
Microchip Technology - PIC17C766T-33/L Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 33MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 66

Program Memory Size 32KB (16K x 16)

Program Memory Type OTP

EEPROM Size -

RAM Size 902 x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type External

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 84-LCC (J-Lead)

Supplier Device Package 84-PLCC (29.31x29.31)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic17c766t-33-l

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic17c766t-33-l-4425425
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC17C7XX
PORTC is a bi-directional I/O Port.

RC0/AD0 2 3 58 3 72 I/O TTL This is also the least significant byte (LSB) of
the 16-bit wide system bus in Microprocessor
mode or Extended Microcontroller mode. In
multiplexed system bus configuration, these
pins are address output as well as data input or
output.

RC1/AD1 63 67 55 83 69 I/O TTL

RC2/AD2 62 66 54 82 68 I/O TTL

RC3/AD3 61 65 53 81 67 I/O TTL

RC4/AD4 60 64 52 80 66 I/O TTL

RC5/AD5 58 63 51 79 65 I/O TTL

RC6/AD6 58 62 50 78 64 I/O TTL

RC7/AD7 57 61 49 77 63 I/O TTL

PORTD is a bi-directional I/O Port.

RD0/AD8 10 11 2 15 4 I/O TTL This is also the most significant byte (MSB) of
the 16-bit system bus in Microprocessor mode
or Extended Microcontroller mode. In multi-
plexed system bus configuration, these pins are
address output as well as data input or output.

RD1/AD9 9 10 1 14 3 I/O TTL

RD2/AD10 8 9 64 9 78 I/O TTL

RD3/AD11 7 8 63 8 77 I/O TTL

RD4/AD12 6 7 62 7 76 I/O TTL

RD5/AD13 5 6 61 6 75 I/O TTL

RD6/AD14 4 5 60 5 74 I/O TTL

RD7/AD15 3 4 59 4 73 I/O TTL

PORTE is a bi-directional I/O Port.

RE0/ALE 11 12 3 16 5 I/O TTL In Microprocessor mode or Extended Microcon-
troller mode, RE0 is the Address Latch Enable
(ALE) output. Address should be latched on the
falling edge of ALE output.

RE1/OE 12 13 4 17 6 I/O TTL In Microprocessor or Extended Microcontroller
mode, RE1 is the Output Enable (OE) control
output (active low).

RE2/WR 13 14 5 18 7 I/O TTL In Microprocessor or Extended Microcontroller
mode, RE2 is the Write Enable (WR) control
output (active low).

RE3/CAP4 14 15 6 19 8 I/O ST RE3 can also be the Capture4 input pin.

PORTF is a bi-directional I/O Port.

RF0/AN4 26 28 18 36 24 I/O ST RF0 can also be analog input 4.

RF1/AN5 25 27 17 35 23 I/O ST RF1 can also be analog input 5.

RF2/AN6 24 26 16 30 18 I/O ST RF2 can also be analog input 6.

RF3/AN7 23 25 15 29 17 I/O ST RF3 can also be analog input 7.

RF4/AN8 22 24 14 28 16 I/O ST RF4 can also be analog input 8.

RF5/AN9 21 23 13 27 15 I/O ST RF5 can also be analog input 9.

RF6/AN10 20 22 12 26 14 I/O ST RF6 can also be analog input 10.

RF7/AN11 19 21 11 25 13 I/O ST RF7 can also be analog input 11.

TABLE 3-1: PINOUT DESCRIPTIONS (CONTINUED)

Name

PIC17C75X PIC17C76X

DescriptionDIP
No.

PLCC
No.

TQFP
No.

PLCC
No.

QFP
No.

I/O/P
Type

Buffer
Type

Legend: I = Input only; O = Output only; I/O = Input/Output;
P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.
2: Open drain input/output pin. Pin forced to input upon any device RESET.
 1998-2013 Microchip Technology Inc. DS30289C-page 15

PIC17C7XX
6.3 Peripheral Interrupt Request
Register1 (PIR1) and Register2
(PIR2)

These registers contains the individual flag bits for the
peripheral interrupts.

REGISTER 6-4: PIR1 REGISTER (ADDRESS: 16h, BANK 1)

Note: These bits will be set by the specified condi-
tion, even if the corresponding interrupt
enable bit is cleared (interrupt disabled), or
the GLINTD bit is set (all interrupts disabled).
Before enabling an interrupt, the user may
wish to clear the interrupt flag to ensure that
the program does not immediately branch to
the peripheral Interrupt Service Routine.

R/W-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R-0
RBIF TMR3IF TMR2IF TMR1IF CA2IF CA1IF TX1IF RC1IF

bit 7 bit 0

bit 7 RBIF: PORTB Interrupt-on-Change Flag bit
1 = One of the PORTB inputs changed (software must end the mismatch condition)
0 = None of the PORTB inputs have changed

bit 6 TMR3IF: TMR3 Interrupt Flag bit

If Capture1 is enabled (CA1/PR3 = 1):
1 = TMR3 overflowed
0 = TMR3 did not overflow

If Capture1 is disabled (CA1/PR3 = 0):
1 = TMR3 value has rolled over to 0000h from equalling the period register (PR3H:PR3L) value
0 = TMR3 value has not rolled over to 0000h from equalling the period register (PR3H:PR3L)
 value

bit 5 TMR2IF: TMR2 Interrupt Flag bit
1 = TMR2 value has rolled over to 0000h from equalling the period register (PR2) value
0 = TMR2 value has not rolled over to 0000h from equalling the period register (PR2) value

bit 4 TMR1IF: TMR1 Interrupt Flag bit

If TMR1 is in 8-bit mode (T16 = 0):
1 = TMR1 value has rolled over to 0000h from equalling the period register (PR1) value
0 = TMR1 value has not rolled over to 0000h from equalling the period register (PR1) value

If Timer1 is in 16-bit mode (T16 = 1):
1 = TMR2:TMR1 value has rolled over to 0000h from equalling the period register (PR2:PR1)
 value
0 = TMR2:TMR1 value has not rolled over to 0000h from equalling the period register (PR2:PR1)
 value

bit 3 CA2IF: Capture2 Interrupt Flag bit
1 = Capture event occurred on RB1/CAP2 pin
0 = Capture event did not occur on RB1/CAP2 pin

bit 2 CA1IF: Capture1 Interrupt Flag bit
1 = Capture event occurred on RB0/CAP1 pin
0 = Capture event did not occur on RB0/CAP1 pin

bit 1 TX1IF: USART1 Transmit Interrupt Flag bit (state controlled by hardware)
1 = USART1 Transmit buffer is empty
0 = USART1 Transmit buffer is full

bit 0 RC1IF: USART1 Receive Interrupt Flag bit (state controlled by hardware)
1 = USART1 Receive buffer is full
0 = USART1 Receive buffer is empty

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR Reset ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 1998-2013 Microchip Technology Inc. DS30289C-page 37

PIC17C7XX
7.7 Program Counter Module

The Program Counter (PC) is a 16-bit register. PCL, the
low byte of the PC, is mapped in the data memory. PCL
is readable and writable just as is any other register.
PCH is the high byte of the PC and is not directly
addressable. Since PCH is not mapped in data or pro-
gram memory, an 8-bit register PCLATH (PC high
latch) is used as a holding latch for the high byte of the
PC. PCLATH is mapped into data memory. The user
can read or write PCH through PCLATH.

The 16-bit wide PC is incremented after each instruc-
tion fetch during Q1 unless:

• Modified by a GOTO, CALL, LCALL, RETURN,
RETLW, or RETFIE instruction

• Modified by an interrupt response

• Due to destination write to PCL by an instruction

“Skips” are equivalent to a forced NOP cycle at the
skipped address.

Figure 7-7 and Figure 7-8 show the operation of the
program counter for various situations.

FIGURE 7-7: PROGRAM COUNTER
OPERATION

FIGURE 7-8: PROGRAM COUNTER
USING THE CALL AND
GOTO INSTRUCTIONS

Using Figure 7-7, the operations of the PC and
PCLATH for different instructions are as follows:

a) LCALL instructions:

An 8-bit destination address is provided in the
instruction (opcode). PCLATH is unchanged.

PCLATH  PCH

Opcode<7:0>  PCL

b) Read instructions on PCL:

Any instruction that reads PCL.

PCL  data bus  ALU or destination

PCH  PCLATH

c) Write instructions on PCL:

Any instruction that writes to PCL.

8-bit data  data bus  PCL

PCLATH  PCH

d) Read-Modify-Write instructions on PCL:

Any instruction that does a read-write-modify
operation on PCL, such as ADDWF PCL.

Read: PCL  data bus  ALU

Write: 8-bit result  data bus  PCL

PCLATH  PCH

e) RETURN instruction:

Stack<MRU>  PC<15:0>

Using Figure 7-8, the operation of the PC and PCLATH
for GOTO and CALL instructions is as follows:

CALL, GOTO instructions:

A 13-bit destination address is provided in the
instruction (opcode).

Opcode<12:0>  PC<12:0>

PC<15:13>  PCLATH<7:5>

Opcode<12:8>  PCLATH<4:0>

The read-modify-write only affects the PCL with the
result. PCH is loaded with the value in the PCLATH. For
example, ADDWF PCL will result in a jump within the
current page. If PC = 03F0h, WREG = 30h and
PCLATH = 03h before instruction, PC = 0320h after the
instruction. To accomplish a true 16-bit computed jump,
the user needs to compute the 16-bit destination
address, write the high byte to PCLATH and then write
the low value to PCL.

The following PC related operations do not change
PCLATH:

a) LCALL, RETLW, and RETFIE instructions.

b) Interrupt vector is forced onto the PC.

c) Read-modify-write instructions on PCL
(e.g. BSF PCL).

Internal Data Bus <8>

PCLATH 8

8

8

PCH PCL

8

15 0

7 5 4 0

12 8 7 0

8 7

PC<15:13>

PCLATH

From Instruction

5

3

8

PCH PCL

1315
DS30289C-page 56  1998-2013 Microchip Technology Inc.

PIC17C7XX
TABLE 10-7: PORTD FUNCTIONS

TABLE 10-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Name Bit Buffer Type Function

RD0/AD8 bit0 TTL Input/output or system bus address/data pin.

RD1/AD9 bit1 TTL Input/output or system bus address/data pin.

RD2/AD10 bit2 TTL Input/output or system bus address/data pin.

RD3/AD11 bit3 TTL Input/output or system bus address/data pin.

RD4/AD12 bit4 TTL Input/output or system bus address/data pin.

RD5/AD13 bit5 TTL Input/output or system bus address/data pin.

RD6/AD14 bit6 TTL Input/output or system bus address/data pin.

RD7/AD15 bit7 TTL Input/output or system bus address/data pin.

Legend: TTL = TTL input

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR,
BOR

MCLR,
WDT

13h, Bank 1 PORTD RD7/
AD15

RD6/
AD14

RD5/
AD13

RD4/
AD12

RD3/
AD11

RD2/
AD10

RD1/
AD9

RD0/
AD8 xxxx xxxx uuuu uuuu

12h, Bank 1 DDRD Data Direction Register for PORTD 1111 1111 1111 1111

Legend: x = unknown, u = unchanged
 1998-2013 Microchip Technology Inc. DS30289C-page 81

PIC17C7XX
13.0 TIMER1, TIMER2, TIMER3,
PWMS AND CAPTURES

The PIC17C7XX has a wealth of timers and time based
functions to ease the implementation of control applica-
tions. These time base functions include three PWM
outputs and four Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers,
each with an 8-bit period register (PR1 and PR2, respec-
tively) and separate overflow interrupt flags. Timer1 and
Timer2 can operate either as timers (increment on inter-
nal FOSC/4 clock), or as counters (increment on falling
edge of external clock on pin RB4/TCLK12). They are
also software configurable to operate as a single 16-bit
timer/counter. These timers are also used as the time
base for the PWM (Pulse Width Modulation) modules.

Timer3 is a 16-bit timer/counter which uses the TMR3H
and TMR3L registers. Timer3 also has two additional
registers (PR3H/CA1H:PR3L/CA1L) that are config-
urable as a 16-bit period register or a 16-bit capture
register. TMR3 can be software configured to incre-
ment from the internal system clock (FOSC/4), or from
an external signal on the RB5/TCLK3 pin. Timer3 is the
time base for all of the 16-bit captures.

Six other registers comprise the Capture2, Capture3,
and Capture4 registers (CA2H:CA2L, CA3H:CA3L,
and CA4H:CA4L).

Figure 13-1, Figure 13-2 and Figure 13-3 are the con-
trol registers for the operation of Timer1, Timer2 and
Timer3, as well as PWM1, PWM2, PWM3, Capture1,
Capture2, Capture3 and Capture4.

Table 13-1 shows the Timer resource requirements for
these time base functions. Each timer is an open
resource so that multiple functions may operate with it.

TABLE 13-1: TIME-BASE FUNCTION/
RESOURCE REQUIREMENTS

REGISTER 13-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

Time Base Function Timer Resource

PWM1 Timer1

PWM2 Timer1 or Timer2

PWM3 Timer1 or Timer2

Capture1 Timer3

Capture2 Timer3

Capture3 Timer3

Capture4 Timer3

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CA2ED1 CA2ED0 CA1ED1 CA1ED0 T16 TMR3CS TMR2CS TMR1CS

bit 7 bit 0

bit 7-6 CA2ED1:CA2ED0: Capture2 Mode Select bits
00 = Capture on every falling edge
01 = Capture on every rising edge
10 = Capture on every 4th rising edge
11 = Capture on every 16th rising edge

bit 5-4 CA1ED1:CA1ED0: Capture1 Mode Select bits
00 = Capture on every falling edge
01 = Capture on every rising edge
10 = Capture on every 4th rising edge
11 = Capture on every 16th rising edge

bit 3 T16: Timer2:Timer1 Mode Select bit
1 = Timer2 and Timer1 form a 16-bit timer
0 = Timer2 and Timer1 are two 8-bit timers

bit 2 TMR3CS: Timer3 Clock Source Select bit
1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin
0 = TMR3 increments off the internal clock

bit 1 TMR2CS: Timer2 Clock Source Select bit
1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin
0 = TMR2 increments off the internal clock

bit 0 TMR1CS: Timer1 Clock Source Select bit
1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin
0 = TMR1 increments off the internal clock

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR Reset ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 1998-2013 Microchip Technology Inc. DS30289C-page 101

PIC17C7XX
REGISTER 13-3: TCON3 REGISTER (ADDRESS: 16h, BANK 7)

U-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— CA4OVF CA3OVF CA4ED1 CA4ED0 CA3ED1 CA3ED0 PWM3ON

bit 7 bit 0

bit 7 Unimplemented: Read as ‘0’

bit 6 CA4OVF: Capture4 Overflow Status bit
This bit indicates that the capture value had not been read from the capture register pair
(CA4H:CA4L) before the next capture event occurred. The capture register retains the oldest
unread capture value (last capture before overflow). Subsequent capture events will not update
the capture register with the TMR3 value until the capture register has been read (both bytes).
1 = Overflow occurred on Capture4 registers
0 = No overflow occurred on Capture4 registers

bit 5 CA3OVF: Capture3 Overflow Status bit
This bit indicates that the capture value had not been read from the capture register pair
(CA3H:CA3L) before the next capture event occurred. The capture register retains the oldest
unread capture value (last capture before overflow). Subsequent capture events will not update
the capture register with the TMR3 value until the capture register has been read (both bytes).
1 = Overflow occurred on Capture3 registers
0 = No overflow occurred on Capture3 registers

bit 4-3 CA4ED1:CA4ED0: Capture4 Mode Select bits
00 = Capture on every falling edge
01 = Capture on every rising edge
10 = Capture on every 4th rising edge
11 = Capture on every 16th rising edge

bit 2-1 CA3ED1:CA3ED0: Capture3 Mode Select bits
00 = Capture on every falling edge
01 = Capture on every rising edge
10 = Capture on every 4th rising edge
11 = Capture on every 16th rising edge

bit 0 PWM3ON: PWM3 On bit
1 = PWM3 is enabled (the RG5/PWM3 pin ignores the state of the DDRG<5> bit)
0 = PWM3 is disabled (the RG5/PWM3 pin uses the state of the DDRG<5> bit for data direction)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR Reset ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown
 1998-2013 Microchip Technology Inc. DS30289C-page 103

PIC17C7XX
13.1.3 USING PULSE WIDTH
MODULATION (PWM) OUTPUTS
WITH TIMER1 AND TIMER2

Three high speed pulse width modulation (PWM) out-
puts are provided. The PWM1 output uses Timer1 as
its time base, while PWM2 and PWM3 may indepen-
dently be software configured to use either Timer1 or
Timer2 as the time base. The PWM outputs are on the
RB2/PWM1, RB3/PWM2 and RG5/PWM3 pins.

Each PWM output has a maximum resolution of 10-
bits. At 10-bit resolution, the PWM output frequency is
32.2 kHz (@ 32 MHz clock) and at 8-bit resolution the
PWM output frequency is 128.9 kHz. The duty cycle of
the output can vary from 0% to 100%.

Figure 13-3 shows a simplified block diagram of a
PWM module.

The duty cycle registers are double buffered for glitch
free operation. Figure 13-4 shows how a glitch could
occur if the duty cycle registers were not double
buffered.

The user needs to set the PWM1ON bit (TCON2<4>)
to enable the PWM1 output. When the PWM1ON bit is
set, the RB2/PWM1 pin is configured as PWM1 output
and forced as an output, irrespective of the data direc-
tion bit (DDRB<2>). When the PWM1ON bit is clear,
the pin behaves as a port pin and its direction is con-
trolled by its data direction bit (DDRB<2>). Similarly,
the PWM2ON (TCON2<5>) bit controls the configura-
tion of the RB3/PWM2 pin and the PWM3ON
(TCON3<0>) bit controls the configuration of the RG5/
PWM3 pin.

FIGURE 13-3: SIMPLIFIED PWM BLOCK
DIAGRAM

FIGURE 13-4: PWM OUTPUT (NOT BUFFERED)

PWxDCH

Duty Cycle Registers PWxDCL<7:6>

Clear Timer,
PWMx pin and
Latch D.C.

(Slave)

Comparator

TMRx

Comparator

PRy

(Note 1)

R

S

Q

PWMxON

 PWMx

Note 1: 8-bit timer is concatenated with 2-bit internal
Q clock or 2 bits of the prescaler to create

Read

Write

10-bit time base.

0 10 20 30 40 0

PWM
Output

Timer
Interrupt

Write New
PWM Duty Cycle Value

Timer Interrupt
New PWM Duty Cycle Value
Transferred to Slave

The dotted line shows PWM output if duty cycle registers were not double buffered.
If the new duty cycle is written after the timer has passed that value, then the PWM does
not reset at all during the current cycle, causing a “glitch”.

In this example, PWM period = 50. Old duty cycle is 30. New duty cycle value is 10.

10 20 30 40 0

Note:
 1998-2013 Microchip Technology Inc. DS30289C-page 107

PIC17C7XX
13.1.3.1 PWM Periods

The period of the PWM1 output is determined by
Timer1 and its period register (PR1). The period of the
PWM2 and PWM3 outputs can be individually software
configured to use either Timer1 or Timer2 as the time-
base. For PWM2, when TM2PW2 bit (PW2DCL<5>) is
clear, the time base is determined by TMR1 and PR1
and when TM2PW2 is set, the time base is determined
by Timer2 and PR2. For PWM3, when TM2PW3 bit
(PW3DCL<5>) is clear, the time base is determined by
TMR1 and PR1, and when TM2PW3 is set, the time
base is determined by Timer2 and PR2.

Running two different PWM outputs on two different
timers allows different PWM periods. Running all
PWMs from Timer1 allows the best use of resources by
freeing Timer2 to operate as an 8-bit timer. Timer1 and
Timer2 cannot be used as a 16-bit timer if any PWM is
being used.

The PWM periods can be calculated as follows:

period of PWM1 = [(PR1) + 1] x 4TOSC

period of PWM2 = [(PR1) + 1] x 4TOSC or
[(PR2) + 1] x 4TOSC

period of PWM3 = [(PR1) + 1] x 4TOSC or
[(PR2) + 1] x 4TOSC

The duty cycle of PWMx is determined by the 10-bit
value DCx<9:0>. The upper 8-bits are from register
PWxDCH and the lower 2-bits are from PWxDCL<7:6>
(PWxDCH:PWxDCL<7:6>). Table 13-4 shows the
maximum PWM frequency (FPWM), given the value in
the period register.

The number of bits of resolution that the PWM can
achieve depends on the operation frequency of the
device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM
frequency:

where: FPWM = 1 / period of PWM

The PWMx duty cycle is as follows:

PWMx Duty Cycle = (DCx) x TOSC

where DCx represents the 10-bit value from
PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If
PRx = PWxDCH, then the PWM output will be low for
one to four Q-clocks (depending on the state of the
PWxDCL<7:6> bits). For a duty cycle to be 100%, the
PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are dou-
ble buffered. When the user writes to these registers,
they are stored in master latches. When TMR1 (or
TMR2) overflows and a new PWM period begins, the
master latch values are transferred to the slave latches
and the PWMx pin is forced high.

The user should also avoid any "read-modify-write"
operations on the duty cycle registers, such as:
ADDWF PW1DCH. This may cause duty cycle outputs
that are unpredictable.

TABLE 13-4: PWM FREQUENCY vs.
RESOLUTION AT 33 MHz

13.1.3.2 PWM INTERRUPTS

The PWM modules make use of the TMR1 and/or
TMR2 interrupts. A timer interrupt is generated when
TMR1 or TMR2 equals its period register and on the
following increment is cleared to zero. This interrupt
also marks the beginning of a PWM cycle. The user
can write new duty cycle values before the timer
rollover. The TMR1 interrupt is latched into the TMR1IF
bit and the TMR2 interrupt is latched into the TMR2IF
bit. These flags must be cleared in software.

log (FPWM

log (2)

FOSC)
bits=

Note: For PW1DCH, PW1DCL, PW2DCH,
PW2DCL, PW3DCH and PW3DCL regis-
ters, a write operation writes to the "master
latches", while a read operation reads the
"slave latches". As a result, the user may
not read back what was just written to the
duty cycle registers (until transferred to
slave latch).

PWM
Frequency

Frequency (kHz)

32.2 64.5 90.66 128.9 515.6

PRx Value 0xFF 0x7F 0x5A 0x3F 0x0F

High
Resolution

10-bit 9-bit 8.5-bit 8-bit 6-bit

Standard
Resolution

8-bit 7-bit 6.5-bit 6-bit 4-bit
DS30289C-page 108  1998-2013 Microchip Technology Inc.

PIC17C7XX
TABLE 14-4: BAUD RATES FOR SYNCHRONOUS MODE

BAUD
RATE

(K)

FOSC = 33 MHz
SPBRG
VALUE

(DECIMAL)

FOSC = 25 MHz
SPBRG
VALUE

(DECIMAL)

FOSC = 20 MHz
SPBRG
VALUE

(DECIMAL)

FOSC = 16 MHz
SPBRG
VALUE

(DECIMAL)KBAUD %ERROR KBAUD %ERROR KBAUD %ERROR KBAUD %ERROR

0.3 NA — — NA — — NA — — NA — —

1.2 NA — — NA — — NA — — NA — —

2.4 NA — — NA — — NA — — NA — —

9.6 NA — — NA — — NA — — NA — —

19.2 NA — — NA — — 19.53 +1.73 255 19.23 +0.16 207

76.8 77.10 +0.39 106 77.16 +0.47 80 76.92 +0.16 64 76.92 +0.16 51

96 95.93 -0.07 85 96.15 +0.16 64 96.15 +0.16 51 95.24 -0.79 41

300 294.64 -1.79 27 297.62 -0.79 20 294.1 -1.96 16 307.69 +2.56 12

500 485.29 -2.94 16 480.77 -3.85 12 500 0 9 500 0 7

HIGH 8250 — 0 6250 — 0 5000 — 0 4000 — 0

LOW 32.22 — 255 24.41 — 255 19.53 — 255 15.625 — 255

BAUD
RATE

(K)

FOSC = 10 MHz
SPBRG
VALUE

(DECIMAL)

FOSC = 7.159 MHz
SPBRG
VALUE

(DECIMAL)

FOSC = 5.068 MHz
SPBRG
VALUE

(DECIMAL)KBAUD %ERROR KBAUD %ERROR KBAUD %ERROR

0.3 NA — — NA — — NA — —

1.2 NA — — NA — — NA — —

2.4 NA — — NA — — NA — —

9.6 9.766 +1.73 255 9.622 +0.23 185 9.6 0 131

19.2 19.23 +0.16 129 19.24 +0.23 92 19.2 0 65

76.8 75.76 -1.36 32 77.82 +1.32 22 79.2 +3.13 15

96 96.15 +0.16 25 94.20 -1.88 18 97.48 +1.54 12

300 312.5 +4.17 7 298.3 -0.57 5 316.8 +5.60 3

500 500 0 4 NA — — NA — —

HIGH 2500 — 0 1789.8 — 0 1267 — 0

LOW 9.766 — 255 6.991 — 255 4.950 — 255

BAUD
RATE

(K)

FOSC = 3.579 MHz
SPBRG
VALUE

(DECIMAL)

FOSC = 1 MHz
SPBRG
VALUE

(DECIMAL)

FOSC = 32.768 kHz
SPBRG
VALUE

(DECIMAL)KBAUD %ERROR KBAUD %ERROR KBAUD %ERROR

0.3 NA — — NA — — 0.303 +1.14 26

1.2 NA — — 1.202 +0.16 207 1.170 -2.48 6

2.4 NA — — 2.404 +0.16 103 NA — —

9.6 9.622 +0.23 92 9.615 +0.16 25 NA — —

19.2 19.04 -0.83 46 19.24 +0.16 12 NA — —

76.8 74.57 -2.90 11 83.34 +8.51 2 NA — —

96 99.43 _3.57 8 NA — — NA — —

300 298.3 -0.57 2 NA — — NA — —

500 NA — — NA — — NA — —

HIGH 894.9 — 0 250 — 0 8.192 — 0

LOW 3.496 — 255 0.976 — 255 0.032 — 255
 1998-2013 Microchip Technology Inc. DS30289C-page 121

PIC17C7XX
14.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-to-
zero (NRZ) format (one START bit, eight or nine data
bits, and one STOP bit). The most common data format
is 8-bits. An on-chip dedicated 8-bit baud rate genera-
tor can be used to derive standard baud rate frequen-
cies from the oscillator. The USART’s transmitter and
receiver are functionally independent but use the same
data format and baud rate. The baud rate generator
produces a clock x64 of the bit shift rate. Parity is not
supported by the hardware, but can be implemented in
software (and stored as the ninth data bit). Asynchro-
nous mode is stopped during SLEEP.

The Asynchronous mode is selected by clearing the
SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the fol-
lowing components:

• Baud Rate Generator

• Sampling Circuit

• Asynchronous Transmitter

• Asynchronous Receiver

14.2.1 USART ASYNCHRONOUS
TRANSMITTER

The USART transmitter block diagram is shown in
Figure 14-1. The heart of the transmitter is the transmit
shift register (TSR). The shift register obtains its data
from the read/write transmit buffer (TXREG). TXREG is
loaded with data in software. The TSR is not loaded until
the STOP bit has been transmitted from the previous
load. As soon as the STOP bit is transmitted, the TSR is
loaded with new data from the TXREG (if available).
Once TXREG transfers the data to the TSR (occurs in
one TCY at the end of the current BRG cycle), the TXREG
is empty and an interrupt bit, TXIF, is set. This interrupt
can be enabled/disabled by setting/clearing the TXIE bit.
TXIF will be set, regardless of TXIE and cannot be reset
in software. It will reset only when new data is loaded into
TXREG. While TXIF indicates the status of the TXREG,
the TRMT (TXSTA<1>) bit shows the status of the TSR.

TRMT is a read only bit which is set when the TSR is
empty. No interrupt logic is tied to this bit, so the user has
to poll this bit in order to determine if the TSR is empty.

Transmission is enabled by setting the
TXEN (TXSTA<5>) bit. The actual transmission will not
occur until TXREG has been loaded with data and the
baud rate generator (BRG) has produced a shift clock
(Figure 14-3). The transmission can also be started by
first loading TXREG and then setting TXEN. Normally,
when transmission is first started, the TSR is empty, so
a transfer to TXREG will result in an immediate transfer
to TSR, resulting in an empty TXREG. A back-to-back
transfer is thus possible (Figure 14-4). Clearing TXEN
during a transmission will cause the transmission to be
aborted. This will reset the transmitter and the TX/CK
pin will revert to hi-impedance.

In order to select 9-bit transmission, the
TX9 (TXSTA<6>) bit should be set and the ninth bit
value should be written to TX9D (TXSTA<0>). The
ninth bit value must be written before writing the 8-bit
data to the TXREG. This is because a data write to
TXREG can result in an immediate transfer of the data
to the TSR (if the TSR is empty).

Steps to follow when setting up an Asynchronous
Transmission:

1. Initialize the SPBRG register for the appropriate
baud rate.

2. Enable the asynchronous serial port by clearing
the SYNC bit and setting the SPEN bit.

3. If interrupts are desired, then set the TXIE bit.

4. If 9-bit transmission is desired, then set the TX9
bit.

5. If 9-bit transmission is selected, the ninth bit
should be loaded in TX9D.

6. Load data to the TXREG register.

7. Enable the transmission by setting TXEN (starts
transmission).

FIGURE 14-3: ASYNCHRONOUS MASTER TRANSMISSION

Note: The TSR is not mapped in data memory,
so it is not available to the user.

Word 1
STOP Bit

Word 1
Transmit Shift Reg

START Bit Bit 0 Bit 1 Bit 7/8

Write to TXREG
Word 1

BRG Output
(Shift Clock)

TX

TXIF bit

TRMT bit

 (TX/CK pin)
 1998-2013 Microchip Technology Inc. DS30289C-page 123

PIC17C7XX
14.2.2 USART ASYNCHRONOUS
RECEIVER

The receiver block diagram is shown in Figure 14-2.
The data comes in the RX/DT pin and drives the data
recovery block. The data recovery block is actually a
high speed shifter operating at 16 times the baud rate,
whereas the main receive serial shifter operates at the
bit rate or at FOSC.

Once Asynchronous mode is selected, reception is
enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift reg-
ister (RSR). After sampling the STOP bit, the received
data in the RSR is transferred to the RCREG (if it is
empty). If the transfer is complete, the interrupt bit,
RCIF, is set. The actual interrupt can be enabled/
disabled by setting/clearing the RCIE bit. RCIF is a
read only bit which is cleared by the hardware. It is
cleared when RCREG has been read and is empty.
RCREG is a double buffered register (i.e., it is a two-
deep FIFO). It is possible for two bytes of data to be
received and transferred to the RCREG FIFO and a
third byte begin shifting to the RSR. On detection of the
STOP bit of the third byte, if the RCREG is still full, then
the overrun error bit, OERR (RCSTA<1>) will be set.
The word in the RSR will be lost. RCREG can be read
twice to retrieve the two bytes in the FIFO. The OERR
bit has to be cleared in software which is done by reset-

ting the receive logic (CREN is set). If the OERR bit is
set, transfers from the RSR to RCREG are inhibited, so
it is essential to clear the OERR bit if it is set. The fram-
ing error bit FERR (RCSTA<2>) is set if a STOP bit is
not detected.

14.2.3 SAMPLING

The data on the RX/DT pin is sampled three times by a
majority detect circuit to determine if a high or a low
level is present at the RX/DT pin. The sampling is done
on the seventh, eighth and ninth falling edges of a x16
clock (Figure 14-5).

The x16 clock is a free running clock and the three
sample points occur at a frequency of every 16 falling
edges.

FIGURE 14-5: RX PIN SAMPLING SCHEME

FIGURE 14-6: START BIT DETECT

Note: The FERR and the 9th receive bit are buff-
ered the same way as the receive data.
Reading the RCREG register will allow the
RX9D and FERR bits to be loaded with val-
ues for the next received data. Therefore,
it is essential for the user to read the
RCSTA register before reading RCREG, in
order not to lose the old FERR and RX9D
information.

RX

Baud CLK

x16 CLK

START bit Bit0

Samples

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3

Baud CLK for all but START bit
(RX/DT pin)

RX

x16 CLK

Q2, Q4 CLK

START bit
(RX/DT pin)

First rising edge of x16 clock after RX pin goes low

RX sampled low
 1998-2013 Microchip Technology Inc. DS30289C-page 125

PIC17C7XX
15.2.11 I2C MASTER MODE
TRANSMISSION

Transmission of a data byte, a 7-bit address, or either
half of a 10-bit address, is accomplished by simply writ-
ing a value to SSPBUF register. This action will set the
buffer full flag (BF) and allow the baud rate generator to
begin counting and start the next transmission. Each bit
of address/data will be shifted out onto the SDA pin
after the falling edge of SCL is asserted (see data hold
time spec). SCL is held low for one baud rate generator
roll over count (TBRG). Data should be valid before SCL
is released high (see Data setup time spec). When the
SCL pin is released high, it is held that way for TBRG,
the data on the SDA pin must remain stable for that
duration and some hold time after the next falling edge
of SCL. After the eighth bit is shifted out (the falling
edge of the eighth clock), the BF flag is cleared and the
master releases SDA, allowing the slave device being
addressed to respond with an ACK bit during the ninth
bit time, if an address match occurs or if data was
received properly. The status of ACK is read into the
ACKDT on the falling edge of the ninth clock. If the
master receives an acknowledge, the acknowledge
status bit (AKSTAT) is cleared. If not, the bit is set. After
the ninth clock, the SSPIF is set and the master clock
(baud rate generator) is suspended until the next data
byte is loaded into the SSPBUF, leaving SCL low and
SDA unchanged (Figure 15-26).

After the write to the SSPBUF, each bit of address will
be shifted out on the falling edge of SCL until all seven
address bits and the R/W bit are completed. On the fall-
ing edge of the eighth clock, the master will de-assert
the SDA pin, allowing the slave to respond with an
acknowledge. On the falling edge of the ninth clock, the
master will sample the SDA pin to see if the address
was recognized by a slave. The status of the ACK bit is
loaded into the ACKSTAT status bit (SSPCON2<6>).
Following the falling edge of the ninth clock transmis-
sion of the address, the SSPIF is set, the BF flag is
cleared and the baud rate generator is turned off until
another write to the SSPBUF takes place, holding SCL
low and allowing SDA to float.

15.2.11.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set
when the CPU writes to SSPBUF and is cleared when
all 8 bits are shifted out.

15.2.11.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is
already in progress (i.e., SSPSR is still shifting out a
data byte), then WCOL is set and the contents of the
buffer are unchanged (the write doesn’t occur).

WCOL must be cleared in software.

15.2.11.3 AKSTAT Status Flag

In Transmit mode, the AKSTAT bit (SSPCON2<6>) is
cleared when the slave has sent an acknowledge (ACK
= 0) and is set when the slave does not acknowledge
(ACK = 1). A slave sends an acknowledge when it has
recognized its address (including a general call), or
when the slave has properly received its data.
 1998-2013 Microchip Technology Inc. DS30289C-page 159

PIC17C7XX
FIGURE 15-27: MASTER RECEIVER FLOW CHART

Idle Mode

Num_Clocks = 0,
Release SDA

Force SCL=0,

Yes

NoBRG
Rollover?

Release SCL

Yes

NoSCL = 1?

Load BRG with

Yes

NoBRG
Rollover?

(Clock Arbitration)

 Load BRG w/

Start Count

SSPADD<6:0>,
Start Count.

Sample SDA,
Shift Data into SSPSR

Num_Clocks
= Num_Clocks + 1

Yes

Num_Clocks
= 8?

No

Force SCL = 0,
Set SSPIF,

Set BF.
Move Contents of SSPSR

into SSPBUF,
Clear RCEN.

RCEN = 1

SSPADD<6:0>,

SCL = 0?

Yes

No
 1998-2013 Microchip Technology Inc. DS30289C-page 163

PIC17C7XX
15.2.18.2 Bus Collision During a Repeated
Start Condition

During a Repeated Start condition, a bus collision
occurs if:

a) A low level is sampled on SDA when SCL goes
from low level to high level.

b) SCL goes low before SDA is asserted low, indi-
cating that another master is attempting to trans-
mit a data ’1’.

When the user de-asserts SDA and the pin is allowed
to float high, the BRG is loaded with SSPADD<6:0>
and counts down to ‘0’. The SCL pin is then de-
asserted and when sampled high, the SDA pin is sam-
pled. If SDA is low, a bus collision has occurred (i.e.,
another master is attempting to transmit a data ’0’). If,
however, SDA is sampled high, then the BRG is

reloaded and begins counting. If SDA goes from high to
low before the BRG times out, no bus collision occurs
because no two masters can assert SDA at exactly the
same time.

If, however, SCL goes from high to low before the BRG
times out and SDA has not already been asserted, then
a bus collision occurs. In this case, another master is
attempting to transmit a data ’1’ during the Repeated
Start condition.

If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low, the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated Start condition is com-
plete (Figure 15-38).

FIGURE 15-38: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 15-39: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

SDA

SCL

RSEN

BCLIF

S

SSPIF

Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.

Cleared in software.
'0'

'0'

'0'

'0'

SDA

SCL

BCLIF

RSEN

S

SSPIF

Interrupt cleared
in software.

SCL goes low before SDA,
Set BCLIF. Release SDA and SCL.

TBRG TBRG

'0'

'0'

'0'

'0'
 1998-2013 Microchip Technology Inc. DS30289C-page 173

PIC17C7XX
void ACKPoll(void)
{
 StartI2C(); // Send start bit
 IdleI2C(); // Wait for idle condition
 WriteI2C(CONTROL); // Send control byte
 IdleI2C(); // Wait for idle condition
 // Poll the ACK bit coming from the 24LC01B
 // Loop as long as the 24LC01B NACKs
 while (SSPCON2bits.ACKSTAT)
 {
 RestartI2C(); // Send a restart bit
 IdleI2C(); // Wait for idle condition
 WriteI2C(CONTROL); // Send control byte
 IdleI2C(); // Wait for idle condition
 }
 IdleI2C(); // Wait for idle condition
 StopI2C(); // Send stop bit
 IdleI2C(); // Wait for idle condition
 return;
}

EXAMPLE 15-2: INTERFACING TO A 24LC01B SERIAL EEPROM (USING MPLAB C17)
DS30289C-page 178  1998-2013 Microchip Technology Inc.

PIC17C7XX

BSF Bit Set f

Syntax: [label] BSF f,b

Operands: 0  f  255
0  b  7

Operation: 1  (f)

Status Affected: None

Encoding: 1000 0bbb ffff ffff

Description: Bit 'b' in register 'f' is set.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write
register 'f'

Example: BSF FLAG_REG, 7

Before Instruction
FLAG_REG = 0x0A

After Instruction
FLAG_REG = 0x8A

BTFSC Bit Test, skip if Clear

Syntax: [label] BTFSC f,b

Operands: 0  f  255
0  b  7

Operation: skip if (f) = 0

Status Affected: None

Encoding: 1001 1bbb ffff ffff

Description: If bit 'b' in register ’f' is 0, then the next
instruction is skipped.

If bit 'b' is 0, then the next instruction
fetched during the current instruction exe-
cution is discarded and a NOP is executed
instead, making this a two-cycle
instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example: HERE
FALSE
TRUE

BTFSC
:
:

FLAG,1

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = address (TRUE)
If FLAG<1> = 1;

PC = address (FALSE)
 1998-2013 Microchip Technology Inc. DS30289C-page 205

PIC17C7XX

CPFSLT
Compare f with WREG,
skip if f < WREG

Syntax: [label] CPFSLT f

Operands: 0  f  255

Operation: (f) –WREG),
skip if (f) < (WREG)
(unsigned comparison)

Status Affected: None

Encoding: 0011 0000 ffff ffff

Description: Compares the contents of data memory
location 'f' to the contents of WREG by
performing an unsigned subtraction.

If the contents of 'f' are less than the
contents of WREG, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
two-cycle instruction.

Words: 1

Cycles: 1 (2)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example: HERE CPFSLT REG
NLESS :
LESS :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction
If REG < WREG;
PC = Address (LESS)
If REG  WREG;
PC = Address (NLESS)

DAW Decimal Adjust WREG Register

Syntax: [label] DAW f,s

Operands: 0  f  255
s  [0,1]

Operation: If [[WREG<7:4> > 9].OR.[C = 1]].AND.
[WREG<3:0> > 9]
then
WREG<7:4> + 7 f<7:4>, s<7:4>;

If [WREG<7:4> > 9].OR.[C = 1]
then
WREG<7:4> + 6 f<7:4>, s<7:4>;
else
WREG<7:4> f<7:4>, s<7:4>;

If [WREG<3:0> > 9].OR.[DC = 1]
then
WREG<3:0> + 6 f<3:0>, s<3:0>;
else
WREG<3:0> f<3:0>, s<3:0>

Status Affected: C

Encoding: 0010 111s ffff ffff

Description: DAW adjusts the eight-bit value in
WREG, resulting from the earlier addi-
tion of two variables (each in packed
BCD format) and produces a correct
packed BCD result.
s = 0: Result is placed in Data

memory location 'f' and
 WREG.

s = 1: Result is placed in Data
memory location 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write
register 'f'
and other
specified
register

Example: DAW REG1, 0

Before Instruction
WREG = 0xA5
REG1 = ??
C = 0
DC = 0

After Instruction
WREG = 0x05
REG1 = 0x05
C = 1
DC = 0
DS30289C-page 210  1998-2013 Microchip Technology Inc.

PIC17C7XX

TABLRD Table Read

Example1: TABLRD 1, 1, REG ;

Before Instruction
REG = 0x53
TBLATH = 0xAA
TBLATL = 0x55
TBLPTR = 0xA356
MEMORY(TBLPTR) = 0x1234

After Instruction (table write completion)
REG = 0xAA
TBLATH = 0x12
TBLATL = 0x34
TBLPTR = 0xA357
MEMORY(TBLPTR) = 0x5678

Example2: TABLRD 0, 0, REG ;

Before Instruction
REG = 0x53
TBLATH = 0xAA
TBLATL = 0x55
TBLPTR = 0xA356
MEMORY(TBLPTR) = 0x1234

After Instruction (table write completion)
REG = 0x55
TBLATH = 0x12
TBLATL = 0x34
TBLPTR = 0xA356
MEMORY(TBLPTR) = 0x1234

TABLWT Table Write

Syntax: [label] TABLWT t,i,f

Operands: 0  f  255
i [0,1]
t [0,1]

Operation: If t = 0,
f  TBLATL;
If t = 1,
f  TBLATH;
TBLAT  Prog Mem (TBLPTR);
If i = 1,
TBLPTR + 1  TBLPTR
If i = 0,
TBLPTR is unchanged

Status Affected: None

Encoding: 1010 11ti ffff ffff

Description: 1. Load value in ’f’ into 16-bit table
latch (TBLAT)
If t = 1: load into high byte;
If t = 0: load into low byte

2. The contents of TBLAT are writ-
ten to the program memory
location pointed to by TBLPTR.
If TBLPTR points to external
program memory location, then
the instruction takes two-cycle.
If TBLPTR points to an internal
EPROM location, then the
instruction is terminated when
an interrupt is received.

Note: The MCLR/VPP pin must be at the programming
voltage for successful programming of internal
memory.
If MCLR/VPP = VDD

the programming sequence of internal memory
will be interrupted. A short write will occur (2
TCY). The internal memory location will not be
affected.

3. The TBLPTR can be automati-
cally incremented
If i = 1; TBLPTR is not

incremented
If i = 0; TBLPTR is incremented

Words: 1

Cycles: 2 (many if write is to on-chip
EPROM program memory)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write
register

TBLATH or
TBLATL

No
operation

No
operation

(Table Pointer
on Address

bus)

No
operation

No
operation

(Table Latch on
Address bus,
WR goes low)
DS30289C-page 228  1998-2013 Microchip Technology Inc.

PIC17C7XX

TLWT Table Latch Write

Syntax: [label] TLWT t,f

Operands: 0  f  255
t [0,1]

Operation: If t = 0,
f  TBLATL;
If t = 1,
f  TBLATH

Status Affected: None

Encoding: 1010 01tx ffff ffff

Description: Data from file register 'f' is written into
the 16-bit table latch (TBLAT).

If t = 1; high byte is written

If t = 0; low byte is written

This instruction is used in conjunction
with TABLWT to transfer data from data
memory to program memory.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

Write
register

TBLATH or
TBLATL

Example: TLWT t, RAM

Before Instruction
t = 0
RAM = 0xB7
TBLAT = 0x0000 (TBLATH = 0x00)
 (TBLATL = 0x00)

After Instruction
RAM = 0xB7
TBLAT = 0x00B7 (TBLATH = 0x00)
 (TBLATL = 0xB7)

Before Instruction
t = 1
RAM = 0xB7
TBLAT = 0x0000 (TBLATH = 0x00)
 (TBLATL = 0x00)

After Instruction
RAM = 0xB7
TBLAT = 0xB700 (TBLATH = 0xB7)
 (TBLATL = 0x00)

TSTFSZ Test f, skip if 0

Syntax: [label] TSTFSZ f

Operands: 0  f  255

Operation: skip if f = 0

Status Affected: None

Encoding: 0011 0011 ffff ffff

Description: If 'f' = 0, the next instruction, fetched
during the current instruction execution,
is discarded and a NOP is executed,
making this a two-cycle instruction.

Words: 1

Cycles: 1 (2)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register 'f'

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

Example: HERE TSTFSZ CNT
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
If CNT = 0x00,

PC = Address (ZERO)
If CNT ¼ 0x00,

PC = Address (NZERO)
DS30289C-page 230  1998-2013 Microchip Technology Inc.

PIC17C7XX
FIGURE 20-11: CAPTURE TIMINGS

TABLE 20-6: CAPTURE REQUIREMENTS

FIGURE 20-12: PWM TIMINGS

TABLE 20-7: PWM REQUIREMENTS

CAP pin
(Capture mode)

50 51

52

Param
 No.

Sym Characteristic Min
Typ

†
Max

Unit
s

Conditions

50 TccL Capture pin input low time 10 — — ns

51 TccH Capture pin input high time 10 — — ns

52 TccP Capture pin input period 2TCY
N

— — ns N = prescale value
(4 or 16)

† Data in “Typ” column is at 5V, 25C unless otherwise stated.

PWM pin
(PWM mode)

53 54

Param
 No.

Sym Characteristic Min
Typ

†
Max Units Conditions

53 TccR PWM pin output rise time — 10 35 ns

54 TccF PWM pin output fall time — 10 35 ns

† Data in “Typ” column is at 5V, 25C unless otherwise stated.
 1998-2013 Microchip Technology Inc. DS30289C-page 253

