

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c766t-33e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Register	Address	Power-on Reset Brown-out Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through Interrupt
Bank 4		·		·
PIR2	10h	000- 0010	000- 0010	uuu- uuuu (1)
PIE2	11h	000- 0000	000- 0000	uuu- uuuu
Unimplemented	12h			
RCSTA2	13h	x00-0000	0000 -00u	uuuu -uuu
RCREG2	14h	XXXX XXXX	uuuu uuuu	uuuu uuuu
TXSTA2	15h	00001x	00001u	uuuuuu
TXREG2	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG2	17h	0000 0000	0000 0000	นนนน นนนน
Bank 5				
DDRF	10h	1111 1111	1111 1111	uuuu uuuu
PORTF ⁽⁴⁾	11h	0000 0000	0000 0000	uuuu uuuu
DDRG	12h	1111 1111	1111 1111	uuuu uuuu
PORTG ⁽⁴⁾	13h	xxxx 0000	uuuu 0000	uuuu uuuu
ADCON0	14h	0000 -0-0	0000 -0-0	uuuu uuuu
ADCON1	15h	000- 0000	000- 0000	uuuu uuuu
ADRESL	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADRESH	17h	xxxx xxxx	uuuu uuuu	นนนน นนนน
Bank 6				
SSPADD	10h	0000 0000	0000 0000	uuuu uuuu
SSPCON1	11h	0000 0000	0000 0000	uuuu uuuu
SSPCON2	12h	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	13h	0000 0000	0000 0000	uuuu uuuu
SSPBUF	14h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Unimplemented	15h			
Unimplemented	16h			
Unimplemented	17h			

TABLE 5-4:	INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS ((CONTINUED)	

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 5-3 for RESET value of specific condition.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

6.4 Interrupt Operation

Global Interrupt Disable bit, GLINTD (CPUSTA<4>), enables all unmasked interrupts (if clear), or disables all interrupts (if set). Individual interrupts can be disabled through their corresponding enable bits in the INTSTA register. Peripheral interrupts need either the global peripheral enable PEIE bit disabled, or the specific peripheral enable bit disabled. Disabling the peripherals via the global peripheral enable bit, disables all peripheral interrupts. GLINTD is set on RESET (interrupts disabled).

The RETFIE instruction clears the GLINTD bit while forcing the Program Counter (PC) to the value loaded at the Top-of-Stack.

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with the interrupt vector. There are four interrupt vectors which help reduce interrupt latency.

The peripheral interrupt vector has multiple interrupt sources. Once in the peripheral Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The peripheral interrupt flag bit(s) must be cleared in software before reenabling interrupts to avoid continuous interrupts.

The PIC17C7XX devices have four interrupt vectors. These vectors and their hardware priority are shown in Table 6-1. If two enabled interrupts occur "at the same time", the interrupt of the highest priority will be serviced first. This means that the vector address of that interrupt will be loaded into the program counter (PC).

TABLE 6-1: INTERRUPT VECTORS/ PRIORITIES

Address	Vector	Priority
0008h	External Interrupt on RA0/ INT pin (INTF)	1 (Highest)
0010h	TMR0 Overflow Interrupt (T0IF)	2
0018h	External Interrupt on T0CKI (T0CKIF)	3
0020h	Peripherals (PEIF)	4 (Lowest)

- Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GLINTD bit.
 - 2: Before disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

6.5 RA0/INT Interrupt

The external interrupt on the RA0/INT pin is edge triggered. Either the rising edge if the INTEDG bit (T0STA<7>) is set, or the falling edge if the INTEDG bit is clear. When a valid edge appears on the RA0/INT pin, the INTF bit (INTSTA<4>) is set. This interrupt can be disabled by clearing the INTE control bit (INTSTA<0>). The INT interrupt can wake the processor from SLEEP. See Section 17.4 for details on SLEEP operation.

6.6 T0CKI Interrupt

The external interrupt on the RA1/T0CKI pin is edge triggered. Either the rising edge if the T0SE bit (T0STA<6>) is set, or the falling edge if the T0SE bit is clear. When a valid edge appears on the RA1/T0CKI pin, the T0CKIF bit (INTSTA<6>) is set. This interrupt can be disabled by clearing the T0CKIE control bit (INTSTA<2>). The T0CKI interrupt can wake up the processor from SLEEP. See Section 17.4 for details on SLEEP operation.

6.7 Peripheral Interrupt

The peripheral interrupt flag indicates that at least one of the peripheral interrupts occurred (PEIF is set). The PEIF bit is a read only bit and is a bit wise OR of all the flag bits in the PIR registers AND'd with the corresponding enable bits in the PIE registers. Some of the peripheral interrupts can wake the processor from SLEEP. See Section 17.4 for details on SLEEP operation.

6.8 Context Saving During Interrupts

During an interrupt, only the returned PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt; e.g. WREG, ALUSTA and the BSR registers. This requires implementation in software.

Example 6-2 shows the saving and restoring of information for an Interrupt Service Routine. This is for a simple interrupt scheme, where only one interrupt may occur at a time (no interrupt nesting). The SFRs are stored in the non-banked GPR area.

Example 6-2 shows the saving and restoring of information for a more complex Interrupt Service Routine. This is useful where nesting of interrupts is required. A maximum of 6 levels can be done by this example. The BSR is stored in the non-banked GPR area, while the other registers would be stored in a particular bank. Therefore, 6 saves may be done with this routine (since there are 6 non-banked GPR registers). These routines require a dedicated indirect addressing register, FSR0, to be selected for this.

The PUSH and POP code segments could either be in each Interrupt Service Routine, or could be subroutines that were called. Depending on the application, other registers may also need to be saved.

EXAMPLE 6-1: SAVING STATUS AND WREG IN RAM (SIMPLE)

; The addresses that are used to store the CPUSTA and WREG values must be in the data memory ; address range of 1Ah - 1Fh. Up to 6 locations can be saved and restored using the MOVFP ; instruction. This instruction neither affects the status bits, nor corrupts the WREG register. UNBANK1 ; Address for 1st location to save EQU 0x01A UNBANK2 EQU 0x01B ; Address for 2nd location to save UNBANK3 EQU 0x01C ; Address for 3rd location to save UNBANK4 0x01D EOU ; Address for 4th location to save UNBANK5 EQU 0x01E ; Address for 5th location to save (Label Not used in program) ; UNBANK6 EQU 0x01F ; Address for 6th location to save (Label Not used in program) ; ; ; At Interrupt Vector Address ٠ ALUSTA, UNBANK1 PUSH MOVFP ; Push ALUSTA value MOVFP BSR, UNBANK2 ; Push BSR value MOVFP WREG, UNBANK3 ; Push WREG value MOVFP PCLATH, UNBANK4 ; Push PCLATH value ; ; Interrupt Service Routine (ISR) code : ; UNBANK4, PCLATH ; Restore PCLATH value POP MOVFP UNBANK3, WREG ; Restore WREG value MOVFP MOVFP UNBANK2, BSR ; Restore BSR value MOVFP UNBANK1, ALUSTA ; Restore ALUSTA value ; RETFIE ; Return from interrupt (enable interrupts)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
Bank 2											•
10h	TMR1	Timer1's R	ner1's Register							XXXX XXXX	uuuu uuuu
11h	TMR2	Timer2's R	legister							xxxx xxxx	uuuu uuuu
12h	TMR3L	Timer3's R	egister; Lov	v Byte						XXXX XXXX	uuuu uuuu
13h	TMR3H		egister; Hig	-						XXXX XXXX	uuuu uuuu
14h	PR1		eriod Regis							XXXX XXXX	uuuu uuuu
15h	PR2		eriod Regis							XXXX XXXX	uuuu uuuu
16h	PR3L/CA1L		-		e/Capture1 F	-	-			XXXX XXXX	uuuu uuuu
17h	PR3H/CA1H	Timer3's P	eriod Regis	ter - High By	te/Capture1	Register; Hi	gh Byte			XXXX XXXX	uuuu uuuu
Bank 3											
10h	PW1DCL	DC1	DC0				—		—	xx	uu
11h	PW2DCL	DC1	DC0	TM2PW2	_		—	—	—	xx0	uu0
12h	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
14h	CA2L	Capture2 L	,							XXXX XXXX	uuuu uuuu
15h	CA2H	Capture2 H	° ,	01/55/	01/550	710				XXXX XXXX	uuuu uuuu
16h	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
Bank 4											
10h	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h	PIE2	SSPIE	BCLIE	ADIE		CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
12h	Unimplemented		_	_		_	_	_	_		
13h	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG2	Serial Port	Receive Re	egister for US	SART2					xxxx xxxx	uuuu uuuu
15h	TXSTA2	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
16h	TXREG2	Serial Port	Transmit R	egister for U	SART2					xxxx xxxx	uuuu uuuu
17h	SPBRG2	Baud Rate	Generator	for USART2						0000 0000	0000 0000
Bank 5:											
10h	DDRF	Data Direc	tion Registe	er for PORTF						1111 1111	1111 1111
11h	PORTF ⁽⁴⁾	RF7/ AN11	RF6/ AN10	RF5/ AN9	RF4/ AN8	RF3/ AN7	RF2/ AN6	RF1/ AN5	RF0/ AN4	0000 0000	0000 0000
12h	DDRG			er for PORTO		,	7	,	,	1111 1111	1111 1111
	PORTG ⁽⁴⁾	RG7/	RG6/	RG5/	RG4/	RG3/	RG2/	RG1/	RG0/		
13h	PORIG	TX2/CK2	RX2/DT2	PWM3	CAP3	AN0	AN1	AN2	AN3	xxxx 0000	uuuu 0000
14h	ADCON0	CHS3	CHS2	CHS1	CHS0	—	GO/DONE	_	ADON	0000 -0-0	0000 -0-0
15h	ADCON1	ADCS1	ADCS0	ADFM	—	PCFG3	PCFG2	PCFG1	PCFG0	000- 0000	000- 0000
16h	ADRESL	A/D Result	t Register Lo	ow Byte		-			•	xxxx xxxx	uuuu uuuu
17h	ADRESH	A/D Result	t Register H	igh Byte						xxxx xxxx	uuuu uuuu

TABLE 7-3:	SPECIAL FUNCTION REGISTERS	(CONTINUED))

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition.

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

8.1 Table Writes to Internal Memory

A table write operation to internal memory causes a long write operation. The long write is necessary for programming the internal EPROM. Instruction execution is halted while in a long write cycle. The long write will be terminated by any enabled interrupt. To ensure that the EPROM location has been well programmed, a minimum programming time is required (see specification #D114). Having only one interrupt enabled to terminate the long write ensures that no unintentional interrupts will prematurely terminate the long write.

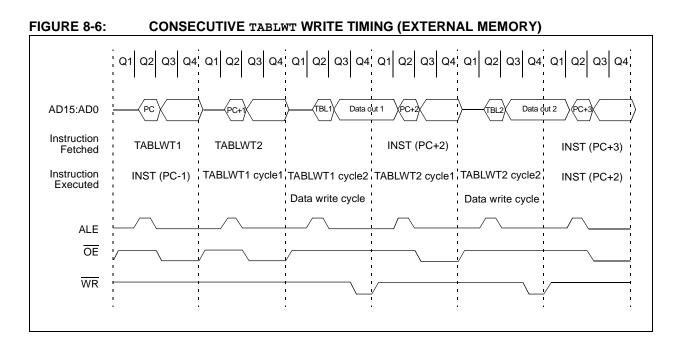
The sequence of events for programming an internal program memory location should be:

- 1. Disable all interrupt sources, except the source to terminate EPROM program write.
- 2. Raise MCLR/VPP pin to the programming voltage.
- 3. Clear the WDT.
- 4. Do the table write. The interrupt will terminate the long write.
- 5. Verify the memory location (table read).
 - Note 1: Programming requirements must be met. See timing specification in electrical specifications for the desired device. Violating these specifications (including temperature) may result in EPROM locations that are not fully programmed and may lose their state over time.
 - 2: If the VPP requirement is not met, the table write is a 2-cycle write and the program memory is unchanged.

8.1.1 TERMINATING LONG WRITES

An interrupt source or RESET are the only events that terminate a long write operation. Terminating the long write from an interrupt source requires that the interrupt enable and flag bits are set. The GLINTD bit only enables the vectoring to the interrupt address.

If the TOCKI, RA0/INT, or TMR0 interrupt source is used to terminate the long write, the interrupt flag of the highest priority enabled interrupt, will terminate the long write and automatically be cleared.


- **Note 1:** If an interrupt is pending, the TABLWT is aborted (a NOP is executed). The highest priority pending interrupt, from the TOCKI, RA0/INT, or TMR0 sources that is enabled, has its flag cleared.
 - 2: If the interrupt is not being used for the program write timing, the interrupt should be disabled. This will ensure that the interrupt is not lost, nor will it terminate the long write prematurely.

If a peripheral interrupt source is used to terminate the long write, the interrupt enable and flag bits must be set. The interrupt flag will not be automatically cleared upon the vectoring to the interrupt vector address.

The GLINTD bit determines whether the program will branch to the interrupt vector when the long write is terminated. If GLINTD is clear, the program will vector, if GLINTD is set, the program will not vector to the interrupt address.

Interrupt Source	GLINTD	Enable Bit	Flag Bit	Action
RA0/INT,	0	1	1	Terminate long table write (to internal program memory),
TMR0,				branch to interrupt vector (branch clears flag bit).
TOCKI	0	1	0	None.
	1	0	x	None.
	1	1	1	Terminate long table write, do not branch to interrupt vector (flag is automatically cleared).
Peripheral	0	1	1	Terminate long table write, branch to interrupt vector.
	0	1	0	None.
	1	0	x	None.
	1	1	1	Terminate long table write, do not branch to interrupt vector (flag remains set).

TABLE 8-1: INTERRUPT - TABLE WRITE INTERACTION

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs most significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0	
$= ARG1H:ARG1L \bullet ARG2H:ARG2L$	
$= (ARG1H \bullet ARG2H \bullet 2^{16})$	+
$(ARG1H \bullet ARG2L \bullet 2^8)$	+
$(ARG1L \bullet ARG2H \bullet 2^8)$	+
$(ARG1L \bullet ARG2L)$	+
$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16})$	+
$(-1 \bullet ARG1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16})$	

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

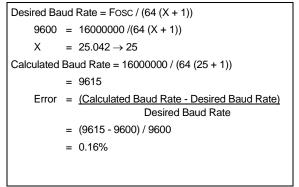
	MOVFP	ARG1L, WREG		
	MULWF		;	ARG1L * ARG2L ->
				PRODH: PRODL
	MOVPF	PRODH, RES1		
		PRODL, RESO		
;			'	
'	MOVFP	ARG1H, WREG		
	MULWF	ARG2H		ARG1H * ARG2H ->
				PRODH: PRODL
	MOVPF	PRODH, RES3		1110211111022
		PRODL, RES2		
;		111022, 11202	'	
'	MOVFP	ARG1L, WREG		
	MULWF			ARG1L * ARG2H ->
			;	
	MOVFP	PRODL, WREG		I KODII I KODII
	ADDWF			Add cross
	MOVFP	PRODH, WREG		
				products
	CLRF		;	
		WREG, F RES3, F		
	ADDWFC	RESS, F	;	
;	MOVFP	ADCIN MDEC		
		ARG1H, WREG		
	MULWF	ARG2L		ARG1H * ARG2L ->
	MOUTED			PRODH: PRODL
	MOVFP	PRODL, WREG RES1, F		
	MOVFP			products
	ADDWFC	RES2, F	;	
	CLRF	WREG, F	;	
	ADDWFC	RES3, F	;	
;	DEFIC			
		AKGZA, /	;	ARG2H:ARG2L neg?
	GOTO			no, check ARG1
	MOVFP	ARG1L, WREG	;	
	SUBWF	RES2	;	
	MOVFP	ARG1H, WREG	;	
	SUBWFB	RES3		
;	CNI ADC1			
SI	GN_ARG1			ADCILLADCIL DC-2
	BTFSS	CONT_CODE		ARG1H:ARG1L neg?
	GOTO			no, done
	MOVFP	ARG2L, WREG	;	
	SUBWF	RES2	;	
	MOVFP	ARG2H, WREG	;	
	SUBWFB	KES3		
;				
CO	NT_CODE			
	:			
1				

14.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 14-2 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in Synchronous Master mode (internal clock) and Asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 14-2: BAUD RATE FORMULA


SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 14-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 14-1: CALCULATING BAUD RATE ERROR

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

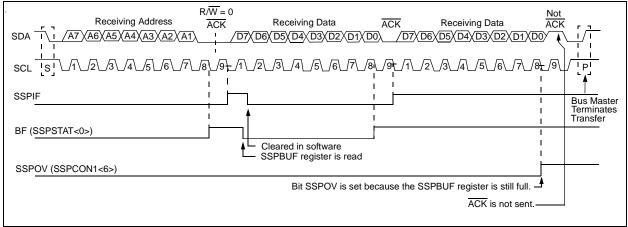
Effects of Reset

After any device RESET, the SPBRG register is cleared. The SPBRG register will need to be loaded with the desired value after each RESET.

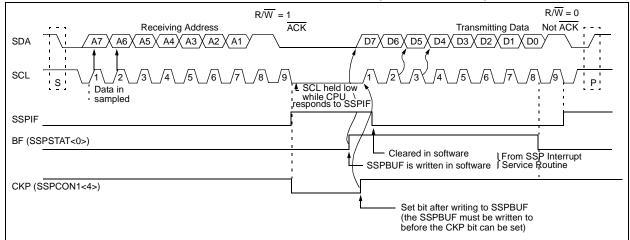
	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
	13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
USART	15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
ns	17h, Bank 0	SPBRG1	Baud Rat	Baud Rate Generator Register							0000 0000	0000 0000
2	13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
USART2	15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	_		TRMT	TX9D	00001x	00001u
N	17h, Bank 4	SPBRG2	Baud Rat	e Genera	tor Registe	r					0000 0000	0000 0000

TABLE 14-3: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Baud Rate Generator.


REGISTER 15-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 13h, BANK 6) R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP CKE D/A Р S R/W UA BF bit 7 bit 0 bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in Slave mode In I²C Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High Speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select (Figure 15-6, Figure 15-8 and Figure 15-9) CKP = 0: 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK CKP = 1: 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK bit 5 D/A: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address P: STOP bit bit 4 $(l^2C \text{ mode only})$. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last bit 3 S: START bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last **R/W**: Read/Write bit Information (I²C mode only) bit 2 This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or not ACK bit. In I²C Slave mode: 1 = Read 0 = WriteIn I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress Or'ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. bit 1 **UA**: Update Address (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit Receive (SPI and I²C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I²C mode only) 1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the \overline{ACK} and STOP bits), SSPBUF is empty Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

15.2.1.3 Slave Transmission


When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then SCL pin should be enabled by setting bit CKP (SSPCON1<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 15-13). An SSP interrupt is generated for each data transfer byte. The SSPIF flag bit must be cleared in software, and the SSPSTAT register is used to determine the status of the byte transfer. The SSPIF flag bit is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the not ACK is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, the SCL pin should be enabled by setting the CKP bit.

FIGURE 15-12: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

FIGURE 15-13: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

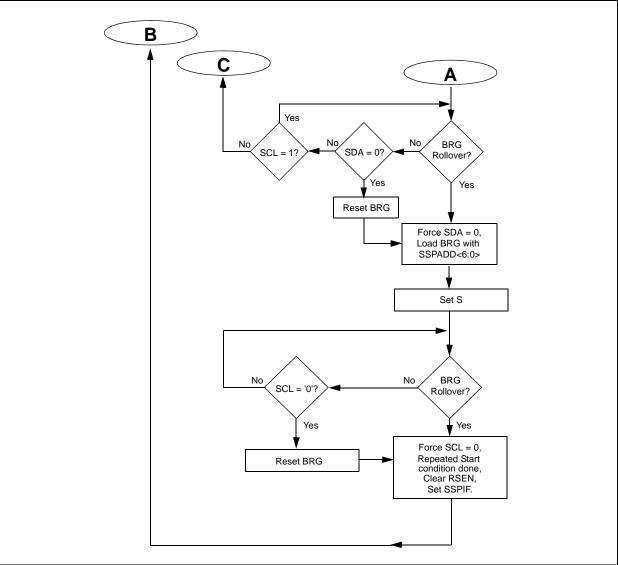
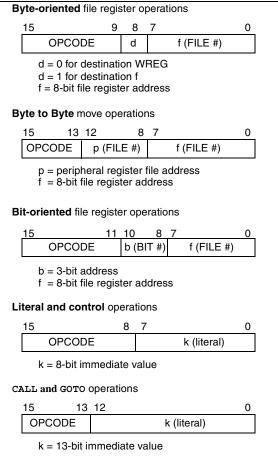


Table 18-2 lists the instructions recognized by the MPASM assembler.

Note 1: Any unused opcode is Reserved. Use of any reserved opcode may cause unexpected operation.

All instruction examples use the following format to represent a hexadecimal number:

0xhh


where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 18-1: GENERAL FORMAT FOR INSTRUCTIONS

18.1 Special Function Registers as Source/Destination

The PIC17C7XX's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

18.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA and then set the Z bit leaving 0000 0100b in the register.

18.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCH \to PCLATH; PCL \to dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	PCL \rightarrow ALU operand PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

18.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write (R-M-W)). The user should keep this in mind when operating on some special function registers, such as ports.

Note:	Status bits that are manipulated by the
	device (including the interrupt flag bits) are
	set or cleared in the Q1 cycle. So, there is
	no issue on doing R-M-W instructions on
	registers which contain these bits

Mnemonio	C,	Description	Quality		16-bit (Opcode	•	Status	Nate
Operands		Description	Cycles	MSb	MSb		LSb	Affected	Notes
TSTFSZ	f	Test f, skip if 0	1 (2)	0011	0011	ffff	ffff	None	6,8
XORWF	f,d	Exclusive OR WREG with f	1	0000	110d	ffff	ffff	Z	
BIT-ORIE	NTED FI	LE REGISTER OPERATIONS	1						1
BCF	f,b	Bit Clear f	1	1000	1bbb	ffff	ffff	None	
BSF	f,b	Bit Set f	1	1000	0bbb	ffff	ffff	None	
BTFSC	f,b	Bit test, skip if clear	1 (2)	1001	1bbb	ffff	ffff	None	6,8
BTFSS	f,b	Bit test, skip if set	1 (2)	1001	0bbb	ffff	ffff	None	6,8
BTG	f,b	Bit Toggle f	1	0011	1bbb	ffff	ffff	None	
LITERAL	AND CO	NTROL OPERATIONS	1						1
ADDLW	k	ADD literal to WREG	1	1011	0001	kkkk	kkkk	OV,C,DC,Z	
ANDLW	k	AND literal with WREG	1	1011	0101	kkkk	kkkk	Z	
CALL	k	Subroutine Call	2	111k	kkkk	kkkk	kkkk	None	7
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
GOTO	k	Unconditional Branch	2	110k	kkkk	kkkk	kkkk	None	7
IORLW	k	Inclusive OR literal with WREG	1	1011	0011	kkkk	kkkk	Z	
LCALL	k	Long Call	2	1011	0111	kkkk	kkkk	None	4,7
MOVLB	k	Move literal to low nibble in BSR	1	1011	1000	uuuu	kkkk	None	
MOVLR	k	Move literal to high nibble in BSR	1	1011	101x	kkkk	uuuu	None	
MOVLW	k	Move literal to WREG	1	1011	0000	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	1011	1100	kkkk	kkkk	None	
RETFIE	_	Return from interrupt (and enable interrupts)	2	0000	0000	0000	0101	GLINTD	7
RETLW	k	Return literal to WREG	2	1011	0110	kkkk	kkkk	None	7
RETURN	_	Return from subroutine	2	0000	0000	0000	0010	None	7
SLEEP	_	Enter SLEEP mode	1	0000	0000	0000	0011	TO, PD	
SUBLW	k	Subtract WREG from literal	1	1011	0010	kkkk	kkkk	OV,C,DC,Z	
XORLW	k	Exclusive OR literal with WREG	1	1011	0100	kkkk	kkkk	Z	

TABLE 18-2: PIC17CXXX INSTRUCTION SET (CONTINUED)

Legend: Refer to Table 18-1 for opcode field descriptions.

Note 1: 2's Complement method.

2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL).

5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.

6: Two-cycle instruction when condition is true, else single cycle instruction.

7: Two-cycle instruction except for TABLRD to PCL (program counter low byte), in which case it takes 3 cycles.

8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead a NOP is executed.

BTF	SS	Bit Test, skip if Set							
Synt	ax:	[label]	ΒT	FSS f,t)				
Ope	rands:	$0 \le f \le 12$ $0 \le b < 7$							
Ope	ration:	skip if (f<		-) = 1					
Statu	us Affected:	None							
Enco	oding:	1001		0bbb	fff	f	ffff		
Description: If bit 'b' in register 'f' is 1, th instruction is skipped. If bit 'b' is 1, then the next fetched during the current cution is discarded and a M instead, making this a two instruction.					next ir rrent ir id a NC	nstru nstru DP is	ction ction exe- executed		
Word	ds:	1							
Cycl	es:	1(2)							
QC	cle Activity:	. ,							
	Q1	Q2		Q3	3		Q4		
	Decode	Read register 'f	e,	Proce Data			No peration		
lf ski	p:								
	Q1	Q2		Q3			Q4		
	No	No		No			No		
	operation	operation	1	operat	tion	op	peration		
<u>Exar</u>	<u>nple</u> :	HERE FALSE TRUE	B1 : :	FSS	FLAG	,1			
Before Instruction PC = add				ress (HE	RE)				
After Instruction If FLAG<1> PC If FLAG<1> PC		1> = 0 = a 1> = 1	;	ress (FA ress (TR					

BTG	Bit roggi	Bit Toggle f						
Syntax:	[<i>label</i>] B	TG f,b						
Operands:	$0 \le f \le 255$ $0 \le b < 7$							
Operation:	$(\overline{f} < b >) \rightarrow ($	(f)						
Status Affected:	None							
Encoding:	0011	1bbb	ff	ff	ffff			
Description:	Bit 'b' in da inverted.	ta memory	loca	ition 'f	' is			
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		(ຊ4			
Decode	Read register 'f'	Proces Data	S		/rite ster 'f'			
Evenale								
Example:	BTG I	PORTC,	4					
Before Instru PORTC		0101 [0x75	5]					
After Instruction:								

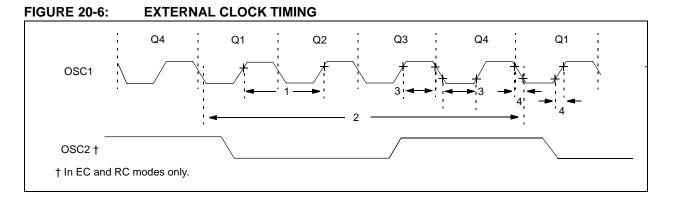
After Instruction: PORTC = 0110 0101 [0x65]

NEG	W	Negate W						
Synt	ax:	[<i>label</i>] N	EGW	f,s				
Ope	rands:	$0 \le f \le 255$ s $\in [0,1]$	5					
Ope	ration:	WREG + 2 WREG + 2						
Statu	us Affected:	OV, C, DC	;, Z					
Enco	oding:	0010	110s	ffff	ffff			
Des	cription:	WREG is ne ment. If 's' i WREG and 's' is 1, the memory loc	s 0, the r data me result is	result is pla emory loca	aced in tion 'f'. If			
Wor	ds:	1	1					
Cycl	es:	1						
QC	vcle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register 'f'	Proce Dat	a re ar	Write gister 'f' nd other pecified egister			
			•	•				
<u>Exar</u>	<u>mple</u> :	NEGW R	EG,0					
	Before Instru WREG	= 0011 1	.010 [0x :					

NOF)	No Operation						
Synt	ax:	[label]	NOP					
Ope	rands:	None						
Ope	ration:	No operation						
Status Affected: None								
Encoding:		0000	0000	0000		0000		
Des	cription:	No operati	on.					
Wor	ds:	1						
Cycl	es:	1						
QC	vcle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No operation	No operation		ор	No peration		

Example:

None.


WREG	=	0011	1010 [0x3A] ,
REG	=	1010	1011 [0xAB]
After Instruct	tion		
WREG	=	1100	0110 [0xC6]
REG	=	1100	0110 [0xC6]

SWA	APF	Swap f							
Synt	tax:	[label]	SWAPF	f,d					
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \left[0,1\right] \end{array}$	5						
Ope	ration:	$f<3:0> \rightarrow f<7:4> \rightarrow$,					
State	us Affected:	None							
Enc	oding:	0001	110d	ffff	ffff				
Des	cription:	'f' are exch placed in V	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed in register 'f'.						
Wor	ds:	1	1						
Cycl	les:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read register 'f'	Proce Dat		Vrite to stination				
<u>Exa</u>	mple: Before Instru REG After Instruct REG	iction = 0x53	REG,	0					

ТАВ	LRD	Tab	Table Read							
Synt	ax:	[<i>la</i>	[label] TABLRD t,i,f							
Ope	rands:	i∈	0 ≤ f ≤ 255 i ∈ [0,1] t ∈ [0,1]							
Ope	ration:	TBI If t TBI If i TBI If i	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR If i = 0, TBLPTR is unchanged							
Statu	us Affected	: No	None							
Enco	oding:	1	1010 10ti ffff ffff							
Deso	cription:	1.	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 1: the high byte is moved; If t = 0: the low byte is moved. 							
		2.	gram by th (TBLF	memory lo ne 16-bit PTR) are	tents of t ocation po Table loaded i ch (TBLA	nted to Pointer nto the				
		3.	 If i = 1: TBLPTR is incremented; If i = 0: TBLPTR is not incremented. 							
Wor	ds:	1	1							
Cycl	es:	2 (3	2 (3-cycle if f = PCL)							
QC	cle Activity	/:								
	Q1	Q	2	Q3	(Q4				
	Decode	Re regi: TBLA	ster	Proces Data	-	/rite ister 'f'				

Decode	Read	Process	Write
	register	Data	register 'f'
	TBLATH or		
	TBLATL		
No	No	No	No
operation	operation	operation	operation
	(Table Pointer		(OE goes low)
	on Address		
	bus)		

20.4 Timing Diagrams and Specifications

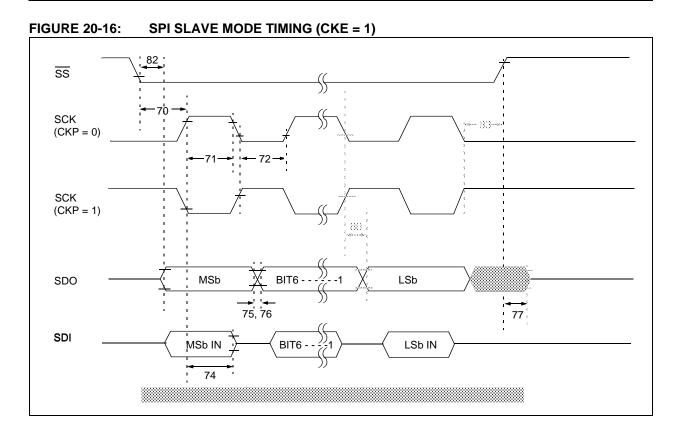


TABLE 20-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN	DC		8	MHz	EC osc mode - 08 devices (8 MHz devices)
		Frequency (Note 1)	DC	—	16	MHz	- 16 devices (16 MHz devices)
			DC	—	33	MHz	- 33 devices (33 MHz devices)
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	2	—	8	MHz	XT osc mode - 08 devices (8 MHz devices)
			2	—	16	MHz	- 16 devices (16 MHz devices)
			2	—	33	MHz	- 33 devices (33 MHz devices)
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	125	Ι		ns	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	62.5	—	—	ns	- 16 devices (16 MHz devices)
			30.3	_	—	ns	- 33 devices (33 MHz devices)
		Oscillator Period	250			ns	RC osc mode
		(Note 1)	125	—	1,000	ns	XT osc mode - 08 devices (8 MHz devices)
			62.5	—	1,000	ns	 16 devices (16 MHz devices)
			30.3	—	1,000	ns	- 33 devices (33 MHz devices)
			500	—	—	ns	LF osc mode
2	Тсү	Instruction Cycle Time	121.2	4/Fosc	DC	ns	
		(Note 1)					
3	TosL,	Clock in (OSC1)	10	_	_	ns	EC oscillator
	TosH	High or Low Time					
4	TosR,	Clock in (OSC1)	_	_	5	ns	EC oscillator
	TosF	Rise or Fall Time					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 20-11:	SPI MODE REQUIREMENTS (SLAVE MODE, CKE = 1)
--------------	---

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30		—	ns	
71A		(Slave mode)	Single Byte	40		—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	—	—	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance		10		50	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge			—	50	ns	
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	—	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

SEEVAL Evaluation and Programming System236
Serial Clock, SCK
Serial Clock, SCL
Serial Data Address, SDA
Serial Data In, SDI
Serial Data Out, SDO 137
SETF
SFR198
SFR (Special Function Registers)43
SFR As Source/Destination
Signed Math 11
Slave Select Synchronization
Slave Select, SS
SLEEP
SLEEP Mode, All Peripherals Disabled
SLEEP Mode, BOR Enabled
SMP
Software Simulator (MPLAB SIM)
SPBRG
SPBRG1
SPBRG2
SPE
Special Features of the CPU
Summary
SPI
Master Mode 139
Serial Clock
Serial Data In
Serial Data Out
Serial Peripheral Interface (SPI)
Slave Select
SPI clock
SPI Mode
SPI Clock Edge Select, CKE
SPI Data Input Sample Phase Select, SMP 134
SPI Master/Slave Connection
SPI Module
Master/Slave Connection
Slave Mode140
Slave Select Synchronization140
Slave Synch Timing 140
<u>SS</u> 137
SSP133
Block Diagram (SPI Mode)137
SPI Mode 137
SSPADD 144, 145
SSPBUF
SSPCON1
SSPCON2
SSPSR
SSPSTAT
SSP I ² C
SSP I ² C Operation
SSP Module SPI Master Mode
SPI Master Mode
SPI Master/Slave Connection
SSPCON1 Register
SSP Overliow Detect bit, SSPOV
SSFADD
SSFB0F
SSPCON1
SSPEN

SSPIE	36
SSPIF	. 38, 145
SSPM3:SSPM0	135
SSPOV 135,	144, 162
SSPSTAT	
ST Input	278
Stack	
Operation	
Pointer	
Stack	
START bit (S)	
START Condition Enabled bit, SAE	
STKAV	
STOP bit (P)	
STOP Condition Enable bit	136
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
Synchronous Master Mode	
Synchronous Master Reception	
Synchronous Master Transmission	107
Synchronous Serial Port	
Synchronous Serial Port Enable bit, SSPEN	
Synchronous Serial Port Interrupt	
Synchronous Serial Port Interrupt Enable, SSPIE	
Synchronous Serial Port Mode Select bits,	
SSPM3:SSPM0	
Synchronous Slave Mode	131
Т	
TOCKI	39
T0CKI Pin	40
T0CKIE	34
	••••••
TOCKIF	
TOCKIF	
	34 53, 97
TOCS	34 53, 97 34
TOCS TOIE	34 53, 97 34 34
T0CS T0IE T0IF	34 53, 97 34 34 53, 97
T0CS	
T0CS	34 53, 97 34 34 53, 97 53 101
TOCS	
TOCS	
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read	
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example	34 53, 97 34 34 53, 97 53 101 55 55 64
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section	34 53, 97 34 53, 97 53 101 55 55 64 64
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example	34 53, 97 34 53, 97 53 101 55 55 64 64
TOCS	34
TOCS	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing	34 53, 97 34 53, 97 53 101 55 55 64 64 64 62 62
TOCS	34
TOCS	34
TOCS	34 53, 97 34 53, 97 53 101 55 55 64 64 64 64 62 62 62 227, 228 228, 229
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT	34 53, 97 34 53, 97 53 101 55 55 64 64 64 64 62 62 62 227, 228 228, 229 185
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL TBLPTRH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL TBLPTRH TBLPTRL TCLK12	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TCLK12 TCLK3	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TBLPTRH TCLK12 TCON1	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TAL TBLATH TBLATH TBLPTRH TCLK12 TCON1 TCON2	34
TOCS TOIE TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLRD TABLATL TBLATH TBLPTRH TCLK12 TCON1 TCON2 TCON2,TCON3	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TBLPTRL TCLK12 TCON1 TCON2 TCON3	34
TOCS TOIE TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLRD TABLATL TBLATH TBLPTRH TCLK12 TCON1 TCON2 TCON2,TCON3	34

 \odot 1998-2013 Microchip Technology Inc.