data (can	be used to	calculate the	e parity in sof	tware)	
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unir	nplemented b	oit, read as 'C)'
	- n = Value	at POR Rese	et '1' = B	it is set	'0' = Bit	is cleared	x = Bit is ur	nknown

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	XXXX XXXX	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC		—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	XXXX XXXX	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Rate Generator Register							0000 0000	0000 0000

TABLE 14-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous master reception.

FIGURE 15-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

© 1998-2013 Microchip Technology Inc.

15.2.1.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- The SSPSR register value is loaded into the SSPBUF register on the falling edge of the 8th SCL pulse.
- b) The buffer full bit, BF, is set on the falling edge of the 8th SCL pulse.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR2<7>), is set (interrupt is generated if enabled) - on the falling edge of the 9th SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF and UA are set).

- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Note: Following the Repeated Start condition (step 7) in 10-bit mode, the user only needs to match the first 7-bit address. The user does not update the SSPADD for the second half of the address.

15.2.1.2 Slave Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR2<7>) must be cleared in software. The SSPSTAT register is used to determine the status of the received byte.

Note: The SSPBUF will be loaded if the SSPOV bit is set and the BF flag is cleared. If a read of the SSPBUF was performed, but the user did not clear the state of the SSPOV bit before the next receive occurred, the ACK is not sent and the SSP-BUF is updated.

Status B Transfer i	its as Data is Received	a ed SSPSR → SSPBUF Generate ACK Pulse		Set bit SSPIF (SSP Interrupt occurs
BF	SSPOV			if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	Yes	No	Yes

TABLE 15-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

15.4 Example Program

Example 15-2 shows MPLAB[®] C17 'C' code for using the I²C module in Master mode to communicate with a 24LC01B serial EEPROM. This example uses the PIC[®] MCU 'C' libraries included with MPLAB C17.

EXAMPLE 15-2: INTERFACING TO A 24LC01B SERIAL EEPROM (USING MPLAB C17)

```
// Include necessary header files
#include <p17c756.h>
                       // Processor header file
                       // Delay routines header file
// Standard Library header file
#include <delays.h>
#include <stdlib.h>
                       // Standard Lizzard
// I2C routines header file
#include <i2c16.h>
#define CONTROL 0xa0
                         // Control byte definition for 24LC01B
// Function declarations
void main(void);
void WritePORTD(static unsigned char data);
void ByteWrite(static unsigned char address, static unsigned char data);
unsigned char ByteRead(static unsigned char address);
void ACKPoll(void);
// Main program
void main(void)
{
static unsigned char address; // I2C address of 24LC01B
static unsigned char datao; // Data written to 24LC01B
static unsigned char datai;
                                 // Data read from 24LC01B
                                  // Preset address to 0
    address = 0;
   OpenI2C(MASTER,SLEW_ON);
                                  \ensuremath{//} Configure I2C Module Master mode, Slew rate control on
   SSPADD = 39;
                                 // Configure clock for 100KHz
    while(address<128)
                                 // Loop 128 times, 24LC01B is 128x8
    {
        datao = PORTB;
        do
        {
            ByteWrite(address,datao); // Write data to EEPROM
            ACKPoll();
                                         // Poll the 24LC01B for state
            datai = ByteRead(address); // Read data from EEPROM into SSPBUF
        while(datai != datao);
                                        // Loop as long as data not correctly
                                         11
                                              written to 24LC01B
        address++;
                                         // Increment address
    }
    while(1)
                                         // Done writing 128 bytes to 24LC01B, Loop forever
    {
        Nop();
    }
```

EXAMPLE 15-2: INTERFACING TO A 24LC01B SERIAL EEPROM (USING MPLAB C17)

```
void ACKPoll(void)
{
                                             // Send start bit
         StartI2C();
        IdleI2C();
                                            // Wait for idle condition
        WriteI2C(CONTROL);
                                            // Send control byte
        IdleI2C();
                                            // Wait for idle condition
         // Poll the ACK bit coming from the 24LC01B
         // Loop as long as the 24LC01B NACKs \,
        while (SSPCON2bits.ACKSTAT)
         {
                                         // Send a restart bit
                 RestartI2C();
                 IdleI2C(); // Wait for idle condition
WriteI2C(CONTROL); // Send control byte
IdleI2C(); // Wait for idle condition
         }
         IdleI2C();
                                            // Wait for idle condition
                                            // Send stop bit
         StopI2C();
         IdleI2C();
                                            // Wait for idle condition
         return;
}
```

17.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC17CXXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection (Section 4.0)
- RESET (Section 5.0)
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts (Section 6.0)
- Watchdog Timer (WDT)
- SLEEP mode
- Code protection

The PIC17CXXX has a Watchdog Timer which can be shut-off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on POR and BOR. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 17-1.

High (H) Table Read Addr.	U-x	R/P-1	R/P-1	U-x	U-x	U-x	U-x	U-x	U-x
FE0Fh - FE08h	—	PM2	BODEN		_	—	_	_	
	bit 15 bit 8	bit 7							bit 0
Low (L) Table Read Addr.	U-x	U-x	R/P-1	U-x	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FE07h - FE00h		—	PM1	_	PM0	WDTPS1	WDTPS0	FOSC1	FOSC0
	bit 15 bit 8	bit 7							bit 0
bits 7H, 6L, 4L	PM2, PM1, I 111 = Micro 110 = Micro 101 = Exten 000 = Code	PM0: Pro processo controlle ded Micr Protecte	ocessor Mo or mode r mode rocontrolle od Microco	ode Sele r mode ntroller	ect bits mode				
bit 6H	BODEN: Brown-out Detect Enable 1 = Brown-out Detect circuitry is enabled 0 = Brown-out Detect circuitry is disabled								
bits 3L:2L	WDTPS1:W 11 = WDT e 10 = WDT e 01 = WDT e 00 = WDT d	DTPS0: nabled, p nabled, p nabled, p isabled,	WDT Post postscaler postscaler postscaler 16-bit over	scaler 5 = 1 = 256 = 64 flow tim	Select bi	ts			
bits 1L:0L	FOSC1:FOS 11 = EC osc 10 = XT osc 01 = RC osc 00 = LF osc	SCO : Osc cillator cillator cillator cillator illator	illator Sele	ect bits					
Shaded bits (—)	Reserved								

REGISTER 17-1: CONFIGURATION WORDS

17.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered and disabled, when possible.

17.5 Code Protection

The code in the program memory can be protected by selecting the microcontroller in Code Protected mode (PM2:PM0 = '000').

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to, or reading from, program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

PIC17C7XX

NOTES:

TABLE 20-19: A/D CONVERSION REQUIREMENTS

Param. No.	Sym	Characteristic		Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC17CXXX	1.6	_	—	μs	Tosc based, VREF $\geq 3.0V$		
			PIC17LCXXX	3.0	_	—	μs	Tosc based, VREF full range		
			PIC17CXXX	2.0	4.0	6.0	μs	A/D RC mode		
			PIC17LCXXX	3.0	6.0	9.0	μs	A/D RC mode		
131	TCNV	Conversion time (not including acquisition time) (Note 1)		11	_	12	Tad			
132	TACQ	Acquisition time		(Note 2)	20	_	μS			
				10	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).		
134	TGO	Q4 to ADCLK start		_	Tosc/2	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.1 for minimum conditions when input voltage has changed more than 1 LSb.

PIC17C7XX

FIGURE 20-25: MEMORY INTERFACE READ TIMING

TABLE 20-21: MEMORY INTERFACE READ REQUIREMENTS

Param. No.	Sym	Characteristic	c	Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD15:AD0 (address) valid to	PIC17 C XXX	0.25Tcy - 10	_	—	ns	
		ALE↓ (address setup time)	PIC17LCXXX	0.25Tcy - 10	_	—		
151	TalL2adl	ALE \downarrow to address out invalid	PIC17 C XXX	5	_	_	ns	
		(address hold time)	PIC17LCXXX	5		_		
160	TadZ2oeL	AD15:AD0 hi-impedance to	PIC17 C XXX	0	_	_	ns	
		OE↓	PIC17LCXXX	0		_		
161	ToeH2ad	OE [↑] to AD15:AD0 driven	PIC17 C XXX	0.25Tcy - 15		_	ns	
	D		PIC17 LC XXX	0.25Tcy - 15		_		
162	TadV2oeH	Data in valid before \overline{OE}^{\uparrow}	PIC17 C XXX	35		_	ns	
		(data setup time)	PIC17 LC XXX	45				
163	ToeH2adl	OE [↑] to data in invalid	PIC17 C XXX	0	_		ns	
		(data hold time)	PIC17 LC XXX	0	_			
164	TalH	ALE pulse width	PIC17 C XXX	_	0.25TCY	—	ns	
			PIC17LCXXX	—	0.25TCY	—		
165	ToeL	OE pulse width	PIC17 C XXX	0.5Tcy - 35	_	_	ns	
			PIC17LCXXX	0.5Tcy - 35		_		
166	TalH2alH	ALE↑ to ALE↑(cycle time)	PIC17 C XXX	—	Тсү	—	ns	
			PIC17LCXXX	—	TCY	—		
167	Tacc	Address access time	PIC17 C XXX	_	_	0.75Tcy - 30	ns	
			PIC17LCXXX		_	0.75Tcy - 45		
168	Toe	Output enable access time	PIC17 C XXX		_	0.5Tcy - 45	ns	
		(OE low to data valid)	PIC17LCXXX	_		0.5Tcy - 75		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

TXREG2
TXSTA 126, 130, 132
TXSTA Register
TXEN Bit
TXSTA1
TXSTA2
U
UA
Update Address, UA 134
Upward Compatibility
USART
Asynchronous Master Transmission 123
Asynchronous Mode 123
Asynchronous Receive 125
Asynchronous Transmitter 123
Baud Rate Generator120
Synchronous Master Mode 127
Synchronous Master Reception 129
Synchronous Master Transmission 127
Synchronous Slave Mode 131
Synchronous Slave Transmit 131
Transmit Enable (TXEN Bit)
USART1 Receive Interrupt
USART1 Transmit Interrupt
USART2 Receive Interrupt Enable, RC2IE
USART2 Receive Interrupt Flag bit, RC2IF
USART2 Receive Interrupt Flag bit, TX2IF
USART2 Transmit Interrupt Enable, TX2IE
V
VDD
Voн vs. Ioн 276
VOL VS. IOL

w

~~
Wake-up from SLEEP 194
Wake-up from SLEEP Through Interrupt 194
Watchdog Timer 193
Waveform for General Call Address Sequence 149
Waveforms
External Program Memory Access 45
WCOL 135, 154, 159, 162, 165, 167
WCOL Status Flag 154
WDT 193
Clearing the WDT 193
Normal Timer 193
Period 193
Programming Considerations 193
WDT PERIOD
WDTPS0 191
WDTPS1 191
Write Collision Detect bit, WCOL 135
WWW, On-Line Support 5
X
XORLW
XORWF
Z
Z 11, 51
Zero (Z) 11