

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K × 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc752-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.4 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/ CLKIN pin is hi-impedance and the OSC2/CLKOUT pin is the CLKOUT output (4 Tosc).

4.1.5 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used, or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 4-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 4-5:

EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 4-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

5.1 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

5.1.1 POWER-ON RESET (POR)

The Power-on Reset circuit holds the device in RESET until VDD is above the trip point (in the range of 1.4V -2.3V). The devices produce an internal RESET for both rising and <u>falling</u> VDD. To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD is required. See Electrical Specifications for details.

Figure 5-2 and Figure 5-3 show two possible POR circuits.

FIGURE 5-2: USING ON-CHIP POR

FIGURE 5-3: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

5.1.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 96 ms time-out (nominal) on power-up. This occurs from the rising edge of the internal POR signal if VDD and MCLR are tied, or after the first rising edge of MCLR (detected high). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. In most cases, the PWRT delay allows VDD to rise to an acceptable level.

The power-up time delay will vary from chip to chip and with VDD and temperature. See DC parameters for details.

5.1.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (1024Tosc) delay whenever the PWRT is invoked, or a wake-up from SLEEP event occurs in XT or LF mode. The PWRT and OST operate in parallel.

The OST counts the oscillator pulses on the OSC1/ CLKIN pin. The counter only starts incrementing after the amplitude of the signal reaches the oscillator input thresholds. This delay allows the crystal oscillator or resonator to stabilize before the device exits RESET. The length of the time-out is a function of the crystal/ resonator frequency.

Figure 5-4 shows the operation of the OST circuit. In this figure, the oscillator is of such a low frequency that although enabled simultaneously, the OST does not time-out until after the Power-up Timer time-out.

FIGURE 5-4: OSCILLATOR START-UP TIME(LOWFREQUENCY)

This figure shows in greater detail the timings involved with the oscillator start-up timer. In this example, the low frequency crystal start-up time is larger than power-up time (TPWRT).

Tosc1 = time for the crystal oscillator to react to an oscillation level detectable by the Oscillator Start-up Timer (OST).

TOST = 1024TOSC.

7.2 Data Memory Organization

Data memory is partitioned into two areas. The first is the General Purpose Registers (GPR) area, and the second is the Special Function Registers (SFR) area. The SFRs control and provide status of device operation.

Portions of data memory are banked, this occurs in both areas. The GPR area is banked to allow greater than 232 bytes of general purpose RAM.

Banking requires the use of control bits for bank selection. These control bits are located in the Bank Select Register (BSR). If an access is made to the unbanked region, the BSR bits are ignored. Figure 7-5 shows the data memory map organization.

Instructions MOVPF and MOVFP provide the means to move values from the peripheral area ("P") to any location in the register file ("F"), and vice-versa. The definition of the "P" range is from 0h to 1Fh, while the "F" range is 0h to FFh. The "P" range has six more locations than peripheral registers, which can be used as General Purpose Registers. This can be useful in some applications where variables need to be copied to other locations in the general purpose RAM (such as saving status information during an interrupt).

The entire data memory can be accessed either directly, or indirectly (through file select registers FSR0 and FSR1) (see Section 7.4). Indirect addressing uses the appropriate control bits of the BSR for access into the banked areas of data memory. The BSR is explained in greater detail in Section 7.8.

7.2.1 GENERAL PURPOSE REGISTER (GPR)

All devices have some amount of GPR area. The GPRs are 8-bits wide. When the GPR area is greater than 232, it must be banked to allow access to the additional memory space.

All the PIC17C7XX devices have banked memory in the GPR area. To facilitate switching between these banks, the MOVLR bank instruction has been added to the instruction set. GPRs are not initialized by a Poweron Reset and are unchanged on all other RESETS.

7.2.2 SPECIAL FUNCTION REGISTERS (SFR)

The SFRs are used by the CPU and peripheral functions to control the operation of the device (Figure 7-5). These registers are static RAM.

The SFRs can be classified into two sets, those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described here, while those related to a peripheral feature are described in the section for each peripheral feature.

The peripheral registers are in the banked portion of memory, while the core registers are in the unbanked region. To facilitate switching between the peripheral banks, the MOVLB bank instruction has been provided.

Example 10-2 shows an instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-2: INITIALIZING PORTB

MOVLB	0		; Select Bank 0
CLRF	PORTB,	F	; Init PORTB by clearing
			; output data latches
MOVLW	0xCF		; Value used to initialize
			; data direction
MOVWF	DDRB		; Set RB<3:0> as inputs
			; RB<5:4> as outputs
			; RB<7:6> as inputs

FIGURE 10-6: BLOCK DIAGRAM OF RB3:RB2 PORT PINS

FIGURE 10-7: BLOCK DIAGRAM OF RB6 PORT PIN

FIGURE 10-8: BLOCK DIAGRAM OF RB7 PORT PIN

10.7 PORTG and DDRG Registers

PORTG is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRG. A '1' in DDRG configures the corresponding port pin as an input. A '0' in the DDRG register configures the corresponding port pin as an output. Reading PORTG reads the status of the pins, whereas writing to PORTG will write to the port latch.

The lower four bits of PORTG are multiplexed with four channels of the 10-bit A/D converter.

The remaining bits of PORTG are multiplexed with peripheral output and inputs. RG4 is multiplexed with the CAP3 input, RG5 is multiplexed with the PWM3 output, RG6 and RG7 are multiplexed with the USART2 functions.

Upon RESET, RG3:RG0 is automatically configured as analog inputs and must be configured in software to be a digital I/O.

Example 10-7 shows the instruction sequence to initialize PORTG. The Bank Select Register (BSR) must be selected to Bank 5 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-7: INITIALIZING PORTG

MOVLB	5	; Select Bank 5
MOVLW	0x0E	; Configure PORTG as
MOVPF	WREG, ADCON1	; digital
CLRF	PORTG, F	; Initialize PORTG data
		; latches before
		; the data direction
		; register
MOVLW	0x03	; Value used to init
		; data direction
MOVWF	DDRG	; Set RG<1:0> as inputs
		; RG<7:2> as outputs

FIGURE 10-14: BLOCK DIAGRAM OF RG3:RG0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
16h, Bank 0	TXREG1	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	XXXX XXXX	uuuu uuuu
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	-	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	-	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 4	TXREG2	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	XXXX XXXX	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register						0000 0000	0000 0000

TABLE 14-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous slave transmission.

TABLE 14-11:	REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION
--------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 - 00x	0000 -00u
14h, Bank0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	_	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register						0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous slave reception.

						•	•	•
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
	bit 7							bit 0
bit 7	GCEN: Ge 1 = Enable	eneral Call Ena e interrupt whe	able bit (in l en a genera	² C Slave mo I call address	de only) s (0000h) is	received in tl	he SSPSR	
hit 6		ai cali auures: • Δcknowledge	s Status hit	(in I ² C Maste	ar mode only	ı)		
Dit O	<u>In Master</u> 1 = Ackno 0 = Ackno	<u>Transmit mode</u> wledge was newledge was re	e: ot received eceived from	from slave	i mode omy	()		
bit 5	ACKDT: A	kcknowledge D	Data bit (in l ²	² C Master me	ode only)			
	In Master Value that receive. 1 = Not Ac 0 = Ackno	Receive mode will be transm cknowledge wledge	<u>e:</u> nitted when t	the user initia	ates an Ackr	nowledge see	quence at th	e end of a
bit 4	ACKEN: A	Acknowledge S	Sequence E	nable bit (in	I ² C Master r	node only)		
	In Master 1 = Initiate Autom 0 = Ackno	Receive mode Acknowledge atically cleare wledge seque	<u>e:</u> e sequence d by hardwa nce idle	on SDA and are.	SCL pins ar	nd transmit A	KDT data bi	t.
	Note:	If the I ² C mo	dule is not i	in the IDLE n	node, this bi	t may not be	set (no spo	oling) and
		the SSPBUF	may not be	e written (or v	vrites to the	SSPBUF are	e disabled).	
bit 3	RCEN: Re 1 = Enable 0 = Receiv	eceive Enable es Receive mo ve idle	bit (in I ² C N ode for I ² C	laster mode	only)			
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	e set (no spo e disabled).	oling) and
bit 2	PEN: STC	P Condition E	nable bit (ir	n I ² C Master	mode only)			
	<u>SCK Rele</u> 1 = Initiate 0 = STOP	ase Control: STOP condit condition idle	ion on SDA	and SCL pir	is. Automati	cally cleared	by hardware	Э.
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	e set (no spo e disabled).	oling) and
bit 1	RSEN : Re 1 = Initiate 0 = Repea	epeated Start C e Repeated Sta ated Start conc	Condition Er art condition lition idle	nabled bit (in on SDA and	I ² C Master I SCL pins. <i>I</i>	mode only) Automatically	/ cleared by	hardware.
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	set (no spo disabled).	oling) and
bit 0	SEN: STA 1 = Initiate 0 = STAR	RT Condition START cond T condition idle	Enabled bit ition on SD/ e.	(In I ² C Mast A and SCL pi	er mode onl ns. Automa	y) tically cleare	d by hardwa	re.
	Note:	If the I ² C mo the SSPBUF	dule is not i may not be	in the IDLE n written (or v	node, this bi vrites to the	t may not be SSPBUF are	e set (no spo e disabled).	oling) and
	Legend:							
	R = Read	able bit	W = W	ritable bit	U = Unim	plemented b	it, read as 'C	,

- n = Value at POR Reset '1' = Bit is set

REGISTER 15-3: SSPCON2: SYNC SERIAL PORT CONTROL REGISTER2 (ADDRESS 12h, BANK 6)

x = Bit is unknown

'0' = Bit is cleared

15.1 SPI Mode

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)

15.1.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON1 register (SSPCON1<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase
 (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 15-4 shows the block diagram of the MSSP module when in SPI mode.

FIGURE 15-4:

MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR. until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and the interrupt flag bit SSPIF (PIR2<7>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON1<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

15.2.1.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- The SSPSR register value is loaded into the SSPBUF register on the falling edge of the 8th SCL pulse.
- b) The buffer full bit, BF, is set on the falling edge of the 8th SCL pulse.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR2<7>), is set (interrupt is generated if enabled) - on the falling edge of the 9th SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF and UA are set).

- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Note: Following the Repeated Start condition (step 7) in 10-bit mode, the user only needs to match the first 7-bit address. The user does not update the SSPADD for the second half of the address.

15.2.1.2 Slave Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR2<7>) must be cleared in software. The SSPSTAT register is used to determine the status of the received byte.

Note: The SSPBUF will be loaded if the SSPOV bit is set and the BF flag is cleared. If a read of the SSPBUF was performed, but the user did not clear the state of the SSPOV bit before the next receive occurred, the ACK is not sent and the SSP-BUF is updated.

Status B Transfer i	its as Data is Received	$SSPSR \to SSPBUF$	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs if enabled)		
BF SSPOV				if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	Yes	No	Yes		

TABLE 15-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

17.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC17CXXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection (Section 4.0)
- RESET (Section 5.0)
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts (Section 6.0)
- Watchdog Timer (WDT)
- SLEEP mode
- Code protection

The PIC17CXXX has a Watchdog Timer which can be shut-off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on POR and BOR. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 17-1.

High (H) Table Read Addr.	U-x	R/P-1	R/P-1	U-x	U-x	U-x	U-x	U-x	U-x
FE0Fh - FE08h	—	PM2	BODEN		_	—	_	_	
	bit 15 bit 8	bit 7							bit 0
Low (L) Table Read Addr.	U-x	U-x	R/P-1	U-x	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FE07h - FE00h		—	PM1	—	PM0	WDTPS1	WDTPS0	FOSC1	FOSC0
	bit 15 bit 8	bit 7							bit 0
bits 7H, 6L, 4L	PM2, PM1, I 111 = Micro 110 = Micro 101 = Exten 000 = Code	PM0: Pro processo controlle ded Micr Protecte	ocessor Mo or mode r mode rocontrolle od Microco	ode Sele r mode ntroller	ect bits mode				
bit 6H	BODEN: Bro 1 = Brown-o 0 = Brown-o	own-out l out Detec out Detec	Detect Ena t circuitry i t circuitry i	able s enable s disabl	ed ed				
bits 3L:2L	WDTPS1:W 11 = WDT e 10 = WDT e 01 = WDT e 00 = WDT d	DTPS0: nabled, p nabled, p nabled, p isabled,	WDT Post postscaler postscaler postscaler 16-bit over	scaler 5 = 1 = 256 = 64 flow tim	Select bi	ts			
bits 1L:0L	FOSC1:FOS 11 = EC osc 10 = XT osc 01 = RC osc 00 = LF osc	SCO : Osc sillator sillator sillator sillator	illator Sele	ect bits					
Shaded bits (—)	Reserved								

REGISTER 17-1: CONFIGURATION WORDS

BSF	BSF Bit Set f						
Synt	Syntax: [label] BSF f,b						
$\begin{array}{ll} \mbox{Operands:} & 0 \leq f \leq 255 \\ & 0 \leq b \leq 7 \end{array}$							
Ope	ration:	$1 \rightarrow (f < b >$	•)				
Statu	us Affected:	None					
Enco	oding:	1000	0bbb	fff	f	ffff	
Des	cription:	Bit 'b' in reg	gister 'f' is	s set.			
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q	3		Q4	
	Decode	Read register 'f'	Proce Dat	ess a	re	Write gister 'f'	
<u>Exar</u>	<u>mple</u> : Before Instru FLAG_R	BSF Iction EG = 0x	flag_re	G, 7			
	After Instruct FLAG_R	tion EG = 0x	:8A				

BTF	SC	Bit Test, s	kip if Clear				
Synt	ax:	[label] B	TFSC f,b				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Ope	ration:	skip if (f <b< td=""><td colspan="5">if (f) = 0</td></b<>	if (f) = 0				
Statu	us Affected:	None					
Enco	oding:	1001	1bbb ff	ff ffff			
Deso	cription:	If bit 'b' in re instruction i If bit 'b' is 0,	If bit 'b' in register 'f' is 0, then the next instruction is skipped. If bit 'b' is 0, then the next instruction				
		cution is dis instead, ma instruction.	carded and a N king this a two-	OP is executed			
Wor	ds:	1					
Cycl	es:	1(2)					
QC	cle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	No operation			
lf ski	Decode	Read register 'f'	Process Data	No operation			
lf ski	Decode ip: Q1	Read register 'f' Q2	Process Data Q3	No operation Q4			
lf ski	Decode p: Q1 No operation	Read register 'f' Q2 No operation	Process Data Q3 No operation	No operation Q4 No operation			
lf ski <u>Exar</u>	Decode p: Q1 No operation mple:	Read register 'f' Q2 No operation HERE E FALSE : TRUE :	Process Data Q3 No operation TFSC FLAC	No operation Q4 No operation			
lf ski <u>Exar</u>	Decode p: Q1 No operation mple: Before Instruct PC	Read register 'f' Q2 No operation HERE B FALSE : TRUE : ction = adu	Process Data Q3 No operation TFSC FLAC	No operation Q4 No operation			
lf ski <u>Exar</u>	Decode p: Q1 No operation mple: Before Instruct PC After Instructi If FLAG<7 PC	Read register 'f' Q2 No operation HERE E FALSE : TRUE : Ction = add ion 1> = 0; = add	Process Data Q3 No operation TFSC FLAC dress (HERE) dress (TRUE)	No operation Q4 No operation			

INC	=	Incremer	Increment f						
Synt	ax:	[label]	INCF f	,d					
Ope	rands:	$0 \le f \le 25$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$						
Ope	ration:	(f) + 1 \rightarrow	(dest)						
Statu	us Affected:	OV, C, D0	C, Z						
Enco	oding:	0001	010d	ffff	ffff				
Deso	cription:	The conter mented. If WREG. If back in reg	nts of regi 'd' is 0, th d' is 1, the gister 'f'.	ster 'f' are e result is e result is _l	incre- placed in placed				
Wor	ds:	1							
Cycl	es:	1	1						
QC	cle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read register 'f'	Proce Dat	ess V a de	Vrite to stination				
<u>Exar</u>	<u>mple</u> :	INCF	CNT,	1					
	Before Instru	iction							
	CNT	= 0xFF							
	Z C	= 0 = ?							
	After Instruct	tion							
	CNT	= 0x00							
	Z	= 1							
	С	= 1							

INC	NCFSZ Increment f, skip if 0						
Synt	ax:	[label]	INCFSZ f,d				
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$				
Ope	ration:	(f) + 1 \rightarrow (skip if res	(f) + 1 \rightarrow (dest) skip if result = 0				
State	us Affected:	None					
Enco	oding:	0001	111d ff	ff ffff			
Description:The contents of register 'f' are incremented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction.							
Wor	ds:	1	1				
Cycl	es:	1(2)					
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	Write to destination			
lf sk	ip:						
	Q1	Q2	Q3	Q4			
	No operation	No operation	No operation	No operation			
Example:		HERE NZERO ZERO	INCFSZ C1 : :	VT, 1			
	Before Instru PC	iction = Address	S (HERE)				
	After Instruction CNT = CNT + 1 If $CNT = 0$; PC = Address (ZERO)						

- If CNT \neq 0;
 - PC = Address (NZERO)

INFS	SNZ	Incremen	Increment f, skip if not 0					
Synt	ax:	[<i>label</i>] I	NFSNZ	f,d				
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0\leq f\leq 255\\ d\in [0,1] \end{array}$					
Ope	ration:	(f) + 1 \rightarrow (skip if not	(f) + 1 \rightarrow (dest), skip if not 0					
Statu	us Affected:	None						
Enco	oding:	0010	010d	ffff	ffff			
Des	cription:	The conten mented. If ' WREG. If 'c back in reg If the result which is alr and a NOP	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is not 0, the next instruction, which is already fetched is discarded and a NOP is executed instead making					
		it a two-cyc	le instruct	ion.				
Words:		1	1					
Cycles:		1(2)	1(2)					
Q Cycle Activity:								
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proces Data	ss d	Write to estination			
lf ski	ip:							
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operati	on d	No operation			
Example:		HERE ZERO NZERO	INFSNZ	REG,	1			
	Before Instruction REG = REG							
	After Instruct REG If REG PC If REG PC	tion = REG + = 1; = Address = 0; = Address	1 s (zero) s (nzero)				

IORLW Inclusive OR Literal with WREG							
Syntax:	[label]	IORLW k					
Operands:	$0 \le k \le 25$	$0 \le k \le 255$					
Operation:	(WREG) .	OR. (k) \rightarrow	(WRE	G)			
Status Affected	l: Z						
Encoding:	1011	0011 k	kkk	kkkk			
Description: The contents of WREG are OR'd the eight-bit literal 'k'. The result placed in WREG.							
Words:	1						
Cycles:	1						
Q Cycle Activit	y:						
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'	Process Data	V	Vrite to VREG			
Example:	IORLW	0x35					
Before Ins	Before Instruction						

WREG	=	0x9A
After Instruc	tion	
WREG	=	0xBF

MO\	/FP	Move f to	MOVLB					
Synt	ax:	[<i>label</i>] N	/OVFP_f,p	Syntax:				
Ope	rands:	$0 \le f \le 25$	5	Operands:				
		$0 \le p \le 31$		Operation:				
Ope	ration:	$(f) \to (p)$	Status Affe					
Status Affected: None						Encoding:		
Enco	oding:	011p	pppp i	Descriptior				
Deso	cription:	Move data to data me can be any space (00h to 1Fh.	Move data from data memory location 'f' to data memory location 'p'. Location 'f' can be anywhere in the 256 byte data space (00h to FFh), while 'p' can be 00h to 1Fh.					
		Either 'p' o special situ	r 'f' can be V iation).	Words:				
		MOVFP is p ring a data eral registe or an I/O p indirectly a	Cycles: Q Cycle Ac Q Dec					
Wor	ds:	1	1					
Cycl	es:	1						
Q Cycle Activity:						Example:		
	Q1	Q2	Q3		Q4	Before		
	Decode	Read register 'f'	Process Data	re	Write gister 'p'	BS After I		

Example:	MOVFP	REG1,	REG2
Before Instruc REG1 REG2	tion = =	0x33, 0x11	
After Instruction	n		
REG1	=	0x33,	
REG2	=	0x33	

Move Literal to low nibble in BSR [label] MOVLB k $0 \leq k \leq 15$ $k \rightarrow (BSR<3:0>)$ ected: None 1011 1000 uuuu kkkk The four-bit literal 'k' is loaded in the ı: Bank Select Register (BSR). Only the low 4-bits of the Bank Select Register are affected. The upper half of the BSR is unchanged. The assembler will encode the "u" fields as '0'. 1 1 ctivity: 1 Q2 Q3 Q4 Write literal ode Read Process literal 'k' Data 'k' to BSR<3:0> MOVLB 5

Before Instruction BSR register	n =	0x22
After Instruction BSR register	=	0x25 (Bank 5)

NOTES:

20.2

PIC17C7XX-16 (Commercial, Industrial, Extended) **DC Characteristics:** PIC17C7XX-33 (Commercial, Industrial, Extended) PIC17LC7XX-08 (Commercial, Industrial)

Standard Operating Conditions (unl						(unles	s otherwise stated)
			Operating ter	mperature	4000	-	
DC CHAI	RACTER	ISTICS			-40°C	≤ IA ≤	+125°C for extended
					-40°C	$\leq IA \leq$	+85°C for industrial
					0.0	≥ IA ≥ مط∺ع مماد	+70°C for commercial
			Operating vo	nage voo	range as o	Jescribe	a in Section 20.1
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer (Note 6)	Vss	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
			Vss	-	0.2Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$
D031		with Schmitt Trigger buffer					
		RA2, RA3	Vss	_	0.3Vdd	V	I ² C compliant
		All others	Vss	-	0.2Vdd	V	-
D032		MCLR, OSC1 (in EC and RC	Vss	-	0.2Vdd	V	(Note 1)
		mode)					
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	-	V	
		Input High Voltage					
	VIH	I/O ports					
D040		with TTL buffer (Note 6)	2.0	-	Vdd	V	$4.5V \leq VDD \leq 5.5V$
			1+0.2VDD	-	Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer					
		RA2, RA3	0.7Vdd	-	Vdd	V	I ² C compliant
		All others	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	-	Vdd	V	(Note 1)
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	-	V	
D050	VHYS	Hysteresis of	0.15Vdd	-	-	V	
		Schmitt Trigger Inputs					

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

t Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specifications (Literature number DS TBD).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

	TABLE 20-2:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosL2ckL	OSC1↓ to CLKOUT↓	—	15	30	ns	(Note 1)
11	TosL2ckH	OSC1↓ to CLKOUT↑	—	15	30	ns	(Note 1)
12	TckR	CLKOUT rise time	—	5	15	ns	(Note 1)
13	TckF	CLKOUT fall time	—	5	15	ns	(Note 1)
14	TckH2ioV	CLKOUT ↑ to Port out valid	—	_	0.5TCY + 20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKOUT↑	0.25Tcy + 25	_	—	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT [↑]	0	_	—	ns	(Note 1)
17	TosL2ioV	OSC1 \downarrow (Q1 cycle) to Port out valid	—	_	100	ns	
18	TosL2iol	OSC1 \downarrow (Q2 cycle) to Port input	0	_	—	ns	
		invalid (I/O in hold time)					
19	TioV2osL	Port input valid to OSC1↓ (I/O in setup time)	30	-	—	ns	
20	TioR	Port output rise time	—	10	35	ns	
21	TioF	Port output fall time	—	10	35	ns	
22	TinHL	INT pin high or low time	25	—	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in EC mode, where CLKOUT output is 4 x Tosc.

FIGURE 20-25: MEMORY INTERFACE READ TIMING

TABLE 20-21: MEMORY INTERFACE READ REQUIREMENTS

Param. No.	Sym	Characteristic	c	Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD15:AD0 (address) valid to	PIC17 C XXX	0.25Tcy - 10	_	—	ns	
		ALE↓ (address setup time)	PIC17LCXXX	0.25Tcy - 10	_	—		
151	TalL2adl	ALE \downarrow to address out invalid	PIC17 C XXX	5	_	_	ns	
		(address hold time)	PIC17LCXXX	5		_		
160	TadZ2oeL	AD15:AD0 hi-impedance to	PIC17 C XXX	0	_	_	ns	
		OE↓	PIC17LCXXX	0		_		
161	ToeH2ad	OE [↑] to AD15:AD0 driven	PIC17 C XXX	0.25Tcy - 15		_	ns	
	D		PIC17 LC XXX	0.25Tcy - 15		_		
162	TadV2oeH	Data in valid before \overline{OE}^{\uparrow}	PIC17 C XXX	35		_	ns	
		(data setup time)	PIC17 LC XXX	45				
163	ToeH2adl	OE [↑] to data in invalid	PIC17 C XXX	0	_		ns	
		(data hold time)	PIC17 LC XXX	0	_			
164	TalH	ALE pulse width	PIC17 C XXX	_	0.25TCY	—	ns	
			PIC17LCXXX	—	0.25TCY	—		
165	ToeL	OE pulse width	PIC17 C XXX	0.5Tcy - 35	_	_	ns	
			PIC17LCXXX	0.5Tcy - 35		_		
166	TalH2alH	ALE↑ to ALE↑(cycle time)	PIC17 C XXX	—	Тсү	—	ns	
			PIC17LCXXX	—	TCY	—		
167	Tacc	Address access time	PIC17 C XXX	_	_	0.75Tcy - 30	ns	
			PIC17LCXXX		_	0.75Tcy - 45		
168	Toe	Output enable access time	PIC17 C XXX		_	0.5Tcy - 45	ns	
		(OE low to data valid)	PIC17LCXXX	_		0.5Tcy - 75		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

