

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c766t-16-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC17CXXX can be attributed to a number of architectural features, commonly found in RISC microprocessors. To begin with, the PIC17CXXX uses a modified Harvard architecture. This architecture has the program and data accessed from separate memories. So, the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC17CXXX opcodes are 16-bits wide, enabling single word instructions. The full 16-bit wide program memory bus fetches a 16-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (121 ns @ 33 MHz), except for program branches and two special instructions that transfer data between program and data memory.

The PIC17CXXX can address up to 64K x 16 of program memory space.

The **PIC17C752** and **PIC17C762** integrate 8K x 16 of EPROM program memory on-chip.

The **PIC17C756A** and **PIC17C766** integrate 16K x 16 EPROM program memory on-chip.

A simplified block diagram is shown in Figure 3-1. The descriptions of the device pins are listed in Table 3-1.

Program execution can be internal only (Microcontroller or Protected Microcontroller mode), external only (Microprocessor mode), or both (Extended Microcontroller mode). Extended Microcontroller mode does not allow code protection.

The PIC17CXXX can directly or indirectly address its register files or data memory. All special function registers, including the Program Counter (PC) and Working Register (WREG), are mapped in data memory. The PIC17CXXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC17CXXX simple, yet efficient. In addition, the learning curve is reduced significantly.

One of the PIC17CXXX family architectural enhancements from the PIC16CXX family, allows two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the WREG register, thus increasing performance and decreasing program memory usage.

The PIC17CXXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The WREG register is an 8-bit working register used for ALU operations.

All PIC17CXXX devices have an 8 x 8 hardware multiplier. This multiplier generates a 16-bit result in a single cycle.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), Zero (Z) and Overflow (OV) bits in the ALUSTA register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Signed arithmetic is comprised of a magnitude and a sign bit. The overflow bit indicates if the magnitude overflows and causes the sign bit to change state. That is, if the result of 8-bit signed operations is greater than 127 (7Fh), or less than -128 (80h).

Signed math can have greater than 7-bit values (magnitude), if more than one byte is used. The overflow bit only operates on bit6 (MSb of magnitude) and bit7 (sign bit) of each byte value in the ALU. That is, the overflow bit is not useful if trying to implement signed math where the magnitude, for example, is 11-bits.

If the signed math values are greater than 7-bits (such as 15-, 24-, or 31-bit), the algorithm must ensure that the low order bytes of the signed value ignore the overflow status bit.

Example 3-1 shows two cases of doing signed arithmetic. The Carry (C) bit and the Overflow (OV) bit are the most important status bits for signed math operations.

EXAMPLE 3-1: 8-BIT MATH ADDITION

Hex Value	Signed Values	Unsigned Values
FFh + 01h = 00h	-1 + 1 = 0 (FEh)	255 $\frac{+ 1}{= 256} \rightarrow 00h$
C bit = 1	C bit = 1	C bit = 1
OV bit = 0	OV bit = 0	OV bit = 0
DC bit = 1	DC bit = 1	DC bit = 1
Z bit = 1	Z bit = 1	Z bit = 1
Hex Value	Signed Values	Unsigned Values
7Fh + 01h = 80h	127 $+ 1$ $= 128 \rightarrow 00h$	127 $+ 1$ $= 128$
C bit = 0	C bit = 0	C bit = 0
OV bit = 1	OV bit = 1	OV bit = 1
DC bit = 1	DC bit = 1	DC bit = 1
Z bit = 0	Z bit = 0	Z bit = 0

PIC17C7XX

NOTES:

t Wake-up from SLEEP through Interrupt
N/A
N/A
uuuu uuuu
PC + 1 (2)
uuuu uuuu
1111 uuuu
0000 000-
uu qquu
uuuu uuuu (1)
N/A
uuuu uuuu
นนนน นนนน
นนนน นนนน
uuuu uuuu
นนนน นนนน
นนนน นนนน
นนนน นนนน
u-uu uuuu
นนนน นนนน
uuuu uuuu
uuuu -uuu
uuuu uuuu
uuuuuu
uuuu uuuu
uuuu uuuu

 TABLE 5-4:
 INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

- 3: See Table 5-3 for RESET value of specific condition.
- 4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

5.1.5 BROWN-OUT RESET (BOR)

PIC17C7XX devices have on-chip Brown-out Reset circuitry. This circuitry places the device into a RESET when the device voltage falls below a trip point (BVDD). This ensures that the device does not continue program execution outside the valid operation range of the device. Brown-out Resets are typically used in AC line applications, or large battery applications, where large loads may be switched in (such as automotive).

Note:	Before	using	the on-ch	ip Brown-c	out fo	r a
	voltage	sup	pervisory	function,	plea	ise
	review	the	electrical	specifications		to
	ensure that they meet your requirements.			s.		

The BODEN configuration bit can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below BVDD (typically 4.0 V, paramter #D005 in electrical specification section), for greater than parameter #35, the Brown-out situation will reset the chip. A RESET is not guaranteed to occur if VDD falls below BVDD for less than paramter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer and Oscillator Startup Timer will then be invoked. This will keep the chip in RESET the greater of 96 ms and 1024 Tosc. If VDD drops below BVDD while the Power-up Timer/Oscillator Start-up Timer is running, the chip will go back into a Brown-out Reset. The Power-up Timer/Oscillator Startup Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer/Oscillator Start-up Timer will start their time delays. Figure 5-10 shows typical Brown-out situations.

In some applications, the Brown-out Reset trip point of the device may not be at the desired level. Figure 5-8 and Figure 5-9 are two examples of external circuitry that may be implemented. Each needs to be evaluated to determine if they match the requirements of the application.

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 5-9:

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

© 1998-2013 Microchip Technology Inc.

6.2 Peripheral Interrupt Enable Register1 (PIE1) and Register2 (PIE2)

These registers contains the individual enable bits for the peripheral interrupts.

REGISTER 6-2: PIE1 REGISTER (ADDRESS: 17h, BANK 1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE
	bit 7			<u>.</u>			<u> </u>	bit 0
54 7			t an Chango	Frabla bit				
Dit 7	1 = Enable 0 = Disabl	e PORTB inte	<pre>>rrupt-on-characteristics</pre>	ange				
bit 6	TMR3IE : T 1 = Enable 0 = Disabl	FMR3 Interrup e TMR3 interr e TMR3 inter	pt Enable bit rupt rupt					
bit 5	TMR2IE : T 1 = Enable 0 = Disabl	「MR2 Interrup > TMR2 interr e TMR2 inter	pt Enable bit rupt rupt					
bit 4	TMR1IE : T 1 = Enabl∉ 0 = Disabl	「MR1 Interrup e TMR1 interr e TMR1 inter	pt Enable bit rupt rupt					
bit 3	CA2IE : Ca 1 = Enabl∉ 0 = Disabl	apture2 Interr e Capture2 in e Capture2 ir	upt Enable b iterrupt nterrupt	vit				
bit 2	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture1 interrupt 0 = Disable Capture1 interrupt							
bit 1	TX1IE : US 1 = Enabl∉ 0 = Disabl	SART1 Transr e USART1 Tr e USART1 Tr	mit Interrupt ansmit buffe ransmit buffe	Enable bit r empty inter er empty inte	rupt rrupt			
bit 0	RC1IE : USART1 Receive Interrupt Enable bit 1 = Enable USART1 Receive buffer full interrupt 0 = Disable USART1 Receive buffer full interrupt							
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unir	nplemented bit	, read as '0'	,
	- n = Value	at POR Res	et '1' = B	it is set	'0' = Bit i	s cleared	x = Bit is un	Iknown

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R-1	R-0
	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF
	bit 7	·				<u> </u>		bit 0
bit 7	SSPIF: Sy 1 = The SS from th <u>SPI:</u> A trans	nchronous Se SP interrupt c ne Interrupt S	erial Port (SS xondition has ervice Routin	3P) Interrupt ; occurred ar ne. The cond	Flag bit nd must be c ditions that w	cleared in softw vill set this bit a	are before ire:	returning
	I ² C Sla A trans	ave/Master: smission/rece	eption has tal	ken place.				
	<u>I²C Ma</u> The ini The ini The ini A STA A STO	aster: itiated START itiated STOP itiated Restar itiated Acknow RT condition oP condition c	Γ condition wa condition wa t condition w wledge cond occurred wh occurred whil	ras complete as completec ras complete lition was co nile the SSP le the SSP n	d by the SS by the SSF d by the SS mpleted by t module was nodule was i	P module. P module. P module. the SSP modul idle (Multi-mastidle (Multi-mastidle (Multi-mastidle)	e. ster system er system).).
	0 = An SS	P interrupt co	ondition has I	NOT occurre	ed			
bit 6	BCLIF: Bu 1 = A bus 0 = No bus	Is Collision In collision has s collision has	terrupt Flag occurred in t s occurred	bit he SSP, whe	en configure	d for I ² C Maste	er mode	
bit 5	ADIF : A/D 1 = An A/D 0 = An A/D	Module Inter) conversion i) conversion i	rupt Flag bit is complete is not comple	ete				
bit 4	Unimplem	ented: Read	l as '0'					
bit 3	CA4IF : Ca 1 = Captur 0 = Captur	pture4 Interru e event occu e event did n	upt Flag bit rred on RE3 not occur on f	/CAP4 pin RE3/CAP4 p	bin			
bit 2	CA3IF : Ca 1 = Captur 0 = Captur	pture3 Interru e event occu e event did n	upt Flag bit rred on RG4 not occur on 1	//CAP3 pin RG4/CAP3 r	bin			
bit 1	TX2IF :USA 1 = USAR 0 = USAR	ART2 Transm T2 Transmit b T2 Transmit b	nit Interrupt F ouffer is emp ouffer is full	[:] lag bit (state ty	controlled b	oy hardware)		
bit 0	RC2IF : US 1 = USAR 0 = USAR	ART2 Receiv T2 Receive b T2 Receive b	ve Interrupt F uffer is full uffer is empt	⁻lag bit (state ty	e controlled	by hardware)		
l	Legend:							

REGISTER 6-5: PIR2 REGISTER (ADDRESS: 10h, BANK 4)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.2.2.3 TMR0 Status/Control Register (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RA0/INT interrupt flag. The other bits configure Timer0, it's prescaler and clock source.

REGISTER 7-3: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
INTEDG	TOSE	TOCS	T0PS3	T0PS2	T0PS1	T0PS0	—
bit 7							bit 0
INTEDG: RA0/INT Pin Interrunt Edge Select bit							

bit 7	INTEDG: RA0/II This bit selects t 1 = Rising edge 0 = Falling edge	/INT Pin Interrupt Edge Select bit s the edge upon which the interrupt is detected. ge of RA0/INT pin generates interrupt ge of RA0/INT pin generates interrupt				
bit 6	T0SE : Timer0 External Clock Input Edge Select bit This bit selects the edge upon which TMR0 will increment.					
	<u>When T0CS = 0</u> 1 = Rising edge 0 = Falling edge	(External Clock): of RA1/T0CKI pin increments TMR0 and/or sets the T0CKIF bit of RA1/T0CKI pin increments TMR0 and/or sets a T0CKIF bit				
	<u>When T0CS = 1</u> Don't care	(Internal Clock):				
bit 5	TOCS : Timer0 Clock Source Select bit This bit selects the clock source for Timer0. 1 = Internal instruction clock cycle (TCY) 0 = External clock input on the T0CKI pin					
bit 4-1	T0PS3:T0PS0: These bits selec	Timer0 Prescale Selection bits t the prescale value for Timer0.				
	T0PS3:T0PS0	Prescale Value				
	0000 0001 0010 0011 0100 0101 0110 0111 1xxx	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256				

bit 0

Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers, RES3:RES0.

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:A	RG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16})$	+
		$(ARG1H \bullet ARG2L \bullet 2^8)$	+
		$(ARG1L \bullet ARG2H \bullet 2^8)$	+
		$(ARG1L \bullet ARG2L)$	

EXAMPLE 9-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH: PRODL
	MOVPF	PRODH, RES1	;	
	MOVPF	PRODL, RESO	;	
;				
	MOVFP	ARG1H, WREG		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH: PRODL
	MOVPF	PRODH, RES3	;	
	MOVPF	PRODL, RES2	;	
;				
	MOVFP	ARG1L, WREG		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH: PRODL
	MOVFP	PRODL, WREG	;	
	ADDWF	RES1, F	;	Add cross
	MOVFP	PRODH, WREG	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG, F	;	
	ADDWFC	RES3, F	;	
;				
	MOVFP	ARG1H, WREG	;	
	MULWF	ARG2L	;	ARG1H * ARG2L ->
			;	PRODH: PRODL
	MOVFP	PRODL, WREG	;	
	ADDWF	RES1, F	;	Add cross
	MOVFP	PRODH, WREG	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG, F	;	
	ADDWFC	RES3, F	;	

Name	Bit	Buffer Type	Function
RB0/CAP1	bit0	ST	Input/output or the Capture1 input pin. Software programmable weak pull-up and interrupt-on-change features.
RB1/CAP2	bit1	ST	Input/output or the Capture2 input pin. Software programmable weak pull-up and interrupt-on-change features.
RB2/PWM1	bit2	ST	Input/output or the PWM1 output pin. Software programmable weak pull-up and interrupt-on-change features.
RB3/PWM2	bit3	ST	Input/output or the PWM2 output pin. Software programmable weak pull-up and interrupt-on-change features.
RB4/TCLK12	bit4	ST	Input/output or the external clock input to Timer1 and Timer2. Software programmable weak pull-up and interrupt-on-change features.
RB5/TCLK3	bit5	ST	Input/output or the external clock input to Timer3. Software programmable weak pull-up and interrupt-on-change features.
RB6/SCK	bit6	ST	Input/output or the Master/Slave clock for the SPI. Software programmable weak pull-up and interrupt-on-change features.
RB7/SDO	bit7	ST	Input/output or data output for the SPI. Software programmable weak pull-up and interrupt-on-change features.

TABLE 10-3: PORTB FUI	NCTIONS
-----------------------	---------

Legend: ST = Schmitt Trigger input

TABLE 10-4: REGISTERS/BITS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
12h, Bank 0	PORTB	RB7/ SDO	RB6/ SCK	RB5/ TCLK3	RB4/ TCLK12	RB3/ PWM2	RB2/ PWM1	RB1/ CAP2	RB0/ CAP1	XXXX XXXX	uuuu uuuu
11h, Bank 0	DDRB	Data Dire	ction Regis	ter for PORT	В					1111 1111	1111 1111
10h, Bank 0	PORTA	RBPU	_	RA5/ TX1/CK1	RA4/ RX1/DT1	RA3/ SDI/SDA	<u>R</u> A2/ SS/SCL	RA1/T0CKI	RA0/INT	0-xx 11xx	0-uu 11uu
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	ТО	PD	POR	BOR	11 11qq	11 qquu
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition. Shaded cells are not used by PORTB.

12.0 TIMER0

The Timer0 module consists of a 16-bit timer/counter, TMR0. The high byte is register TMR0H and the low byte is register TMR0L. A software programmable 8-bit prescaler makes Timer0 an effective 24-bit overflow timer. The clock source is software programmable as either the internal instruction clock, or an external clock on the RA1/T0CKI pin. The control bits for this module are in register T0STA (Figure 12-1).

REGISTER 12-1: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
	INTEDG	TOSE	TOCS	T0PS3	T0PS2	T0PS1	T0PS0	—				
	bit 7			·				bit 0				
bit 7	INTEDG: RA	10/INT Pin I	nterrupt Edg	ge Select bit	tia dataataa	1						
	1 = Risina e	dae of RA0	/INT pin aer	n the interrup herates interr	nt is delected	l.						
	0 = Falling e	1 = Rsing edge of RA0/INT pin generates interrupt 0 = Falling edge of RA0/INT pin generates interrupt										
bit 6	T0SE: Timer	r0 Clock Inp	out Edge Sel	lect bit								
	This bit selects the edge upon which TMR0 will increment.											
	When TOCS	= 0 (Extern	nal Clock):	· -			· · ·					
	1 = Rising ed	1 = Rising edge of RA1/T0CKI pin increments TMR0 and/or sets the T0CKIF bit 0 = Falling edge of RA1/T0CKI pin increments TMR0 and/or sets the T0CKIF bit										
	When TOCS	U = Failing edge of KA1/TUCKI pin increments TMRU and/or sets the TUCKIF bit										
	<u>vvnen 1005 = 1 (internal Clock):</u> Don't care											
bit 5	TOCS: Timer	r0 Clock So	urce Select	bit								
	This bit selec	cts the cloc	k source for	TMR0.								
	1 = Internal Instruction clock cycle (ICY) 0 = External clock input on the TOCKI pin											
bit 4-1	T0PS3:T0PS	50 : Timer0	Prescale Se	election bits								
	These bits select the prescale value for TMR0.											
	T0PS3:T0P	'S0 Presc	ale Value									
	0000	1:	1									
	0001	1:	2									
	0011	1:	4 8									
	0100	1:	16									
	0101	1:	32									
	0110	1:	64									
	0111	1:	128									
	1xxx		256									
bit 0	Unimpleme	nted : Read	as '0'									
	Legend:											
	R = Readabl	e bit	W = W	/ritable bit	U = Unim	plemented bit.	, read as '0'					

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR Reset

x = Bit is unknown

13.2.4 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks, twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 13-7 shows the timing diagram when operating from an external clock.

13.2.5 READING/WRITING TIMER3

Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method is to stop the timer, perform any read or write operation and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 freerunning, care must be taken. For writing to the 16-bit TMR3, Example 13-2 may be used. For reading the 16bit TMR3, Example 13-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 13-2: WRITING TO TMR3

BSF	CPUSTA,	GLINTD	;	Disable interrupts
MOVFP	RAM_L,	TMR3L	;	
MOVFP	RAM_H,	TMR3H	;	
BCF	CPUSTA,	GLINTD	;	Done, enable interrupts

EXAMPLE 13-3: READING FROM TMR3

MOVPF	TMR3L,	TMPLO	;	read low TMR3	
MOVPF	TMR3H,	TMPHI	;	read high TMR3	
MOVFP	TMPLO,	WREG	;	tmplo -> wreg	
CPFSLT	TMR3L		;	TMR3L < wreg?	
RETURN			;	no then return	
MOVPF	TMR3L,	TMPLO	;	read low TMR3	
MOVPF	TMR3H,	TMPHI	;	read high TMR3	
RETURN			;	return	

15.2.13 ACKNOWLEDGE SEQUENCE TIMING

An acknowledge sequence is enabled by setting the acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the acknowledge data bit is presented on the SDA pin. If the user wishes to generate an acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG), and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the SSP module then goes into IDLE mode (Figure 15-29).

15.2.13.1 WCOL Status Flag

If the user writes the SSPBUF when an acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-29: ACKNOWLEDGE SEQUENCE WAVEFORM

16.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 16-6 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/ D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8bit registers.

16.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from

FIGURE 16-6: A/D RESULT JUSTIFICATION

SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To allow the conversion to occur during SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

16.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Mnemonio	;,				16-bit C	Opcode		Status	
Operands		Description	Cycles	MSb		LSb		Affected	Notes
TSTFSZ	f	Test f, skip if 0	1 (2)	0011	0011	ffff	ffff	None	6,8
XORWF	f,d	Exclusive OR WREG with f	1	0000	110d	ffff	ffff	Z	
BIT-ORIEN	ITED FIL	E REGISTER OPERATIONS							
BCF	f,b	Bit Clear f	1	1000	1bbb	ffff	ffff	None	
BSF	f,b	Bit Set f	1	1000	0bbb	ffff	ffff	None	
BTFSC	f,b	Bit test, skip if clear	1 (2)	1001	1bbb	ffff	ffff	None	6,8
BTFSS	f,b	Bit test, skip if set	1 (2)	1001	0bbb	ffff	ffff	None	6,8
BTG	f,b	Bit Toggle f	1	0011	1bbb	ffff	ffff	None	
LITERAL	AND CO	NTROL OPERATIONS							
ADDLW	k	ADD literal to WREG	1	1011	0001	kkkk	kkkk	OV,C,DC,Z	
ANDLW	k	AND literal with WREG	1	1011	0101	kkkk	kkkk	Z	
CALL	k	Subroutine Call	2	111k	kkkk	kkkk	kkkk	None	7
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
GOTO	k	Unconditional Branch	2	110k	kkkk	kkkk	kkkk	None	7
IORLW	k	Inclusive OR literal with WREG	1	1011	0011	kkkk	kkkk	Z	
LCALL	k	Long Call	2	1011	0111	kkkk	kkkk	None	4,7
MOVLB	k	Move literal to low nibble in BSR	1	1011	1000	uuuu	kkkk	None	
MOVLR	k	Move literal to high nibble in BSR	1	1011	101x	kkkk	uuuu	None	
MOVLW	k	Move literal to WREG	1	1011	0000	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	1011	1100	kkkk	kkkk	None	
RETFIE	—	Return from interrupt (and enable interrupts)	2	0000	0000	0000	0101	GLINTD	7
RETLW	k	Return literal to WREG	2	1011	0110	kkkk	kkkk	None	7
RETURN	_	Return from subroutine	2	0000	0000	0000 0010		None	7
SLEEP	_	Enter SLEEP mode	1	0000	0000	0000 0000 0011		TO, PD	
SUBLW	k	Subtract WREG from literal	1	1011	0010	LO kkkk kkkk		OV,C,DC,Z	
XORLW	k	Exclusive OR literal with WREG	1	1011	0100	kkkk	kkkk	Z	

TABLE 18-2: PIC17CXXX INSTRUCTION SET (CONTINUED)

Legend: Refer to Table 18-1 for opcode field descriptions.

Note 1: 2's Complement method.

2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL).

5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.

6: Two-cycle instruction when condition is true, else single cycle instruction.

7: Two-cycle instruction except for TABLRD to PCL (program counter low byte), in which case it takes 3 cycles.

8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead a NOP is executed.

TABLRD	Table Read					
Example1:	TABLRD	1, 1,	REG ;			
Before Instruc REG TBLATH TBLATL TBLPTR MEMORY(tion TBLPTR)	= = = =	0x53 0xAA 0x55 0xA356 0x1234			
After Instruction REG TBLATH TBLATL TBLPTR MEMORY(on (table v TBLPTR)	vrite con = = = = =	mpletion) 0xAA 0x12 0x34 0xA357 0x5678			
Example2:	TABLRD	0, 0,	REG ;			
Before Instruc REG TBLATH TBLATL TBLPTR MEMORY(tion TBLPTR)	= = = =	0x53 0xAA 0x55 0xA356 0x1234			
After Instructio REG TBLATH TBLATL TBLPTR MEMORY(n (table v	vrite coi = = = =	mpletion) 0x55 0x12 0x34 0xA356 0x1234			

TAB	LWT	Table Wr	ite						
Synt	ax:	[label]	TABLWT t,	i,f					
Ope	rands:	$0 \le f \le 25$	$0 \le f \le 255$						
		i ∈ [0,1] t ∈ [0,1]							
Ope	ration:	lf t = 0.							
000		$f \rightarrow TBLA$	TL;						
		If $t = 1$,	τц.						
		$T \rightarrow TBLAT \rightarrow$	Prog Men	n (TBLPTR);					
		If i = 1,							
		IBLPIR · If i – 0	$+1 \rightarrow IBL$	PIR					
		TBLPTR i	is unchang	ed					
Statu	us Affected	: None							
Enco	oding:	1010	11ti i	fff ffff					
Dese	cription:	1. Load	value in 'f' ir	nto 16-bit table					
		latch (If t = 2	(TBLAT) I: load into ł	niah byte:					
		If $t = 0$): load into l	ow byte					
		2. The c	ontents of T	BLAT are writ-					
		locatio	on pointed to	by TBLPTR.					
		If TB	LPTR point	ts to external					
		the in	struction tak	es two-cycle.					
		If TBL	PTR points	to an internal					
		instru	ction is ter	minated when					
	te. The	an int	errupt is rec	eived.					
INC	volta	ige for success	ful program	ming of internal					
	men	nory.							
	the p	programming se	equence of i	nternal memory					
	will Toy)	be interrupted.	A short wri	te will occur (2					
	affeo	ted.							
		3. The T	BLPTR car	n be automati-					
		cally i If i = 1	ncremented	is not					
		11 : 0	incremen	ted					
Wor	do.	1	; IBLPIR	is incremented					
Cycl	us.	ı 2 (many it	fwrite is to	on-chin					
Cyci	63.	EPROM p	program m	emory)					
QC	ycle Activity	/:							
	Q1	Q2	Q3	Q4					
	Decode	Read	Process	Write					
		register 'f'	Data	register TBLATH or					
				TBLATL					
	No	No	No	No					
	operation	(Table Pointer		(Table Latch on					
		on Address		Address bus,					
		545)	1						

Param No.	Sym	Characteristic		Min	Max	Units	Conditions
110	Tbuf	Bus free time	100 kHz mode	4.7	—	ms	Time the bus must be free
			400 kHz mode	1.3	_	ms	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	ms	can start
D102	Cb	Bus capacitive loading		—	400	pF	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode (400 KHz) I²C bus device can be used in a standard mode I²C bus system, but the parameter # 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Parameter #102 + #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

3: C_b is specified to be from 10-400pF. The minimum specifications are characterized with C_b =10pF. The rise time spec (t_r) is characterized with R_p = R_p min. The minimum fall time specification (t_f) is characterized with C_b =10pF,and R_p = R_p max. These are only valid for fast mode operation (VDD=4.5-5.5V) and where the SPM bit (SSPSTAT<7>) =1.)

4: Max specifications for these parameters are valid for falling edge only. Specs are characterized with R_p=R_p min and C_b=400pF for standard mode, 200pF for fast mode, and 10pF for 1MHz mode.

FIGURE 20-19: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 20-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic			Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)						
		Clock high to data out valid	PIC17 C XXX	—	—	50	ns	
			PIC17LCXXX		-	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17 C XXX	_	—	25	ns	
		(Master mode)	PIC17LCXXX		-	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17CXXX	_	_	25	ns	
			PIC17LCXXX	_	_	40	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

PIC17C7XX

PIC17C7XX

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager Total Pages Sent
RE:	Reader Response
From	n: Name
	Company
	Address
	City / State / ZIP / Country
	Telephone: () FAX: ()
Appl	lication (optional):
Wou	Id you like a reply?YN
Devi	ce: PIC17C7XX Literature Number: DS30289C
Que	stions:
1. \	What are the best features of this document?
-	
-	
2. I	How does this document meet your hardware and software development needs?
-	
3. I	Do you find the organization of this data sheet easy to follow? If not, why?
-	
4. \	What additions to the data sheet do you think would enhance the structure and subject?
-	
5. ¹	What deletions from the data sheet could be made without affecting the overall usefulness?
-	
-	
6. I	Is there any incorrect or misleading information (what and where)?
-	
7	How would you improve this document?
-	
8. I	How would you improve our software, systems, and silicon products?

NOTES: