

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

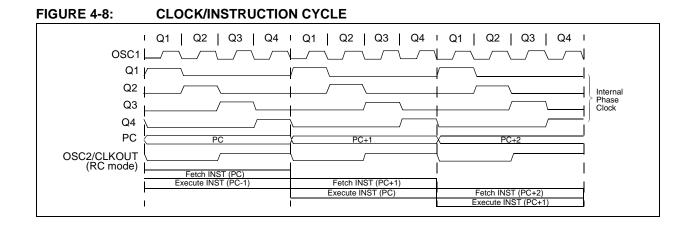
E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c766t-16i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Clocking Scheme/Instruction Cycle

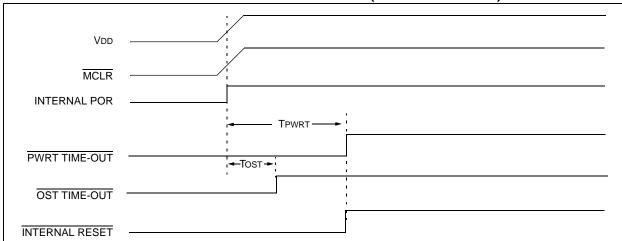

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1 and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-8.

4.3 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO), then two cycles are required to complete the instruction (Example 4-1).

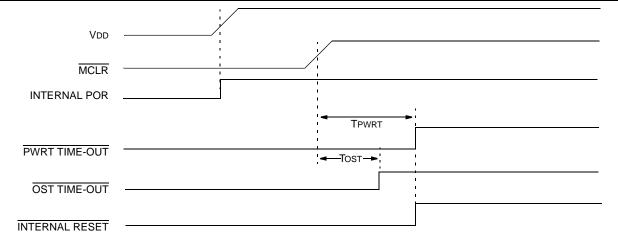
A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).



EXAMPLE 4-1: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	TCY2	TCY3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. CALL SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (F	Forced NOP)			Fetch 4	Flush	
5. Instruction @ addres	s SUB_1				Fetch SUB_1	Execute SUB_1


All instructions are single cycle, except for any program branches. These take two cycles since the fetched instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

In Figure 5-5, Figure 5-6 and Figure 5-7, the TPWRT timer time-out is greater then the TOST timer time-out, as would be the case in higher frequency crystals. For lower frequency crystals (i.e., 32 kHz), TOST may be greater.

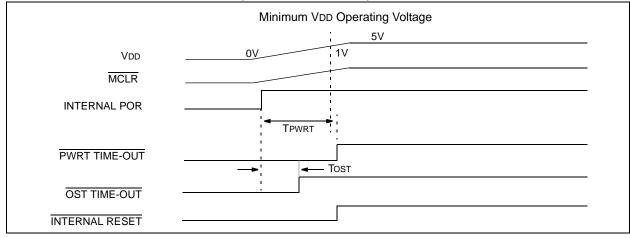


FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

TABLE 5-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (CONTI						
Register	Address	Power-on Reset Brown-out Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through Interrupt		
Bank 1						
DDRC ⁽⁵⁾	10h	1111 1111	1111 1111	սսսս սսսս		
PORTC ^(4,5)	11h	xxxx xxxx	uuuu uuuu	นนนน นนนน		
DDRD ⁽⁵⁾	12h	1111 1111	1111 1111	นนนน นนนน		
PORTD ^(4,5)	13h	xxxx xxxx	uuuu uuuu	นนนน นนนน		
DDRE ⁽⁵⁾	14h	1111	1111	uuuu		
PORTE ^(4,5)	15h	xxxx	uuuu	uuuu		
PIR1	16h	x000 0010	u000 0010	սսսս սսսս(1)		
PIE1	17h	0000 0000	0000 0000	uuuu uuuu		
Bank 2						
TMR1	10h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR2	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR3L	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TMR3H	13h	XXXX XXXX	uuuu uuuu	uuuu uuuu		
PR1	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PR2	15h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PR3/CA1L	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PR3/CA1H	17h	XXXX XXXX	uuuu uuuu	uuuu uuuu		
Bank 3						
PW1DCL	10h	xx	uu	uu		
PW2DCL	11h	xx0	uu0	uuu		
PW1DCH	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
PW2DCH	13h	xxxx xxxx	uuuu uuuu	นนนน นนนน		
CA2L	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CA2H	15h	xxxx xxxx	uuuu uuuu	uuuu uuuu		
TCON1	16h	0000 0000	0000 0000	uuuu uuuu		
TCON2	17h	0000 0000	0000 0000	uuuu uuuu		

TABLE 5-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 5-3 for RESET value of specific condition.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

5.1.5 BROWN-OUT RESET (BOR)

PIC17C7XX devices have on-chip Brown-out Reset circuitry. This circuitry places the device into a RESET when the device voltage falls below a trip point (BVDD). This ensures that the device does not continue program execution outside the valid operation range of the device. Brown-out Resets are typically used in AC line applications, or large battery applications, where large loads may be switched in (such as automotive).

Note:	Before using the on-chip Brown-out for a
	voltage supervisory function, please
	review the electrical specifications to
	ensure that they meet your requirements.

The BODEN configuration bit can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below BVDD (typically 4.0 V, paramter #D005 in electrical specification section), for greater than parameter #35, the Brown-out situation will reset the chip. A RESET is not guaranteed to occur if VDD falls below BVDD for less than paramter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer and Oscillator Startup Timer will then be invoked. This will keep the chip in RESET the greater of 96 ms and 1024 Tosc. If VDD drops below BVDD while the Power-up Timer/Oscillator Start-up Timer is running, the chip will go back into a Brown-out Reset. The Power-up Timer/Oscillator Startup Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer/Oscillator Start-up Timer will start their time delays. Figure 5-10 shows typical Brown-out situations.

In some applications, the Brown-out Reset trip point of the device may not be at the desired level. Figure 5-8 and Figure 5-9 are two examples of external circuitry that may be implemented. Each needs to be evaluated to determine if they match the requirements of the application.

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

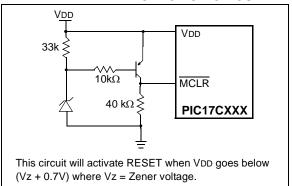
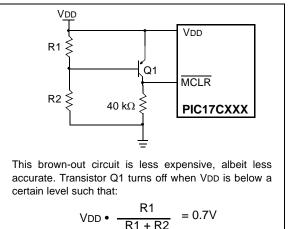
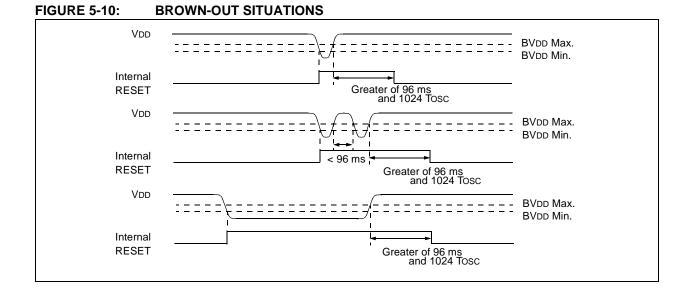




FIGURE 5-9:

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

© 1998-2013 Microchip Technology Inc.

NOTES:

6.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) contains the flag and enable bits for non-peripheral interrupts.

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR registers (Figure 6-4 and Figure 6-5).

Note:	All interrupt flag bits get set by their speci-
	fied condition, even if the corresponding
	interrupt enable bit is clear (interrupt dis-
	abled), or the GLINTD bit is set (all inter-
	rupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the RESET address (0x00).

Prior to disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

REGISTER 6-1: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE		
	bit 7							bit 0		
bit 7	This bit is t The interro pending. 1 = A perip		peripheral in es program pt is pending	execution to		vith their corres 20h) when a p				
bit 6	TOCKIF : External Interrupt on TOCKI Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to address (18h). 1 = The software specified edge occurred on the RA1/T0CKI pin 0 = The software specified edge did not occur on the RA1/T0CKI pin									
bit 5	 TOIF: TMR0 Overflow Interrupt Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to address (10h). 1 = TMR0 overflowed 0 = TMR0 did not overflow 									
bit 4	This bit is o 1 = The so	oftware specif	dware, when	the interrupt curred on the	e RA0/INT pi		tion to addre	ess (08h).		
bit 3	 0 = The software specified edge did not occur on the RA0/INT pin PEIE: Peripheral Interrupt Enable bit This bit acts as a global enable bit for the peripheral interrupts that have their corresponding enable bits set. 1 = Enable peripheral interrupts 0 = Disable peripheral interrupts 									
bit 2	1 = Enable	xternal Interr software sp e interrupt on	ecified edge	interrupt on		CKI pin				
bit 1	1 = Enable	80 Overflow I e TMR0 overf e TMR0 over	low interrupt							
bit 0	1 = Enable	ernal Interrup e software sp e software sp	ecified edge	interrupt on	the RA0/INT					
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented bit	, read as '0	,		

'1' = Bit is set

- n = Value at POR Reset

x = Bit is unknown

'0' = Bit is cleared

7.2.2.2 CPU Status Register (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register has a bit that is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the Interrupt Status (INTSTA) register and the Peripheral Interrupt Enable (PIE) registers. The CPUSTA register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device

logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

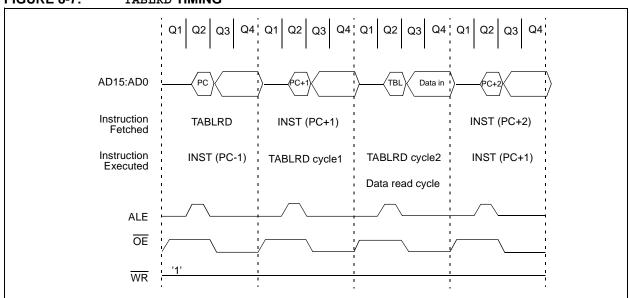
The $\overrightarrow{\text{POR}}$ bit allows the differentiation between a Power-on Reset, external $\overrightarrow{\text{MCLR}}$ Reset, or a WDT Reset. The BOR bit indicates if a Brown-out Reset occurred.

Note 1: The BOR status bit is a don't care and is not necessarily predictable if the Brown-out circuit is disabled (when the BODEN bit in the Configuration word is programmed).

REGISTER 7-2: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

_	U-0	U-0	R-1	R/W-1	R-1	R-1	R/W-0	R/W-1
	_		STKAV	GLINTD	TO	PD	POR	BOR
	bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5	 STKAV: Stack Available bit This bit indicates that the 4-bit stack pointer value is Fh, or has rolled over from Fh → 0h (stack overflow). 1 = Stack is available 0 = Stack is full, or a stack overflow may have occurred (once this bit has been cleared by a stack overflow, only a device RESET will set this bit)
bit 4	 GLINTD: Global Interrupt Disable bit This bit disables all interrupts. When enabling interrupts, only the sources with their enable bits set can cause an interrupt. 1 = Disable all interrupts 0 = Enables all unmasked interrupts
bit 3	TO: WDT Time-out Status bit 1 = After power-up, by a CLRWDT instruction, or by a SLEEP instruction 0 = A Watchdog Timer time-out occurred
bit 2	PD : Power-down Status bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 1	POR : Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set by software)
bit 0	BOR: Brown-out Reset Status bit
	When BODEN Configuration bit is set (enabled): 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set by software)
	When BODEN Configuration bit is clear (disabled): Don't care
	Legend:


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.3 Table Reads

The table read allows the program memory to be read. This allows constants to be stored in the program memory space and retrieved into data memory when needed. Example 8-2 reads the 16-bit value at program memory address TBLPTR. After the dummy byte has been read from the TABLATH, the TABLATH is loaded with the 16-bit data from program memory address TBLPTR and then increments the TBLPTR value. The first read loads the data into the latch and can be considered a dummy read (unknown data loaded into 'f'). INDF0 should be configured for either auto-increment or auto-decrement.

EXAMPLE 8-2: TABLE READ

MOVLW	HIGH (TBL_ADDR) ; Load the Table
MOVWF	TBLPTRH ; address
MOVLW	LOW (TBL_ADDR) ;
MOVWF	TBLPTRL ;
TABLRD	0, 1, DUMMY ; Dummy read,
	; Updates TABLATH
	; Increments TBLPTR
TLRD	1, INDF0 ; Read HI byte
	; of TABLATH
TABLRD	0, 1, INDF0 ; Read LO byte
	; of TABLATL and
	; Update TABLATH
	; Increment TBLPTR

FIGURE 8-8: TABLED TIMING (CONSECUTIVE TABLED INSTRUCTIONS)

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
AD15:AD0	PC	PC+1	TBL1 Data in 1	PC+2	TBL2 Data in 2	
Instruction Fetched	TABLRD1	TABLRD2		INST (PC+2)		INST (PC+3)
Instruction Executed	INST (PC-1)	TABLRD1 cycle1	TABLRD1 cycle2	TABLRD2 cycle1	TABLRD2 cycle2	INST (PC+2)
			Data read cycle	1 1	Data read cycle	
ALE						
OE						
WR	'1'					
	I		I	I	•	

FIGURE 8-7: TABLRD TIMING

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N
	bit 7							bit 0
bit 7	This bit in (CA2H:CA unread cap the capture 1 = Overflo	2L) before th oture value (l	the capture ne next capt ast capture h the TMR3 on Capture2	e value had ure event oc before overfle value until th register	curred. The ow). Subseq	ead from the capture regi uent capture gister has be	ster retains events will r	the oldest not update
bit 6	This bit ind CA1H:PR3 est unread update the bytes). 1 = Overflo	BL/CA1L), be I capture va	ne capture va fore the next lue (last cap ister with the on Capture1	alue had not l capture even oture before TMR3 value register	nt occurred. overflow). S	om the captur The capture r subsequent c apture registe	egister retai apture even	ns the old- its will not
bit 5	PWM2ON : 1 = PWM2 (The R 0 = PWM2	PWM2 On I is enabled B3/PWM2 pi is disabled	bit n ignores the	e state of the		oit.) for data direc	tion.)	
bit 4	1 = PWM1 (The R 0 = PWM1	B2/PWM1 pi is disabled	n ignores the	e state of the tate of the DI		oit.) for data direc	tion.)	
bit 3	1 =Enable (PR3H) 0 =Enable	/CA1H:PR3L s the Period	/CA1L is the register		-	r3 runs witho r3.)	ut a period r	egister.)
bit 2	-	Timer3 On b Timer3				,		
bit 1	TMR2ON: This bit cor (T16 is set	Timer2 On b ntrols the inc), TMR2ON Timer2 (mus	rementing of must be set.		he MSB of t	n TMR2:TMR he timer to in >) is set)		6-bit timer
bit 0	•	Timer1 On b	oit					
	<u>When T16</u> 1 = Starts 7 0 = Stops 7	<u>is set (in 16</u> 16-bit TMR2 16-bit TMR2: is clear (in 8	bit Timer mo TMR1 TMR1					

REGISTER 13-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

15.1.4 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 15-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

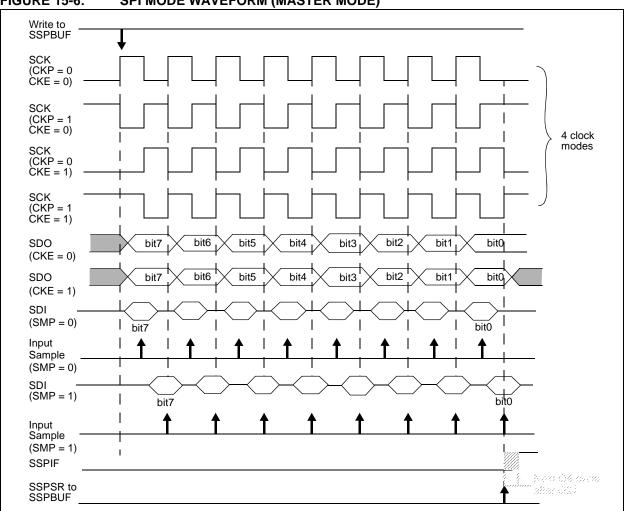

The clock polarity is selected by appropriately programming bit CKP (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in

Figure 15-6, Figure 15-8 and Figure 15-9, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

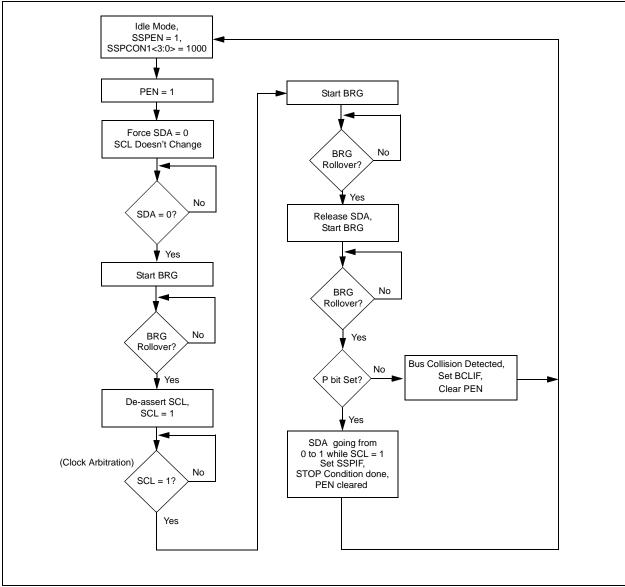

This allows a maximum bit clock frequency (at 33 MHz) of 8.25 MHz.

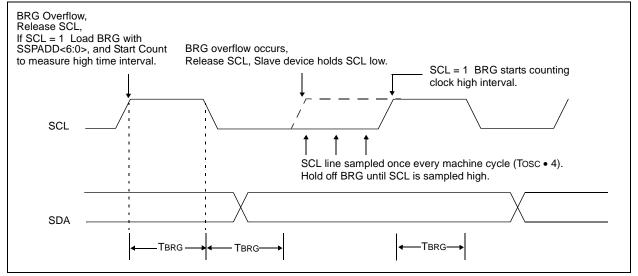
Figure 15-6 shows the waveforms for Master mode. When CKE = 1, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 15-6: SPI MODE WAVEFORM (MASTER MODE)

FIGURE 15-32: STOP CONDITION FLOW CHART

15.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 15-33).


15.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

15.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

FIGURE 15-33: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

17.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered and disabled, when possible.

17.5 Code Protection

The code in the program memory can be protected by selecting the microcontroller in Code Protected mode (PM2:PM0 = '000').

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to, or reading from, program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

MO\	/PF	Move p to f						
Synt	ax:	[<i>label</i>] N	<i>I</i> OVPF	p,f				
Ope	rands:	$0 \le f \le 25$ $0 \le p \le 31$	-					
Ope	ration:	$(p) \to (f)$						
Statu	us Affected:	Z						
Enco	oding:	010p	pppp	ffff	ffff			
Des	cription:	'p' to data u 'f' can be a space (00h to 1Fh. Either 'p' o special situ MOVPF is p ring a perip or an I/O p	Either 'p' or 'f' can be WREG (a useful, special situation). MOVPF is particularly useful for transferring a peripheral register (e.g. the timer or an I/O port) to a data memory location. Both 'f' and 'p' can be indirectly					
Wor	ds:	1						
Cycl	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register 'p'	Proce Dat		Write egister 'f'			

Example:	MOVPF	REG1,	REG2
Before Instruc	tion		
REG1	=	0x11	
REG2	=	0x33	
After Instruction	on		

=

=

0x11

0x11

REG1

REG2

MOVWF	Move WR	EG to f						
Syntax:	[label]	MOVWF	f					
Operands:	$0 \le f \le 255$	$0 \leq f \leq 255$						
Operation:	(WREG) -	$(WREG) \rightarrow (f)$						
Status Affected:	None							
Encoding:	0000	0001	ffff	ffff				
Description:	Move data Location 'f' byte data s	can be an	0					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proces Data		Write gister 'f'				
Example:	MOVWF	REG	·					

Before Instr	uctio	n
WREG	=	0x4F
REG	=	0xFF
After Instruc	tion	

	lion	
WREG	=	0x4F
REG	=	0x4F

19.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

19.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

19.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

19.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

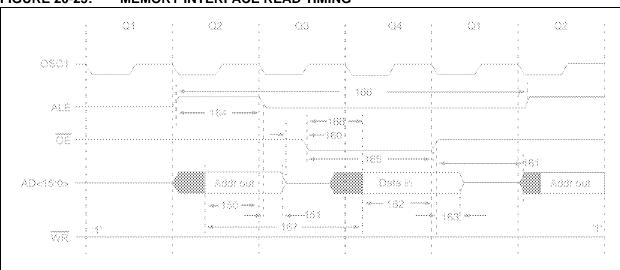
			Standard Operating Conditions (unless otherwise stated) Operating temperature					
DC CHAF	RACTER	ISTICS	$\begin{array}{rcl} -40^{\circ}\text{C} &\leq \text{Ta} \leq +125^{\circ}\text{C} \text{ for extended} \\ -40^{\circ}\text{C} &\leq \text{Ta} \leq +85^{\circ}\text{C} \text{ for industrial} \\ 0^{\circ}\text{C} &\leq \text{Ta} \leq +70^{\circ}\text{C} \text{ for commercial} \\ \end{array}$ Operating voltage VDD range as described in Section 20.1					
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D150	Vod	Open Drain High Voltage	-	-	8.5	V	RA2 and RA3 pins only pulled up to externally applied voltage	
_	_	Capacitive Loading Specs on Output Pins				_		
D100	Cosc2	OSC2/CLKOUT pin	_	-	25	pF	In EC or RC osc modes, when OSC2 pin is outputting CLKOUT. External clock is used to drive OSC1.	
D101	Сю	All I/O pins and OSC2 (in RC mode)	-	-	50	pF		
D102	CAD	System Interface Bus (PORTC, PORTD and PORTE)	_	_	50	pF	In Microprocessor or Extended Microcontroller mode	
		Internal Program Memory Programming Specs (Note 4)						
D110	Vpp	Voltage on MCLR/VPP pin	12.75	-	13.25	V	(Note 5)	
D111	VDDP	Supply voltage during programming	4.75	5.0	5.25	V		
D112	IPP	Current into MCLR/VPP pin	_	25	50	mA		
D113	IDDP	Supply current during programming	-	-	30	mA		
D114	Tprog	Programming pulse width	100	_	1000	ms	Terminated via internal/ external interrupt or a RESET	

Standard Operating Conditions (unloss otherwise stated)

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specifications (Literature number DS TBD).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

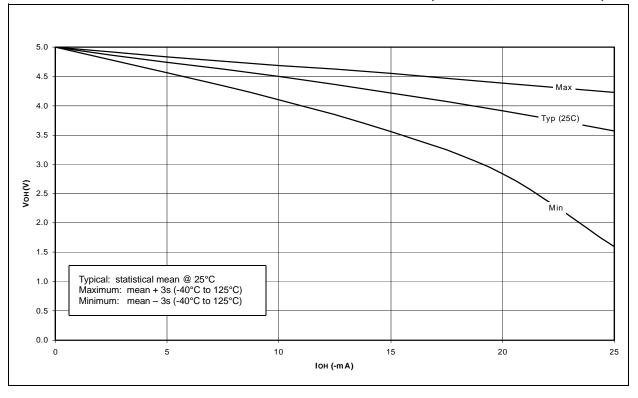
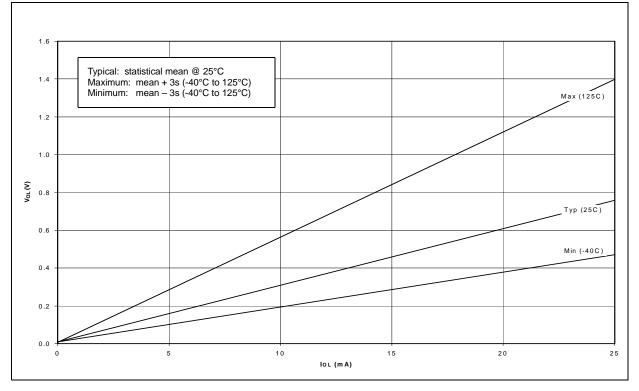
Note 1: When using the Table Write for internal programming, the device temperature must be less than 40°C.
2: For In-Circuit Serial Programming (ICSP[™]), refer to the device programming specification.

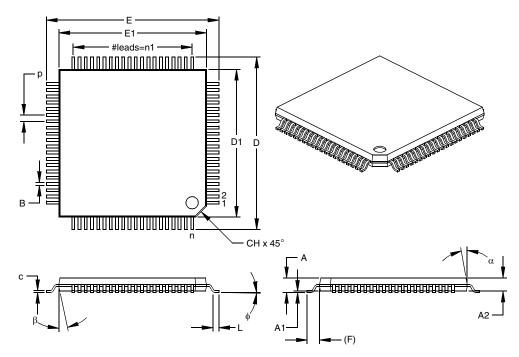
FIGURE 20-25: MEMORY INTERFACE READ TIMING

TABLE 20-21: MEMORY INTERFACE READ REQUIREMENTS

Param. No.	Sym	Characteristic	;	Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD15:AD0 (address) valid to	PIC17 C XXX	0.25Tcy - 10	_	—	ns	
		ALE \downarrow (address setup time)	PIC17 LC XXX	0.25Tcy - 10	—	_		
151	TalL2adl	ALE \downarrow to address out invalid	PIC17 C XXX	5	—	_	ns	
		(address hold time)	PIC17LCXXX	5	—	_		
160	TadZ2oeL	AD15:AD0 hi-impedance to	PIC17 C XXX	0	—	_	ns	
		OE↓	PIC17LCXXX	0	—	_		
161	ToeH2ad	OE [↑] to AD15:AD0 driven	PIC17 C XXX	0.25Tcy - 15	_	_	ns	
	D		PIC17 LC XXX	0.25Tcy - 15	—	—		
162	TadV2oeH	Data in valid before \overline{OE}^{\uparrow}	PIC17 C XXX	35	_	_	ns	
		(data setup time)	PIC17LCXXX	45				
163	ToeH2adl	OE [↑] to data in invalid	PIC17 C XXX	0	_		ns	
		(data hold time)	PIC17LCXXX	0	_			
164	TalH	ALE pulse width	PIC17 C XXX	—	0.25TCY	—	ns	
			PIC17LCXXX	—	0.25TCY	—		
165	ToeL	OE pulse width	PIC17 C XXX	0.5TCY - 35	—	—	ns	
			PIC17LCXXX	0.5Tcy - 35	—	_		
166	TalH2alH	ALE↑ to ALE↑(cycle time)	PIC17 C XXX	_	Тсү	_	ns	
			PIC17LCXXX	—	Тсү	—		
167	Tacc	Address access time	PIC17 C XXX	—	—	0.75Tcy - 30	ns	
			PIC17LCXXX	_	_	0.75Tcy - 45		
168	Toe	Output enable access time	PIC17 C XXX	_	_	0.5Tcy - 45	ns	
		(OE low to data valid)	PIC17LCXXX	_	_	0.5Tcy - 75		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.


FIGURE 21-17: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES		М	ILLIMETERS	*
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		80			80	
Pitch	р		.020			0.50	
Pins per Side	n1		20			20	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039			1.00	
Foot Angle	ф	0	3.5	7	0	3.5	7
Overall Width	Е	.541	.551	.561	13.75	14.00	14.25
Overall Length	D	.541	.551	.561	13.75	14.00	14.25
Molded Package Width	E1	.463	.472	.482	11.75	12.00	12.25
Molded Package Length	D1	.463	.472	.482	11.75	12.00	12.25
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.007	.009	.011	0.17	0.22	0.27
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-092

Timer0	97
Timer1	
16-bit Mode 10)5
Clock Source Select10)1
On bit)3
Section)4
Timer2	
16-bit Mode)5
Clock Source Select10	
On bit	
Section	
Timer3	
Clock Source Select	11
On bit	
Section	
Timers	U
	5
TCON3	13
Timing Diagrams	
A/D Conversion	
Acknowledge Sequence Timing16	
Asynchronous Master Transmission 12	
Asynchronous Reception12	
Back to Back Asynchronous Master Transmission 12	
Baud Rate Generator with Clock Arbitration 15	53
BRG Reset Due to SDA Collision17	'2
Bus Collision	
START Condition Timing17	′1
Bus Collision During a RESTART Condition	
(Case 1)	' 3
Bus Collision During a RESTART Condition	-
(Case 2)	73
Bus Collision During a START Condition	Ů
(SCL = 0)	20
Bus Collision During a	2
STOP Condition17	7 /
Bus Collision for Transmit and Acknowledge	
External Parallel Resonant Crystal Oscillator Circuit 1	
External Program Memory Access4	
I ² C Bus Data	
I ² C Bus START/STOP bits	
I ² C Master Mode First START bit Timing	
I ² C Master Mode Reception Timing16	
I ² C Master Mode Transmission Timing16	
Interrupt (INT, TMR0 Pins)4	
Master Mode Transmit Clock Arbitration	60
Oscillator Start-up Time2	24
PIC17C752/756 Capture Timing25	53
PIC17C752/756 CLKOUT and I/O25	
PIC17C752/756 External Clock24	9
PIC17C752/756 Memory Interface Read26	6
PIC17C752/756 Memory Interface Write	55
PIC17C752/756 PWM Timing	
PIC17C752/756 Reset, Watchdog Timer, Oscillator	-
Start-up Timer and Power-up Timer	51
PIC17C752/756 Timer0 Clock	
PIC17C752/756 Timer1, Timer2 and Timer3 Clock25	
PIC17C752/756 USART Module Synchronous	~_
Receive	
	:1
	51
PIC17C752/756 USART Module	
PIC17C752/756 USART Module Synchronous Transmission26	60
PIC17C752/756 USART Module Synchronous Transmission26 Repeat START Condition	60 56
PIC17C752/756 USART Module Synchronous Transmission	50 56
PIC17C752/756 USART Module Synchronous Transmission	60 56 10 57
PIC17C752/756 USART Module Synchronous Transmission	50 56 10 57 29
PIC17C752/756 USART Module Synchronous Transmission	50 56 40 57 29 28

	98, 99
TMR0 Read/Write in Timer Mode	
TMR1, TMR2, and TMR3 in Timer Mode	
Wake-Up from SLEEP	
TLRD	
TLWT	230
TMR0	
16-bit Read	99
16-bit Write	
Module	
Operation	
Overview	
Prescaler Assignments	
Read/Write Considerations	
Read/Write in Timer Mode	
Timing	98, 99
TMR0 Status/Control Register (T0STA)	
TMR1	
8-bit Mode External Clock Input	
Overview	
Timer Mode	
Two 8-bit Timer/Counter Mode	
Using with PWM	
TMR1 Overflow Interrupt	
TMR1CS	
TMR1IE	
TMR1IF	
TMR1ON	102
TMR2	28, 49
8-bit Mode	104
External Clock Input	104
In Timer Mode	
Two 8-bit Timer/Counter Mode	
Using with PWM	107
TMR2 Overflow Interrupt	37
TMR2CS	
TMR2IE	35
TMR2IE TMR2IF	35 37
TMR2IE TMR2IF TMR2ON	35 37
TMR2IE TMR2IF TMR2ON TMR3	35 37 102
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From	35 37 102 114
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IF	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IF TMR3IF TMR3L	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IF TMR3IF TMR3L. TMR3ON	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode. Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode. Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register TSTFSZ TTL INPUT	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode. Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register TSTFSZ TTL INPUT Turning on 16-bit Timer	
TMR2IE TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF. TMR3H TMR3IE TMR3IF. TMR3IF. TMR3ON TO 52, Transmit Status and Control Register. TSTFSZ TTL INPUT. Turning on 16-bit Timer TX1IE	
TMR2IE	
TMR2IE	
TMR2IE	