

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c766t-33i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1: PINOUT DESCRIPTIONS								
	Р	PIC17C75	5X	PIC17	7C76X			
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	47	50	39	62	49	I	ST	Oscillator input in Crystal/Resonator or RC Oscillator mode. External clock input in External Clock mode.
OSC2/CLKOUT	48	51	40	63	50	0	_	Oscillator output. Connects to crystal or resonator in Crystal Oscillator mode. In RC Oscillator or External Clock modes, OSC2 pin outputs CLKOUT which has one fourth the frequency (Fosc/4) of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	15	16	7	20	9	I/P	ST	Master clear (RESET) input or Programming Voltage (VPP) input. This is the active low RESET input to the device.
								PORTA pins have individual differentiations that are listed in the following descriptions:
RA0/INT	56	60	48	72	58	Ι	ST	RA0 can also be selected as an external inter- rupt input. Interrupt can be configured to be on positive or negative edge. Input only pin.
RA1/T0CKI	41	44	33	56	43	I	ST	RA1 can also be selected as an external inter- rupt input and the interrupt can be configured to be on positive or negative edge. RA1 can also be selected to be the clock input to the Timer0 timer/counter. Input only pin.
RA2/SS/SCL	42	45	34	57	44	I/O ⁽²⁾	ST	RA2 can also be used as the slave select input for the SPI or the clock input for the I ² C bus. High voltage, high current, open drain port pin.
RA3/SDI/SDA	43	46	35	58	45	I/O ⁽²⁾	ST	RA3 can also be used as the data input for the SPI or the data for the I ² C bus. High voltage, high current, open drain port pin.
RA4/RX1/DT1	40	43	32	51	38	I/O ⁽¹⁾	ST	RA4 can also be selected as the USART1 (SCI) Asynchronous Receive or USART1 (SCI) Synchronous Data. Output available from USART only.
RA5/TX1/CK1	39	42	31	50	37	I/O ⁽¹⁾	ST	RA5 can also be selected as the USART1 (SCI) Asynchronous Transmit or USART1 (SCI) Synchronous Clock. Output available from USART only.
								PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	55	59	47	71	57	I/O	ST	RB0 can also be the Capture1 input pin.
RB1/CAP2	54	58	46	70	56	I/O	ST	RB1 can also be the Capture2 input pin.
RB2/PWM1	50	54	42	66	52	I/O	ST	RB2 can also be the PWM1 output pin.
RB3/PWM2	53	57	45	69	55	I/O	ST	RB3 can also be the PWM2 output pin.
RB4/TCLK12	52	56	44	68	54	I/O	ST	RB4 can also be the external clock input to Timer1 and Timer2.
RB5/TCLK3	51	55	43	67	53	I/O	ST	RB5 can also be the external clock input to Timer3.
RB6/SCK	44	47	36	59	46	I/O	ST	RB6 can also be used as the master/slave clock for the SPI.
RB7/SDO	45	48	37	60	47	I/O	ST	RB7 can also be used as the data output for the SPI.

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

DS30289C-page 14

			v				2)	
Nomo	F		N	PICT				Description
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
								PORTG is a bi-directional I/O Port.
RG0/AN3	32	34	24	42	30	I/O	ST	RG0 can also be analog input 3.
RG1/AN2	31	33	23	41	29	I/O	ST	RG1 can also be analog input 2.
RG2/AN1/VREF-	30	32	22	40	28	I/O	ST	RG2 can also be analog input 1, or
								the ground reference voltage.
RG3/AN0/VREF+	29	31	21	39	27	I/O	ST	RG3 can also be analog input 0, or the positive reference voltage.
RG4/CAP3	35	38	27	46	33	I/O	ST	RG4 can also be the Capture3 input pin.
RG5/PWM3	36	39	28	47	34	I/O	ST	RG5 can also be the PWM3 output pin.
RG6/RX2/DT2	38	41	30	49	36	I/O	ST	RG6 can also be selected as the USART2 (SCI) Asynchronous Receive or USART2 (SCI) Synchronous Data.
RG7/TX2/CK2	37	40	29	48	35	I/O	ST	RG7 can also be selected as the USART2 (SCI) Asynchronous Transmit or USART2 (SCI) Synchronous Clock.
								PORTH is a bi-directional I/O Port. PORTH is only
RH0	—	—	_	10	79	I/O	ST	available on the PIC17C76X devices.
RH1	—	—	_	11	80	I/O	ST	
RH2	—	—	—	12	1	I/O	ST	
RH3	—	—	—	13	2	I/O	ST	
RH4/AN12	—	—	—	31	19	I/O	ST	RH4 can also be analog input 12.
RH5/AN13	—	—	_	32	20	I/O	ST	RH5 can also be analog input 13.
RH6/AN14	—	—	_	33	21	I/O	ST	RH6 can also be analog input 14.
RH7/AN15	_	_		34	22	I/O	ST	RH7 can also be analog input 15.
								PORTJ is a bi-directional I/O Port. PORTJ is only available on the PIC17C76X devices.
RJ0	—	—	_	52	39	I/O	ST	
RJ1	—	—	—	53	40	I/O	ST	
RJ2	—	—	—	54	41	I/O	ST	
RJ3	—	—	_	55	42	I/O	ST	
RJ4	—	—	_	73	59	I/O	ST	
RJ5	_	—	_	74	60	1/0	SI	
R 17	_		_	75 76	62	1/O	SI	
TEST	16	17	8	21	10	1/0	ST	Test mode selection control input. Always tie to VSS for normal operation
Vss	17, 33, 49, 64	19, 36, 53, 68	9, 25, 41, 56	23, 44, 65, 84	11, 31,	Ρ		Ground reference for logic and I/O pins.
Vdd	1, 18,	2, 20,	10, 26,	24, 45,	12, 32,	Р		Positive supply for logic and I/O pins.
A)/cc	34, 46	37, 49,	38, 57	01,2	48,71	Р		Cround reference for A/D converter
AVSS	28	30	20	38	26	Р		This pin MUST be at the same potential as Vss.
AVDD	27	29	19	37	25	Ρ		Positive supply for A/D converter. This pin MUST be at the same potential as VDD.
NC	_	1, 18, 35, 52	_	1, 22, 43, 64	_			No Connect. Leave these pins unconnected.

TABLE 3-1: PINOUT DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

FIGURE 4-2:

CRYSTAL OR CERAMIC RESONATOR OPERATION (XT OR LF OSC CONFIGURATION)

TABLE 4-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2 ⁽¹⁾
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator, but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Note 1: These values include all board capacitances on this pin. Actual capacitor value depends on board capacitance.

Resonators Used:					
455 kHz	Panasonic EFO-A455K04B	± 0.3%			
2.0 MHz	Murata Erie CSA2.00MG	$\pm 0.5\%$			
4.0 MHz	Murata Erie CSA4.00MG	$\pm 0.5\%$			
8.0 MHz	Murata Erie CSA8.00MT	$\pm 0.5\%$			
16.0 MHz	Murata Erie CSA16.00MX	$\pm 0.5\%$			
Resonators used did not have built-in capacitors.					

FIGURE 4-3:

CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC

CONFIGURATION)

TABLE 4-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Freq	C1 ⁽²⁾	C2 ⁽²⁾
LF	32 kHz	100-150 pF	100-150 pF
	1 MHz	10-68 pF	10-68 pF
	2 MHz	10-68 pF	10-68 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz	15-47 pF	15-47 pF
	16 MHz	15-47 pF	15-47 pF
	24 MHz ⁽¹⁾	15-47 pF	15-47 pF
	32 MHz ⁽¹⁾	10-47 pF	10-47 pF

Higher capacitance increases the stability of the oscillator, but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- **Note 1:** Overtone crystals are used at 24 MHz and higher. The circuit in Figure 4-3 should be used to select the desired harmonic frequency.
 - **2:** These values include all board capacitances on this pin. Actual capacitor value depends on board capacitance.

Crystals Used:					
32.768 kHz	Epson C-001R32.768K-A	\pm 20 PPM			
1.0 MHz	ECS-10-13-1	\pm 50 PPM			
2.0 MHz	ECS-20-20-1	\pm 50 PPM			
4.0 MHz	ECS-40-20-1	\pm 50 PPM			
8.0 MHz	ECS ECS-80-S-4 ECS-80-18-1	\pm 50 PPM			
16.0 MHz	ECS-160-20-1	\pm 50 PPM			
25 MHz	CTS CTS25M	\pm 50 PPM			
32 MHz	CRYSTEK HF-2	\pm 50 PPM			

6.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) contains the flag and enable bits for non-peripheral interrupts.

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR registers (Figure 6-4 and Figure 6-5).

Note:	All interrupt flag bits get set by their speci-
	fied condition, even if the corresponding
	interrupt enable bit is clear (interrupt dis-
	abled), or the GLINTD bit is set (all inter-
	rupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the RESET address (0x00).

Prior to disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

REGISTER 6-1: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PEIF	T0CKIF	TOIF	INTF	PEIE	TOCKIE	TOIE	INTE			
	bit 7							bit 0			
bit 7	PEIF: Peri	pheral Interru	pt Flag bit								
	The interr	ne OR of all p	peripheral in	errupt flag b	ts AND'ed v	vith their corres	ponding er	able bits.			
	pending.	ipt logic tore	co program					tonupt is			
	1 = A perip	oheral interru	pt is pending	I							
	0 = No per	ipheral interr	upt is pendir	ng							
bit 6	TOCKIF: E	xternal Interr	upt on TOCK	I Pin Flag bi	t Logio forece i		ion to addr	200 (19h)			
	1 = The sc	oftware specif	ied edge oc	curred on the	RA1/T0CK	program execut I pin		:55 (1011).			
	0 = The sc	ftware specif	ied edge did	not occur or	the RA1/T	0CKI pin					
bit 5	TOIF: TMR	0 Overflow Ir	nterrupt Flag	bit							
	This bit is cleared by hardware, when the interrupt logic forces program execution to address (10h).										
	$\perp = TMR0$ 0 = TMR0	did not overfl	low								
bit 4	INTE: Exte	rnal Interrupt	on INT Pin	Flag bit							
	This bit is cleared by hardware, when the interrupt logic forces program execution to address (08h).										
	1 = The software specified edge occurred on the RA0/INT pin										
L:1.0	0 = The so	oftware specif	ied edge did	not occur or	h the RAU/IN	NI pin					
DIT 3	PEIE: Peripheral Interrupt Enable bit This bit acts as a global enable bit for the peripheral interrupts that have their corresponding										
	enable bits set.										
	1 = Enable peripheral interrupts										
		e peripheral i	nterrupts								
bit 2	1 = Enable	xternal Interr	upt on TUCK	interrupt on	bit the RA1/T00	CKL nin					
	0 = Disable	e interrupt on	the RA1/T0	CKI pin							
bit 1	TOIE: TMR	0 Overflow Ir	nterrupt Enal	ble bit							
	1 = Enable	TMR0 overf	low interrupt								
		e IMR0 over	flow interrup	t 							
Dit U	INTE: External Interrupt on RA0/INT Pin Enable bit $1 = Enable software specified edge interrupt on the RA0/INT pin$										
	0 = Disable	e software sp	ecified edge	interrupt on	the RA0/IN	T pin					
	Legend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	nplemented bit,	read as '0'				

'1' = Bit is set

- n = Value at POR Reset

x = Bit is unknown

'0' = Bit is cleared

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
Unbanke	d										
00h	INDF0	Uses conte	ents of FSR	0 to address	Data Memo	ry (not a phy	sical registe	r)			
01h	FSR0	Indirect Da	ata Memory	Address Poi	inter 0					XXXX XXXX	uuuu uuuu
02h	PCL	Low order	8-bits of PC	;						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding Re	egister for u	oper 8-bits o	f PC					0000 0000	uuuu uuuu
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu
05h	TOSTA	INTEDG	T0SE	TOCS	T0PS3	T0PS2	T0PS1	T0PS0	_	0000 000-	0000 000-
06h ⁽²⁾	CPUSTA	_	_	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
07h	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
08h	INDF1	Uses conte	ents of FSR	1 to address	Data Memo	ry (not a phy	sical registe	r)			
09h	FSR1	Indirect Da	ata Memory	Address Poi	inter 1					XXXX XXXX	uuuu uuuu
0Ah	WREG	Working R	egister							XXXX XXXX	uuuu uuuu
0Bh	TMR0L	TMR0 Reg	gister; Low E	Byte						XXXX XXXX	uuuu uuuu
0Ch	TMR0H	TMR0 Reg	gister; High I	Byte						XXXX XXXX	uuuu uuuu
0Dh	TBLPTRL	Low Byte of	of Program I	Memory Tab	le Pointer					0000 0000	0000 0000
0Eh	TBLPTRH	High Byte	of Program	Memory Tab	ole Pointer					0000 0000	0000 0000
0Fh	BSR	Bank Sele	ct Register							0000 0000	0000 0000
Bank 0											
10h	PORTA ^(4,6)	RBPU	—	RA5/TX1/ CK1	RA4/RX1/ DT1	RA3/SDI/ SDA	RA2/SS/ SCL	RA1/T0CKI	RA0/INT	0-xx 11xx	0-uu 11uu
11h	DDRB	Data Direc	tion Registe	r for PORTE	3	•	•			1111 1111	1111 1111
106		RB7/	RB6/	RB5/	RB4/	RB3/	RB2/	RB1/	RB0/		
1211	FORTBY /	SDO	SCK	TCLK3	TCLK12	PWM2	PWM1	CAP2	CAP1	****	uuuu uuuu
13h	RCSTA1	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG1	Serial Port	Receive Re	egister						XXXX XXXX	uuuu uuuu
15h	TXSTA1	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
16h	TXREG1	Serial Port	Transmit R	egister (for l	JSART1)					XXXX XXXX	uuuu uuuu
17h	SPBRG1	Baud Rate	Generator	Register (for	USART1)					0000 0000	0000 0000
Bank 1											
10h	DDRC ⁽⁵⁾	Data Direc	tion Registe	er for PORT)					1111 1111	1111 1111
11h	PORTC ^(4,5)	RC7/AD7	RC6/AD6	RC5/AD5	RC4/AD4	RC3/AD3	RC2/AD2	RC1/AD1	RC0/AD0	XXXX XXXX	uuuu uuuu
12h	DDRD ⁽⁵⁾	Data Direc	tion Registe	er for PORTE)	•				1111 1111	1111 1111
13h	PORTD ^(4,5)	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/AD9	RD0/AD8	xxxx xxxx	uuuu uuuu
14h	DDRE ⁽⁵⁾	Data Direc	tion Registe	er for PORTE						1111	1111
15h	PORTE ^(4,5)	—	—	—	—	RE3/ CAP4	RE2/WR	RE1/OE	RE0/ALE	xxxx	uuuu
16h	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000

TABLE 7-3: SPECIAL FUNCTION REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition.

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

7.2.2.2 CPU Status Register (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register has a bit that is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the Interrupt Status (INTSTA) register and the Peripheral Interrupt Enable (PIE) registers. The CPUSTA register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device

logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

The $\overrightarrow{\text{POR}}$ bit allows the differentiation between a Power-on Reset, external $\overrightarrow{\text{MCLR}}$ Reset, or a WDT Reset. The BOR bit indicates if a Brown-out Reset occurred.

Note 1: The BOR status bit is a don't care and is not necessarily predictable if the Brown-out circuit is disabled (when the BODEN bit in the Configuration word is programmed).

REGISTER 7-2: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

U-0	U-0	R-1	R/W-1	R-1	R-1	R/W-0	R/W-1
_	—	STKAV	GLINTD	TO	PD	POR	BOR
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5	STKAV: Stack Available bit
	This bit indicates that the 4-bit stack pointer value is Fh, or has rolled over from Fh \rightarrow 0h
	(stack overflow).
	 0 = Stack is full, or a stack overflow may have occurred (once this bit has been cleared by a stack overflow, only a device RESET will set this bit)
bit 4	GLINTD: Global Interrupt Disable bit
	This bit disables all interrupts. When enabling interrupts, only the sources with their enable bits set can cause an interrupt.
	1 = Disable all interrupts
1.11.0	
bit 3	TO: WD1 Time-out Status bit
	0 = A Watchdog Timer time-out occurred
bit 2	PD: Power-down Status bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set by software)
bit 0	BOR: Brown-out Reset Status bit
	When BODEN Configuration bit is set (enabled):
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set by software)
	When BODEN Configuration bit is clear (disabled):
	Don't care
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
 n = Value at POR Reset 	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR.

A simple program to clear RAM from 20h - FFh is shown in Example 7-1.

EXAMPLE 7-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	;	FSR0 = 20h
	BCF	ALUSTA, FS1	;	Increment FSR
	BSF	ALUSTA, FSO	;	after access
	BCF	ALUSTA, C	;	C = 0
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0, F	;	Addr(FSR) = 0
	CPFSEQ	FSR0	;	$FSR0 = END_RAM+1?$
	GOTO	LP	;	NO, clear next
	:		;	YES, All RAM is
	:		;	cleared

7.5 Table Pointer (TBLPTRL and TBLPTRH)

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 8.0.

7.6 Table Latch (TBLATH, TBLATL)

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see TABLRD, TABLWT, TLRD and TLWT instruction descriptions). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 8.0.

PIC17C7XX

NOTES:

10.2 PORTB and DDRB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to PORTB will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any RESET.

PORTB also has an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB0 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'd together to set the PORTB Interrupt Flag bit, RBIF (PIR1<7>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt by:

- a) Read-Write PORTB (such as: MOVPF PORTB, PORTB). This will end the mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading, then writing PORTB, will end the mismatch condition and allow the RBIF bit to be cleared.

This interrupt-on-mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a keypad and makes it possible for wakeup on key depression. For an example, refer to Application Note AN552, "Implementing Wake-up on Keystroke."

The interrupt-on-change feature is recommended for wake-up on operations, where PORTB is only used for the interrupt-on-change feature and key depression operations.

Note: On a device RESET, the RBIF bit is indeterminate, since the value in the latch may be different than the pin.

FIGURE 10-5: BLOCK DIAGRAM OF RB5:RB4 AND RB1:RB0 PORT PINS

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N
	bit 7							bit 0
bit 7	CA2OVF: This bit in (CA2H:CA unread caj the capture 1 = Overfit 0 = No ove	Capture2 Ov idicates that .2L) before the pture value (e register with ow occurred erflow occurred	verflow Status the capture he next capt last capture I th the TMR3 on Capture2 red on Captu	s bit value had ure event oc before overfl value until th register re2 register	not been re ccurred. The low). Subseq ne capture re	ad from the capture regi uent capture gister has be	e capture register retains events will r een read (bot	gister pair the oldest not update th bytes).
bit 6	CA1OVF: This bit ind CA1H:PR3 est unread update the bytes). 1 = Overfit 0 = No ove	Capture1 Ov licates that th 3L/CA1L), be d capture va capture reg ow occurred erflow occurr	verflow Status ne capture va ifore the next lue (last cap jister with the on Capture1 red on Captu	s bit alue had not capture eve oture before TMR3 valu register re1 register	been read fro nt occurred. overflow). S e until the ca	om the captur The capture i Subsequent c apture registe	re register pa register retain apture even ar has been n	air (PR3H/ ns the old- ts will not read (both
bit 5	PWM2ON : 1 = PWM2 (The R 0 = PWM2 (The R	: PWM2 On I is enabled :B3/PWM2 p is disabled :B3/PWM2 p	bit in ignores the in uses the s	e state of the) DDRB<3> I ∙DRB<3> bit	bit.) for data direc	ction.)	
bit 4	PWM1ON : 1 = PWM1 (The R 0 = PWM1 (The R	: PWM1 On I is enabled B2/PWM1 p is disabled B2/PWM1 p	oit in ignores the in uses the s	e state of the	∋ DDRB<2> I ∙DRB<2> bit	bit.) for data direc	ction.)	
bit 3	CA1/PR3: 1 = Enable (PR3H 0 = Enable (PR3H	CA1/PR3 Re s Capture1 /CA1H:PR3L s the Period /CA1H:PR3L	egister Mode _/CA1L is the ⊧register ∟/CA1L is the	 Select bit Capture1 re Period regi 	əgister. Time ster for Time	r3 runs witho r3.)	ut a period r	egister.)
bit 2	TMR3ON : 1 = Starts 0 = Stops	Timer3 On b Timer3 Timer3	oit					
bit 1	TMR2ON : This bit con (T16 is set 1 = Starts 0 = Stops	Timer2 On to ntrols the inc i), TMR2ON Timer2 (mus Timer2	bit rementing of must be set. t be enabled	the TMR2 re This allows if the T16 b	egister. Whei the MSB of t it (TCON1<3	n TMR2:TMR he timer to in >) is set)	1 form the 1 crement.	6-bit timer
bit 0	TMR1ON: When T16 1 = Starts 0 = Stops When T16 1 = Starts 0 = Stops	Timer1 On b is set (in 16- 16-bit TMR2 16-bit TMR2 is clear (in 8 8-bit Timer1 8-bit Timer1	oit <u>-bit Timer mc</u> :TMR1 :TMR1 <u>3-bit Timer m</u>	<u>ode):</u> ode:				
	Legend:							

REGISTER 13-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

13.1 Timer1 and Timer2

13.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock (TcY), or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1, or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin and the counters will increment on every falling edge of the RB4/TCLK12 pin.

The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled/ disabled by setting/clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be set (PEIE = '1') and global interrupt must be enabled (GLINTD = '0').

The timers can be turned on and off under software control. When the timer on control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

13.1.1.1 External Clock Input for Timer1 and Timer2

When TMRxCS is set, the clock source is the RB4/ TCLK12 pin, and the counter will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

14.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RX/ DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE bit. RCIF is a read only bit which is reset by the hardware. In this case, it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR is set, transfers from RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 14.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic so that it will be in the proper state when receive is re-enabled.

FIGURE 14-10: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

REGISTER 15-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 13h, BANK 6) R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP CKE D/A Р S R/W UA BF bit 7 bit 0 bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in Slave mode In I²C Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High Speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select (Figure 15-6, Figure 15-8 and Figure 15-9) CKP = 0: 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK CKP = 1: 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK bit 5 D/A: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address P: STOP bit bit 4 (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last bit 3 S: START bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last **R/W**: Read/Write bit Information (I²C mode only) bit 2 This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or not ACK bit. In I²C Slave mode: 1 = Read 0 = WriteIn I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress Or'ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. bit 1 **UA**: Update Address (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit Receive (SPI and I²C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I²C mode only) 1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the \overline{ACK} and STOP bits), SSPBUF is empty Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address and if this will be a read or write data transfer.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON1<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

15.2.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs. The MSSP module will override the input state with the output data when required (slavetransmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the MSSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON1<6>) was set before the transfer was received.

If the BF bit is set, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF and SSPOV are set. Table 15-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101 of the Electrical Specifications.

15.2.5 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 15-17: SSP BLOCK DIAGRAM (I²C MASTER MODE)

15.2.11 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or either half of a 10-bit address, is accomplished by simply writing a value to SSPBUF register. This action will set the buffer full flag (BF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time spec). SCL is held low for one baud rate generator roll over count (TBRG). Data should be valid before SCL is released high (see Data setup time spec). When the SCL pin is released high, it is held that way for TBRG, the data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA, allowing the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurs or if data was received properly. The status of ACK is read into the ACKDT on the falling edge of the ninth clock. If the master receives an acknowledge, the acknowledge status bit (AKSTAT) is cleared. If not, the bit is set. After the ninth clock, the SSPIF is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 15-26).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

15.2.11.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

15.2.11.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

15.2.11.3 AKSTAT Status Flag

In Transmit mode, the AKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an acknowledge (ACK = 0) and is set when the slave does not acknowledge (ACK = 1). A slave sends an acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

18.0 INSTRUCTION SET SUMMARY

The PIC17CXXX instruction set consists of 58 instructions. Each instruction is a 16-bit word divided into an OPCODE and one or more operands. The opcode specifies the instruction type, while the operand(s) further specify the operation of the instruction. The PIC17CXXX instruction set can be grouped into three types:

- byte-oriented
- bit-oriented
- · literal and control operations

These formats are shown in Figure 18-1.

Table 18-1 shows the field descriptions for the opcodes. These descriptions are useful for understanding the opcodes in Table 18-2 and in each specific instruction descriptions.

For **byte-oriented instructions**, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' = '0', the result is placed in the WREG register. If 'd' = '1', the result is placed in the file register specified by the instruction.

For **bit-oriented instructions**, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control operations**, 'k' represents an 8or 13-bit constant or literal value.

The instruction set is highly orthogonal and is grouped into:

- byte-oriented operations
- bit-oriented operations
- · literal and control operations

All instructions are executed within one single instruction cycle, unless:

- a conditional test is true
- the program counter is changed as a result of an instruction
- a table read or a table write instruction is executed (in this case, the execution takes two instruction cycles with the second cycle executed as a NOP)

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 25 MHz, the normal instruction execution time is 160 ns. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 320 ns.

TABLE 18-1: OPCODE FIELD DESCRIPTIONS

Field	Description			
f	Register file address (00h to FFh)			
р	Peripheral register file address (00h to 1Fh)			
i	Table pointer control i = '0' (do not change)			
	i = '1' (increment after instruction execution)			
t	Table byte select t = '0' (perform operation on lower			
	byte) t = '1' (perform operation on upper byte literal field			
	constant data)			
WREG	Working register (accumulator)			
b	Bit address within an 8-bit file register			
k	Literal field, constant data or label			
x	Don't care location (= '0' or '1')			
	The assembler will generate code with $x = 0^{\circ}$. It is			
	the recommended form of use for compatibility with			
	all Microchip solution acleat			
a	0 = store result in WREG			
	1 = store result in file register f			
	Default is d = '1'			
u	Unused, encoded as '0'			
s	Destination select			
	0 = store result in file register f and in the WREG			
	Default is $s = '1'$			
label	Label name			
C,DC,	ALU status bits Carry, Digit Carry, Zero, Overflow			
GLINTD	Global Interrupt Disable bit (CPLISTA<4>)			
TBLPTR	Table Pointer (16-bit)			
TBLAT	Table Latch (16-bit) consists of high byte (TBLATH)			
	and low byte (TBLATL)			
TBLATL	Table Latch low byte			
TBLATH	Table Latch high byte			
TOS	Top-of-Stack			
PC	Program Counter			
BSR	Bank Select Register			
WDT	Watchdog Timer Counter			
TO	Time-out bit			
PD	Power-down bit			
dest	Destination either the WREG register or the speci-			
	nea register file location			
	Options Contents			
()				
\rightarrow	Assigned to			
<>	Register bit field			
∈	In the set of			
italics	User defined term (font is courier)			

PIC17C7XX

INFS	SNZ	Incremen	Increment f, skip if not 0						
Synt	ax:	[<i>label</i>] IN	NFSNZ	f,d					
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$						
Ope	ration:	(f) + 1 \rightarrow (skip if not	(f) + 1 \rightarrow (dest), skip if not 0						
Statu	us Affected:	None	None						
Enco	oding:	0010	010d	ffff	ffff				
Des	cription:	The conten mented. If ' WREG. If 'c back in reg If the result which is alr and a NOP	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is not 0, the next instruction, which is already fetched is discarded and a NOP is executed instead making						
		it a two-cyc	le instruct	ion.					
Wor	ds:	1	1						
Cycles:		1(2)	1(2)						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proces Data	ss d	Write to estination				
lf ski	ip:								
	Q1	Q2	Q3		Q4				
	No operation	No operation	No operati	on d	No operation				
<u>Example</u> :		HERE ZERO NZERO	INFSNZ	REG,	1				
	Before Instru REG	iction = REG							
	After Instruct REG If REG PC If REG PC	tion = REG + = 1; = Address = 0; = Address	1 s (zero) s (nzero)					

IORLW	Inclusive OR Literal with WREG								
Syntax:	[label]	IORLW k							
Operands:	$0 \le k \le 25$	55							
Operation:	(WREG) .	(WREG) .OR. (k) \rightarrow (WREG)							
Status Affected	l: Z	Z							
Encoding:	1011	0011 k	kkk	kkkk					
Description:	The conter the eight-b placed in V	The contents of WREG are OR'ed with the eight-bit literal 'k'. The result is placed in WREG.							
Words:	1	1							
Cycles:	1	1							
Q Cycle Activit	y:								
Q1	Q2	Q3		Q4					
Decode	Read literal 'k'	Process Data		Write to WREG					
Example:	IORLW	0x35							
Before Ins	truction		Before Instruction						

WREG	=	0x9A
After Instruc	tion	
WREG	=	0xBF

PIC17C7XX

TABLE 20-10: SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—	_	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	Ι	ns	
71A		(Slave mode)	Single Byte	40	—	Ι	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	_	ns	
72A		(Slave mode)	Single Byte	40	—	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100			ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40		Ι	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	_	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
77	TssH2doZ	SS [↑] to SDO output hi-impedan	ce	10	_	50	ns	
78	TscR	SCK output rise time (Master mode)		_	10	25	ns	
79	TscF	SCK output fall time (Master mode)		_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		_	—	50	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	_	ns	
+	Data in "Typ"	column is at 5V, 25°C unless oth	erwise stated.					

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.