

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc752-08i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	PINC		SCRIP	TIONS	(CON	TINUE	D)	
	P	IC17C75	PIC17C76X					
Name	DIP PLC No. No.		TQFP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
								PORTG is a bi-directional I/O Port.
RG0/AN3	32	34	24	42	30	I/O	ST	RG0 can also be analog input 3.
RG1/AN2	31	33	23	41	29	I/O	ST	RG1 can also be analog input 2.
RG2/AN1/VREF-	30	32	22	40	28	I/O	ST	RG2 can also be analog input 1, or the ground reference voltage.
RG3/AN0/VREF+	29	31	21	39	27	I/O	ST	RG3 can also be analog input 0, or the positive reference voltage.
RG4/CAP3	35	38	27	46	33	I/O	ST	RG4 can also be the Capture3 input pin.
RG5/PWM3	36	39	28	47	34	I/O	ST	RG5 can also be the PWM3 output pin.
RG6/RX2/DT2	38	41	30	49	36	I/O	ST	RG6 can also be selected as the USART2 (SCI) Asynchronous Receive or USART2 (SCI) Synchronous Data.
RG7/TX2/CK2	37	40	29	48	35	I/O	ST	RG7 can also be selected as the USART2 (SCI) Asynchronous Transmit or USART2 (SCI) Synchronous Clock.
								PORTH is a bi-directional I/O Port. PORTH is only
RH0	—	—	—	10	79	I/O	ST	available on the PIC17C76X devices.
RH1	—	—	—	11	80	I/O	ST	
RH2	—	—	—	12	1	I/O	ST	
RH3	—	—	—	13	2	I/O	ST	
RH4/AN12	—	—	—	31	19	I/O	ST	RH4 can also be analog input 12.
RH5/AN13	—	—	—	32	20	I/O	ST	RH5 can also be analog input 13.
RH6/AN14	—	—	—	33	21	I/O	ST	RH6 can also be analog input 14.
RH7/AN15	_	_	—	34	22	I/O	ST	RH7 can also be analog input 15.
								PORTJ is a bi-directional I/O Port. PORTJ is only available on the PIC17C76X devices.
RJ0	—	—	—	52	39	I/O	ST	
RJ1	—	—	—	53	40	I/O	ST	
RJ2	—	—	—	54	41	I/O	ST	
RJ3	—	—	—	55	42	I/O	ST	
RJ4	—	—	—	73	59	I/O	ST	
RJ5	—	—	—	74	60	I/O	ST	
RJ6	—	—	—	75	61	I/O	ST	
RJ7			—	76	62	I/O	ST	
TEST	16	17	8	21	10	Ι	ST	Test mode selection control input. Always tie to Vss for normal operation.
Vss	17, 33, 49, 64	19, 36, 53, 68	9, 25, 41, 56	23, 44, 65, 84	11, 31, 51, 70	Р		Ground reference for logic and I/O pins.
Vdd	1, 18, 34, 46	2, 20, 37, 49,	10, 26, 38, 57	24, 45, 61, 2	12, 32, 48, 71	Ρ		Positive supply for logic and I/O pins.
AVss	28	30	20	38	26	Р		Ground reference for A/D converter. This pin MUST be at the same potential as Vss.
AVdd	27	29	19	37	25	Р		Positive supply for A/D converter. This pin MUST be at the same potential as VDD.
NC	_	1, 18, 35, 52	_	1, 22, 43, 64	_			No Connect. Leave these pins unconnected.

TABLE 3-1: PINOUT DESCRIPTIONS (CONTINUED)

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

6.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) contains the flag and enable bits for non-peripheral interrupts.

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR registers (Figure 6-4 and Figure 6-5).

Note:	All interrupt flag bits get set by their speci-
	fied condition, even if the corresponding
	interrupt enable bit is clear (interrupt dis-
	abled), or the GLINTD bit is set (all inter-
	rupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the RESET address (0x00).

Prior to disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

REGISTER 6-1: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE							
	bit 7														
bit 7	 PEIF: Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corresponding enable bits. The interrupt logic forces program execution to address (20h) when a peripheral interrupt is pending. 1 = A peripheral interrupt is pending 0 = No peripheral interrupt is pending TOCKIF: External Interrupt on TOCKI Pin Flag bit 														
bit 6	TOCKIF : External Interrupt on T0CKI Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to address (18h). 1 = The software specified edge occurred on the RA1/T0CKI pin 0 = The software specified edge did not occur on the RA1/T0CKI pin														
bit 5	 TolF: TMR0 Overflow Interrupt Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to address (10h). 1 = TMR0 overflowed 0 = TMR0 did not overflow 														
bit 4	This bit is o 1 = The so	ernal Interrupt leared by har oftware specif oftware specif	dware, when	the interrupt curred on the	e RA0/INT pi		tion to addre	ess (08h).							
bit 3	This bit ac enable bits 1 = Enable		al enable bit		pheral interr	upts that have	e their corre	esponding							
bit 2	1 = Enable	xternal Interr software sp e interrupt on	ecified edge	interrupt on		CKI pin									
bit 1	1 = Enable	80 Overflow I e TMR0 overf e TMR0 over	low interrupt												
bit 0	1 = Enable	ernal Interrup e software sp e software sp	ecified edge	interrupt on	the RA0/INT										
	Legend:														
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented bit	, read as '0	,							

'1' = Bit is set

- n = Value at POR Reset

x = Bit is unknown

'0' = Bit is cleared

7.2.2.2 CPU Status Register (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register has a bit that is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the Interrupt Status (INTSTA) register and the Peripheral Interrupt Enable (PIE) registers. The CPUSTA register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device

logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

The $\overrightarrow{\text{POR}}$ bit allows the differentiation between a Power-on Reset, external $\overrightarrow{\text{MCLR}}$ Reset, or a WDT Reset. The BOR bit indicates if a Brown-out Reset occurred.

Note 1: The BOR status bit is a don't care and is not necessarily predictable if the Brown-out circuit is disabled (when the BODEN bit in the Configuration word is programmed).

REGISTER 7-2: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

_	U-0	U-0	R-1	R/W-1	R-1	R-1	R/W-0	R/W-1
	_		STKAV	GLINTD	TO	PD	POR	BOR
	bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5	 STKAV: Stack Available bit This bit indicates that the 4-bit stack pointer value is Fh, or has rolled over from Fh → 0h (stack overflow). 1 = Stack is available 0 = Stack is full, or a stack overflow may have occurred (once this bit has been cleared by a stack overflow, only a device RESET will set this bit)
bit 4	 GLINTD: Global Interrupt Disable bit This bit disables all interrupts. When enabling interrupts, only the sources with their enable bits set can cause an interrupt. 1 = Disable all interrupts 0 = Enables all unmasked interrupts
bit 3	TO: WDT Time-out Status bit 1 = After power-up, by a CLRWDT instruction, or by a SLEEP instruction 0 = A Watchdog Timer time-out occurred
bit 2	PD : Power-down Status bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 1	POR : Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set by software)
bit 0	BOR: Brown-out Reset Status bit
	When BODEN Configuration bit is set (enabled): 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set by software)
	When BODEN Configuration bit is clear (disabled): Don't care
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Example 10-2 shows an instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-2: INITIALIZING PORTB

MOVLB	0		; Select Bank 0
CLRF	PORTB,	F	; Init PORTB by clearing
			; output data latches
MOVLW	0xCF		; Value used to initialize
			; data direction
MOVWF	DDRB		; Set RB<3:0> as inputs
			; RB<5:4> as outputs
			; RB<7:6> as inputs

FIGURE 10-6: BLOCK DIAGRAM OF RB3:RB2 PORT PINS

TABLE 10-9: PORTE FUNCTIONS

Name	Bit	Buffer Type	Function
RE0/ALE	bit0	TTL	Input/output or system bus Address Latch Enable (ALE) control pin.
RE1/OE	bit1	TTL	Input/output or system bus Output Enable (OE) control pin.
RE2/WR	bit2	TTL	Input/output or system bus Write (WR) control pin.
RE3/CAP4	bit3	ST	Input/output or Capture4 input pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 10-10: REGISTERS/BITS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
15h, Bank 1	PORTE	—	—	_	_	RE3/CAP4	RE2/WR	RE1/OE	RE0/ALE	xxxx	uuuu
14h, Bank 1	DDRE	Data Dire	ction Regist	ter for PORT	E					1111	1111
14h, Bank 7	CA4L	Capture4	Low Byte							xxxx xxxx	uuuu uuuu
15h, Bank 7	CA4H	Capture4	High Byte		xxxx xxxx	uuuu uuuu					
16h, Bank 7	TCON3	—	CA4OVF	PWM3ON	-000 0000	-000 0000					

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

10.7 PORTG and DDRG Registers

PORTG is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRG. A '1' in DDRG configures the corresponding port pin as an input. A '0' in the DDRG register configures the corresponding port pin as an output. Reading PORTG reads the status of the pins, whereas writing to PORTG will write to the port latch.

The lower four bits of PORTG are multiplexed with four channels of the 10-bit A/D converter.

The remaining bits of PORTG are multiplexed with peripheral output and inputs. RG4 is multiplexed with the CAP3 input, RG5 is multiplexed with the PWM3 output, RG6 and RG7 are multiplexed with the USART2 functions.

Upon RESET, RG3:RG0 is automatically configured as analog inputs and must be configured in software to be a digital I/O.

Example 10-7 shows the instruction sequence to initialize PORTG. The Bank Select Register (BSR) must be selected to Bank 5 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-7: INITIALIZING PORTG

MOVLB	5	; Select Bank 5
MOVLW	0x0E	; Configure PORTG as
MOVPF	WREG, ADCON1	; digital
CLRF	PORTG, F	; Initialize PORTG data
		; latches before
		; the data direction
		; register
MOVLW	0x03	; Value used to init
		; data direction
MOVWF	DDRG	; Set RG<1:0> as inputs
		; RG<7:2> as outputs

FIGURE 10-14: BLOCK DIAGRAM OF RG3:RG0

13.2 Timer3

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a another 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the counter increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer/counter to increment. When TMR3ON is clear, the timer will not increment or set flag bit TMR3IF.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- Three capture and one period register mode
- · Four capture register mode

The PIC17C7XX has up to four 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are four capture pins

(RB0/CAP1, RB1/CAP2, RG4/CAP3, and RE3/CAP4), one for each capture register pair. The capture pins are multiplexed with the I/O pins. An event can be:

- · A rising edge
- A falling edge
- · Every 4th rising edge
- · Every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture modules are truly part of the Timer3 block. Figure 13-5 and Figure 13-6 show the block diagrams for the two modes of operation.

13.2.1 THREE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode, registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 13-5. The timer increments until it equals the period register and then resets to 0000h on the next timer clock. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

FIGURE 13-5: TIMER3 WITH THREE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x00-000x	0000 -00u
16h, Bank 0	TXREG1	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 - 00x	0000 -00u
16h, Bank 4	TXREG2	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC		—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register					-	0000 0000	0000 0000

TABLE 14-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous master transmission.

FIGURE 14-8: SYNCHRONOUS TRANSMISSION

FIGURE 14-9: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

15.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 15-33).

15.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

15.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

FIGURE 15-33: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

FIGURE 16-3: ANALOG INPUT MODEL

18.0 INSTRUCTION SET SUMMARY

The PIC17CXXX instruction set consists of 58 instructions. Each instruction is a 16-bit word divided into an OPCODE and one or more operands. The opcode specifies the instruction type, while the operand(s) further specify the operation of the instruction. The PIC17CXXX instruction set can be grouped into three types:

- byte-oriented
- bit-oriented
- · literal and control operations

These formats are shown in Figure 18-1.

Table 18-1 shows the field descriptions for the opcodes. These descriptions are useful for understanding the opcodes in Table 18-2 and in each specific instruction descriptions.

For **byte-oriented instructions**, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' = '0', the result is placed in the WREG register. If 'd' = '1', the result is placed in the file register specified by the instruction.

For **bit-oriented instructions**, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control operations**, 'k' represents an 8or 13-bit constant or literal value.

The instruction set is highly orthogonal and is grouped into:

- byte-oriented operations
- bit-oriented operations
- · literal and control operations

All instructions are executed within one single instruction cycle, unless:

- a conditional test is true
- the program counter is changed as a result of an instruction
- a table read or a table write instruction is executed (in this case, the execution takes two instruction cycles with the second cycle executed as a NOP)

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 25 MHz, the normal instruction execution time is 160 ns. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 320 ns.

TABLE 18-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (00h to FFh)
р	Peripheral register file address (00h to 1Fh)
i	Table pointer control i = '0' (do not change) i = '1' (increment after instruction execution)
t	Table byte select t = '0' (perform operation on lower byte) t = '1' (perform operation on upper byte literal field, constant data)
WREG	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= '0' or '1') The assembler will generate code with $x = '0'$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select 0 = store result in WREG 1 = store result in file register f Default is d = '1'
u	Unused, encoded as '0'
s	Destination select 0 = store result in file register f and in the WREG 1 = store result in file register f Default is s = '1'
label	Label name
C,DC, Z,OV	ALU status bits Carry, Digit Carry, Zero, Overflow
GLINTD	Global Interrupt Disable bit (CPUSTA<4>)
TBLPTR	Table Pointer (16-bit)
TBLAT	Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)
TBLATL	Table Latch low byte
TBLATH	Table Latch high byte
TOS	Top-of-Stack
PC	Program Counter
BSR	Bank Select Register
WDT	Watchdog Timer Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the WREG register or the speci- fied register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)
L	

BTF	BTFSS Bit Test, skip if Set								
Synt	Syntax: [label] BTFSS f,b								
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$							
Ope	ration:	skip if (f<		-) = 1					
Statu	us Affected:	None							
Enco	oding:	1001		0bbb	fff	f	ffff		
Encoding: 1001 0bbb ffff ffff Description: If bit 'b' in register 'f' is 1, then the next instruction is skipped. If bit 'b' is 1, then the next instruction fetched during the current instruction excution is discarded and a NOP is execute instead, making this a two-cycle instruction.							ction ction exe- executed		
Word	ds:	1							
Cycl	es:	1(2)							
QC	cle Activity:	. ,							
	Q1	Q2		Q3	5		Q4		
	Decode	Read register 'f	e,	Proce Data		op	No peration		
lf ski	p:								
	Q1	Q2		Q3	5		Q4		
	No	No		No			No		
	operation	operation	1	operat	tion	op	peration		
<u>Exar</u>	<u>nple</u> :	HERE FALSE TRUE	B1 : :	FSS	FLAG	,1			
Before Instruction PC = address (HERE)									
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)									

BTG	Bit Toggl	e i					
Syntax:	[<i>label</i>] B	TG f,b					
Operands:	0 ≤ f ≤ 255 0 ≤ b < 7	$0 \le f \le 255$ $0 \le b < 7$					
Operation:	$(\overline{f} < b >) \rightarrow ($	(f)					
Status Affected:	None						
Encoding:	0011	1bbb	ff	ff	ffff		
Description:	Bit 'b' in da inverted.	ta memory	loca	ition 'f	' is		
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		(ຊ4		
Decode	Read register 'f'	Proces Data	S		/rite ster 'f'		
Evenale							
Example:	BTG I	PORTC,	4				
Before Instru PORTC		0101 [0x75	5]				
After Instruct	ion:						

After Instruction: PORTC = 0110 0101 [0x65]

моч	VLR	Move Lite BSR	eral to hi	igh nibb	le in
Synt	ax:	[label]	MOVLR	k	
Ope	rands:	$0 \le k \le 15$			
Ope	ration:	$k \rightarrow (BSR)$	<7:4>)		
Statu	us Affected:	None			
Enc	oding:	1011	101x	kkkk	uuuu
Des	cription:	The 4-bit lit most signifi Select Regi 4-bits of the are affected BSR is unc will encode	cant 4-bit ister (BSF e Bank Se d. The low hanged.	ts of the B R). Only the elect Regist ver half of The asser	ank ne high ster the
Wor	ds:	1			
Cyc	les:	1			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read literal 'k'	Proce: Data	a lite	Write eral 'k' to SR<7:4>
	<u>mple</u> : Before Instru	MOVLR 5	i	·	
	BSR regi	ster = 0x	22		
	After Instruct BSR regi		52		

MO\	MOVLW Move Literal to WREG									
Synt	ax:	[label]	MOVLW	/ k						
Ope	rands:	$0 \le k \le 2$	$0 \le k \le 255$							
Ope	ration:	$k \rightarrow (WREG)$								
Status Affected: None										
Enco	oding:	1011	0000	kkk	k	kkkk				
Desc	cription:	The eight- WREG.	bit literal '	k' is lo	ade	d into				
Wor	ds:	1								
Cycl	es:	1								
QC	cle Activity:									
	Q1	Q2	Q	3		Q4				
	Decode Read Process Write to literal 'k' Data WREG									
<u>Exar</u>	<u>mple</u> :	MOVLW	0x5A							

After Instruction WREG = 0x5A

© 1998-2013 Microchip Technology Inc.

SUBWF	Subt	act	WREG	from	n f	
Syntax:			SUBWF			
Operands:	0 ≤ f ≤ d ∈ [0	- ≤ 25		,-		
Operation:	(f) – (W)	\rightarrow (dest)			
Status Affected:	OV, C), D	C, Z			
Encoding:	000	0	010d	fff	f	ffff
Description:	compl result	eme is st	VREG from ont method ored in W ored back	d). If ' REG.	d' is If 'c	0, the ' is 1, the
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2		Q3			Q4
Decode	Read register		Proces Data		-	Vrite to stination
L	- i ogiotor	•	Data		40	
Example 1: Before Instru REG1 WREG C	SUBWI uction = 3 = 2 = 2	F .	REG1, 1	L		
After Instruc REG1 WREG C Z	•	;	result is p	ositiv	'e	
Example 2:						
Before Instr REG1 WREG C	uction = 2 = 2 = ?					
After Instruc REG1 WREG C Z	tion = 0 = 2 = 1 = 1	;	result is z	ero		
Example 3:						
Before Instru REG1 WREG C	uction = 1 = 2 = ?					
After Instruc REG1 WREG C Z	tion = FF = 2 = 0 = 0	;	result is n	egati	ve	

SUBWFB Subtract WREG from f with Borrow							vith		
Syntax:		[label]	SUBWFI	З f,o	b			
Operands	:	-) ≤ f ≤ 28 I ∈ [0,1]	55					
Operation	:	(1	f) – (W)	$-\overline{C} \rightarrow (c$	dest)				
Status Aff	ected:	C), C, D	C, Z					
Encoding:		Γ	0000	001d	ffi	Ēf	ffff		
Descriptio	n:	(I n s	borrow) f nent metl tored in \	WREG an rom regis hod). If 'd' WREG. If ' ck in regis	ter 'f' is 0, d' is 1	(2's the r I , the	comple- esult is		
Words:		1							
Cycles:		1							
Q Cycle A	ctivity:								
(ຊ1		Q2	Q3			Q4		
De	code		Read	Proce			Vrite to		
		reę	gister 'f'	Data	à	de	stination		
Example ?			UBWFB	REG1,	1				
	e Instru REG1	ictioi =	n 0x19	(0001	100	1)			
	VREG	=	0x0D	•	(0000 1101)				
C)	=	1						
F		ion = = = =	0x0C 0x0D 1 0	(0000 (0000 ; resul t	110	1)	е		
Example2	•	SU	BWFB 1	REG1,0					
-	e Instru								
F	REG1 VREG	= = =	0x1B 0x1A 0	(0001 (0001		,			
F		ion = = =	0x1B 0x00 1 1	(0001 ; result		,			
Example3	:	SU	BWFB 1	REG1,1					
	e Instru			· - , -					
F	REG1 VREG	= = =	0x03 0x0E 1	(0000 (0000					
F		ion = = = =	0xF5 0x0E 0 0	(1111 (0000 ; result	110	1)	's comp] ve		

TABLWT	Table Writ	е		
Example1:	TABLWT 1	, 1,	REG	
Before Instruc	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	•
TBLPTR		=	0xA35	-
MEMORY(,	=	0xFFF	-
After Instruction	on (table wri	te co		n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	_
TBLPTR		=	0xA35	
MEMORY(TBLPTR - 1)	=	0x535	5
Example 2:	TABLWT 0	, 0,	REG	
Before Instruc	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY((TBLPTR)	=	0xFFF	F
After Instruction	on (table wri	te co	mpletic	n)
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xAA5	3
	1			
Program Memory	15		0	Data

TLRD	Table Late	ch Read							
Syntax:	[label] T	LRD t,f							
Operands:	0 ≤ f ≤ 255 t ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ t \in [0,1] \end{array}$							
Operation:	If t = 0, TBLATL \rightarrow f; If t = 1,								
$ If t = 1, \\ TBLATH \rightarrow f $									
Status Affected:	None								
Encoding:	1010	00tx fff	f ffff						
Description: Read data from 16-bit table latch (TBLAT) into file register 'f'. Table Latch is unaffected. If t = 1; high byte is read If t = 0; low byte is read									
	This instruc with TABLR	tion is used in D to transfer d pry to data me	ata from pro-						
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read register TBLATH or TBLATL	Process Data	Write register 'f'						
Example:	TLRD t	, RAM							
Before Instr									
t RAM TBLAT	= 0 = ? = 0x00AF	(TBLATH = (TBLATL =	,						
After Instruc	tion								
RAM TBLAT	= 0xAF = 0x00AF	(TBLATH = (TBLATL =							
Before Instr									
t RAM TBLAT	= 1 = ? = 0x00AF	(TBLATH = (TBLATL =							
After Instruc	tion								
RAM TBLAT	= 0x00 = 0x00AF	(TBLATH = (TBLATL =	,						
Program Memory	15	0	Data Memory						
			·····						
16 bits		BLAT	8 bits						

© 1998-2013 Microchip Technology Inc.

FIGURE 20-11: CAPTURE TIMINGS

TABLE 20-6: CAPTURE REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур †	Max	Unit s	Conditions
50	TccL	Capture pin input low time	10	_	—	ns	
51	TccH	Capture pin input high time	10	—	—	ns	
52	TccP	Capture pin input period	<u>2Tcy</u> N		—	ns	N = prescale value (4 or 16)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

FIGURE 20-12: PWM TIMINGS

TABLE 20-7: PWM REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур †	Max	Units	Conditions
53	TccR	PWM pin output rise time		10	35	ns	
54	TccF	PWM pin output fall time	—	10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

TABLE 20-9: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Characteristic		Тур†	Мах	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	—	ns	
71A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30	—	—	ns	
72A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to	SCK edge	100	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	—	_	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	SCK edge	100	—	—	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
78	TscR	SCK output rise time (Master m	iode)	_	10	25	ns	
79	TscF	SCK output fall time (Master me	ode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		_	—	50	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK	edge	Тсу	—	—	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

TABLE 20-12: I ² C	BUS START/STOP	BITS REQUIREMENTS
-------------------------------	-----------------------	-------------------

Param. No.	Sym	Characteristic		Min	Ту р	Max	Units	Conditions
90	Tsu:sta	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	_	ns	Only relevant for Repeated Start condition
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	—		
91	Thd:sta	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	—	ns	After this period, the first
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)		—		clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		—		
92	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	—	ns	
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)		—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		—		
93	Thd:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	—	ns	
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	_	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	—		

Note 1: Maximum pin capacitance = 10 pF for all I²C pins.