

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	678 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc752-08i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC17CXXX FAMILY OF DEVICES

Features		PIC17C42A	PIC17C43	PIC17C44	PIC17C752	PIC17C756A	PIC17C762	PIC17C766
Maximum Frequer of Operation	ю	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz
Operating Voltage	Range	2.5 - 6.0V	2.5 - 6.0V	2.5 - 6.0V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V
Program	(EPROM)	2 K	4 K	8 K	8 K	16 K	8 K	16 K
Memory (x16)	(ROM)	_	—	_	_	—	—	_
Data Memory (byte	es)	232	454	454	678	902	678	902
Hardware Multiplie	er (8 x 8)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit post	scaler)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Capture inputs (16	-bit)	2	2	2	4	4	4	4
PWM outputs (up t	o 10-bit)	2	2	2	3	3 3		3
USART/SCI		1	1	1	2	2	2 2	
A/D channels (10-bit)		_	—	_	12	12	16	16
SSP (SPI/I ² C w/Ma mode)	aster	—	—	—	Yes	Yes Yes		Yes
Power-on Reset		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes	Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	18	18 18		18
Code Protect		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset			—		Yes	Yes	Yes	Yes
In-Circuit Serial Programming			—		Yes	Yes	Yes	Yes
I/O Pins		33	33	33	50	50	66	66
I/O High	Source	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA
Current Capability	Sink	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾
Package Types		40-pin DIP 44-pin PLCC 44-pin MQFP 44-pin TQFP	40-pin DIP 44-pin PLCC 44-pin MQFP 44-pin TQFP	40-pin DIP 44-pin PLCC 44-pin MQFP 44-pin TQFP	64-pin TQFP 68-pin PLCC	64-pin TQFP 68-pin PLCC	80-pin TQFP 84-pin PLCC	80-pin TQFP 84-pin PLCC

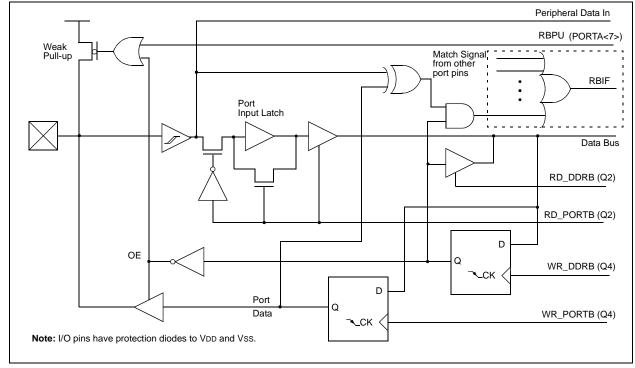
Note 1: Pins RA2 and RA3 can sink up to 60 mA.

10.2 PORTB and DDRB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to PORTB will write to the port latch.

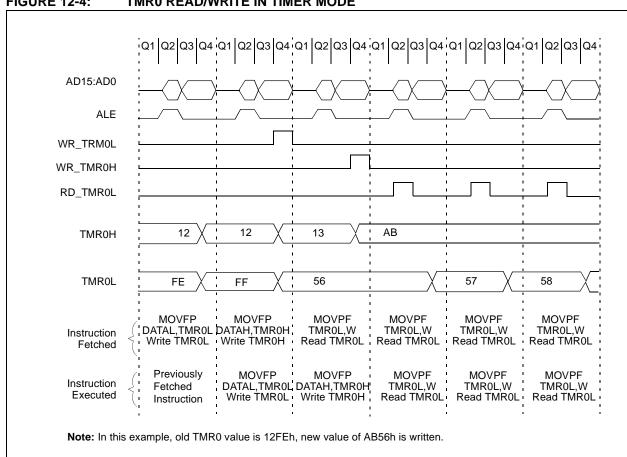
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any RESET.

PORTB also has an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB0 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'd together to set the PORTB Interrupt Flag bit, RBIF (PIR1<7>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt by:


- a) Read-Write PORTB (such as: MOVPF PORTB, PORTB). This will end the mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading, then writing PORTB, will end the mismatch condition and allow the RBIF bit to be cleared.

This interrupt-on-mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a keypad and makes it possible for wakeup on key depression. For an example, refer to Application Note AN552, "Implementing Wake-up on Keystroke."


The interrupt-on-change feature is recommended for wake-up on operations, where PORTB is only used for the interrupt-on-change feature and key depression operations.

Note: On a device RESET, the RBIF bit is indeterminate, since the value in the latch may be different than the pin.

FIGURE 10-5: BLOCK DIAGRAM OF RB5:RB4 AND RB1:RB0 PORT PINS

PIC17C7XX

FIGURE 12-4: **TMR0 READ/WRITE IN TIMER MODE**

TABLE 12-1: REGISTERS/BITS ASSOCIATED WITH TIMER0

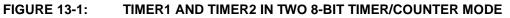
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
05h, Unbanked	TOSTA	INTEDG	TOSE	T0CS	T0PS3	T0PS2	T0PS1	T0PS0	—	0000 000-	0000 000-
06h, Unbanked	CPUSTA	-	-	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
0Bh, Unbanked	TMR0L	TMR0 Reg	TMR0 Register; Low Byte								uuuu uuuu
0Ch, Unbanked	TMR0H	TMR0 Reg	MR0 Register; High Byte								uuuu uuuu

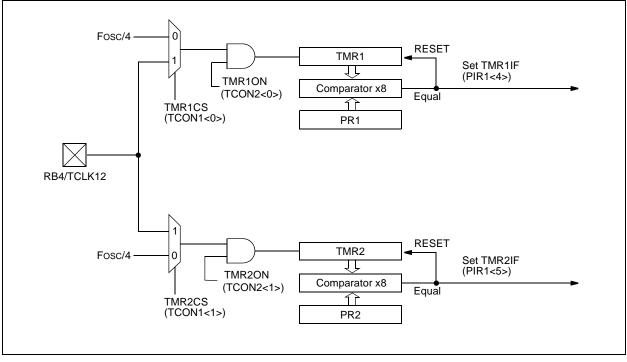
Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0', q = value depends on condition. Shaded cells are not used by Timer0.

13.1 Timer1 and Timer2

13.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock (TcY), or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1, or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin and the counters will increment on every falling edge of the RB4/TCLK12 pin.


The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF and the TMR2 interrupt flag bit is latched into TMR2IF.


Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled/ disabled by setting/clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be set (PEIE = '1') and global interrupt must be enabled (GLINTD = '0').

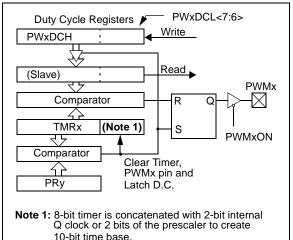
The timers can be turned on and off under software control. When the timer on control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

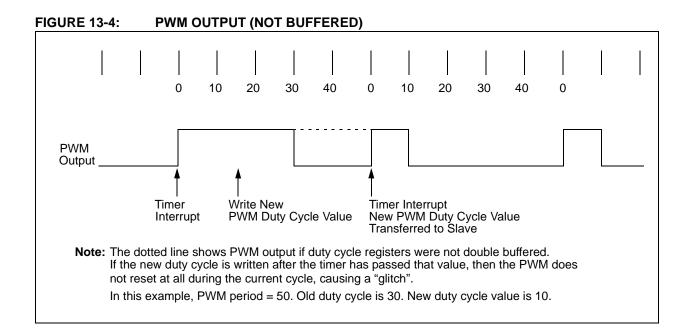
13.1.1.1 External Clock Input for Timer1 and Timer2

When TMRxCS is set, the clock source is the RB4/ TCLK12 pin, and the counter will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

13.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TIMER1 AND TIMER2

Three high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time base, while PWM2 and PWM3 may independently be software configured to use either Timer1 or Timer2 as the time base. The PWM outputs are on the RB2/PWM1, RB3/PWM2 and RG5/PWM3 pins.


Each PWM output has a maximum resolution of 10bits. At 10-bit resolution, the PWM output frequency is 32.2 kHz (@ 32 MHz clock) and at 8-bit resolution the PWM output frequency is 128.9 kHz. The duty cycle of the output can vary from 0% to 100%.


Figure 13-3 shows a simplified block diagram of a PWM module.

The duty cycle registers are double buffered for glitch free operation. Figure 13-4 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output, irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin and the PWM3ON (TCON3<0>) bit controls the configuration of the RG5/PWM3 pin.

FIGURE 13-3: SIMPLIFIED PWM BLOCK DIAGRAM

TABLE 14-5: BAUD R	ATES FOR ASYNCHRONOUS MODE
--------------------	----------------------------

BAUD	Fosc =	= 33 MHz	SPBRG	FOSC = 25	MHz	SPBRG	FOSC = 2	FOSC = 20 MHz		SPBRG FOSC = 16 MHz		SPBRG
RATE (K)	KBAU	D %ERROR	VALUE (DECIMAL)	KBAUD	%ERROR	VALUE (DECIMAL)	KBAUD	%ERROR	VALUE (DECIMAL)	KBAUD	%ERROR	VALUE (DECIMAL)
0.3	NA			NA	_		NA	_		NA	_	
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548		53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09		26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	6 -4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.1	2 +7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.8	1 -14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	_
500	515.6	2 +3.13	0	NA	_	_	NA	_	_	NA	_	_
HIGH	515.6	2 —	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	4 <u> </u>	255	1.53	_	255	1.221	_	255	0.977	_	255
I	F	Fosc = 10 MHz			Fosc	= 7.159 MH	7		FOSC = 5	.068 MHz		
BAU RAT	ID			SPBRG VALUE		- 1.100 1011		SPBRG VALUE	1 000 - 0			SPBRG VALUE
(K))	KBAUD	%ERROR	(DECIMA	L) KE	BAUD %	ERROR	(DECIMAL) KBAU	D %I	ERROR	(DECIMAL)
0.3	3	NA	—	_		NA	_	—	0.31		+3.13	255
1.2	2	1.202	+0.16	129	1	.203	_0.23	92	1.2		0	65
2.4	Ļ	2.404	+0.16	64	2	.380	-0.83	46	2.4		0	32
9.6	6	9.766	+1.73	15	9	.322	-2.90	-2.90 11			-3.13	7
19.3	2	19.53	+1.73	7	1	8.64	-2.90	2.90 5			+3.13	3
76.	8	78.13	+1.73	1		NA	—		79.2		+3.13	0
96	;	NA	—	—		NA	—		NA		—	—
300	C	NA	—	_		NA	_	— NA				-
500		NA	—	_		NA	_	—	NA			-
HIG		156.3	—	0		11.9	_	0	0 79.2		_	0
LO	N	0.610	—	255	0	.437	—	255	0.309	0.309		2 55
	F	- - - - - - - - - - - - - - - - - - -	Hz	Fosc =		SC = 1 MHz		Fosc = 3		C = 32.768 kHz		
BAU RAT	ID			SPBRG VALUE	i			SPBRG VALUE				SPBRG VALUE
(K)		KBAUD	%ERROR	(DECIMA	L) KE	AUD %	ERROR	(DECIMAL) KBAU	D %I	ERROR	(DECIMAL)
0.3	3	0.301	+0.23	185	0	.300	+0.16	51	0.256	; -	14.67	1
1.2	2	1.190	-0.83	46	1	.202	+0.16	12	NA		_	_
2.4	Ļ	2.432	+1.32	22	2	.232	-6.99	6	NA		_	_
9.6	6	9.322	-2.90	5		NA	_	_	NA		_	_
19.:	2	18.64	-2.90	2		NA	_	_	NA		_	_
76.	8	NA	_	_		NA	_	_	NA		_	_
96	;	NA	_	_		NA	_	_	NA		_	_
300	C	NA	_	_		NA	_	_	NA		_	_
500	D	NA	_	_		NA	_	_	NA		_	_
HIG	н	55.93	_	0	1	5.63	_	0	0.512	2	_	0
LOV	N	0.218	_	255	0	.061	_	255	0.002	2	_	255

REGISTER 15-2: SSPCON1: SYNC SERIAL PORT CONTROL REGISTER1 (ADDRESS 11h, BANK 6)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit

Master mode:

1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started

0 = No collision

<u>Slave mode:</u>

1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

0 = No collision

bit 6

SSPOV: Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set, since each new reception (and transmission) is initiated by writing to the SSPBUF register. (Must be cleared in software.)
- 0 = No overflow
- In I²C mode:
- 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)
- 0 = No overflow

bit 5 SSPEN: Synchronous Serial Port Enable bit

In both modes, when enabled, these pins must be properly configured as input or output.

In SPI mode:

1 = Enables serial port and configures SCK, SDO, SDI and \overline{SS} as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode:

- 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins
 - **Note:** In SPI mode, these pins must be properly configured as input or output.

bit 4 **CKP**: Clock Polarity Select bit

In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level

- In I²C Slave mode: SCK release control
- 1 = Enable clock

0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

In I²C Master mode:

Unused in this mode

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

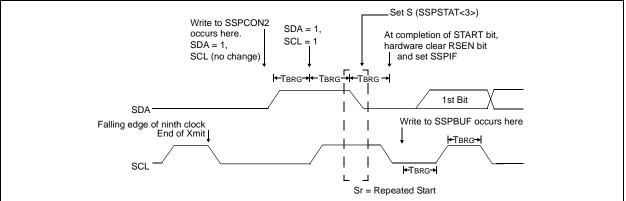
- 0000 = SPI Master mode, clock = Fosc/4
- 0001 = SPI Master mode, clock = FOSC/16
- 0010 = SPI Master mode, clock = FOSC/64
- 0011 = SPI Master mode, clock = TMR2 output/2
- 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled
- 0101 =SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - $0110 = I^2C$ Slave mode, 7-bit address
 - $0111 = I^2C$ Slave mode, 10-bit address
 - $1000 = I^2C$ Master mode, clock = Fosc / (4 * (SSPADD+1))
 - 1xx1 = Reserved
 - 1x1x = Reserved

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

15.2.10 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG while SCL is high. Following this, the RSEN bit in the SSPCON2 register will be automatically cleared and the baud rate generator is not reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If the RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

15.2.10.1 WCOL status flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 15-22: REPEAT START CONDITION WAVEFORM

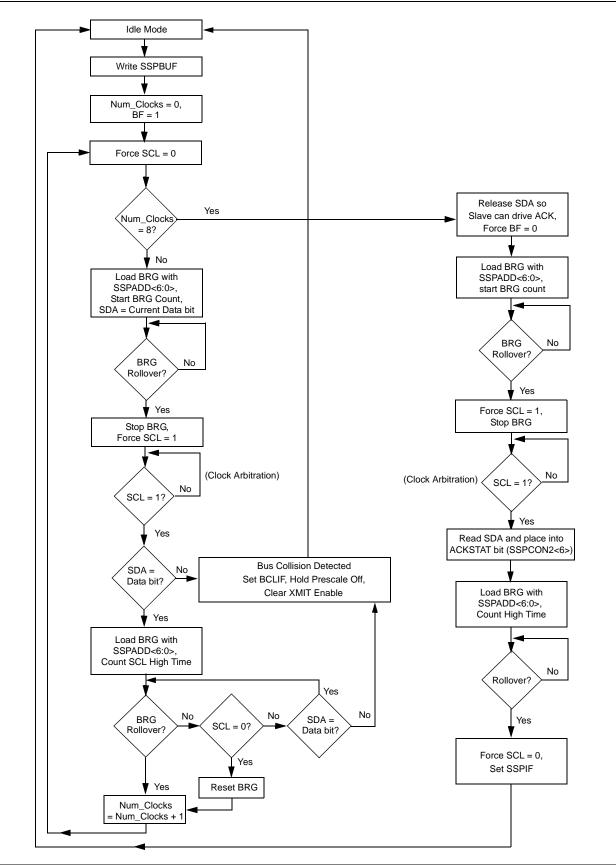


Figure 16-2 shows the conversion sequence and the terms that are used. Acquisition time is the time that the A/D module's holding capacitor is connected to the external voltage level. Then, there is the conversion time of 12 TAD, which is started when the GO bit is set. The sum of these two times is the sampling time. There is a minimum acquisition time to ensure that the holding capacitor is charged to a level that will give the desired accuracy for the A/D conversion.

FIGURE 16-2: A/D CONVERSION SEQUENCE

Acquisition Time	A/D Conversion Time
	A/D conversion complete, result is loaded in ADRES register. Holding capacitor begins acquiring voltage level on selected channel, ADIF bit is set.
	/hen A/D conversion is started setting the GO bit).
When A/D holding cap After A/D conversion, c	acitor starts to charge. r when new A/D channel is selected.

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 16-3. The maximum recommended impedance for analog sources is 10 k Ω . As the impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 16-1 shows the calculation of the minimum required acquisition time (TACQ). This is based on the following application system assumptions.

CHOLD	=	120 pF
Rs	=	10 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
		(see graph in Figure 16-3)
Temperature	=	50°C (system max.)
VHOLD	=	0V @ time = 0

EQUATION 16-1: ACQUISITION TIME

TACQ =	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
=	TAMP + TC + TCOFF

EQUATION 16-2: A/D MINIMUM CHARGING TIME

VHOLD = $(V_{REF} - (V_{REF}/2048)) \cdot (1 - e^{(-T_c/C_{HOLD}(R_{IC} + R_{SS} + R_S))})$ or TC = $-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 16-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ =	TAMP + TC + TCOFF
Temperat	ture coefficient is only required for temperatures > 25° C.
TACQ =	$2 \ \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$
Tc =	-CHOLD (RIC + RSS + RS) $\ln(1/2047)$ -120 pF (1 k Ω + 7 k Ω + 10 k Ω) $\ln(0.0004885)$ -120 pF (18 k Ω) $\ln(0.0004885)$ -2.16 μ s (-7.6241) 16.47 μ s
TACQ =	2 μs + 16.47 μs + [(50×C - 25°C)(0.05 μs/°C)] 18.447 μs + 1.25 μs 19.72 μs

Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

© 1998-2013 Microchip Technology Inc.

17.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC17CXXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection (Section 4.0)
- RESET (Section 5.0)
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts (Section 6.0)
- Watchdog Timer (WDT)
- SLEEP mode
- Code protection

The PIC17CXXX has a Watchdog Timer which can be shut-off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on POR and BOR. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 17-1.

High (H) Table Read Addr.	U-x	R/P-1	R/P-1	U-x	U-x	U-x	U-x	U-x	U-x
FE0Fh - FE08h	—	PM2	BODEN	_	—	—	—	—	—
	bit 15 bit 8	bit 7							bit 0
Low (L) Table Read Addr.	U-x	U-x	R/P-1	U-x	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FE07h - FE00h		—	PM1		PM0	WDTPS1	WDTPS0	FOSC1	FOSC0
	bit 15 bit 8	bit 7							bit 0
bits 7H, 6L, 4L	PM2, PM1, I	>M∩ ∙ Pr	ocessor M	nde Sel	ect hits				
513 71, 02, 42	111 = Micro								
	110 = Micro								
	101 = Exten				mode				
bit 6H	BODEN: Bro				moue				
	1 = Brown-o				ed				
	0 = Brown-o	ut Detec	t circuitry i	s disabl	ed				
bits 3L:2L	WDTPS1:W				Select bi	ts			
	11 = WDT e 10 = WDT e								
	01 = WDT e								
	00 = WDT d	isabled,	16-bit over	rflow tim	ner				
bits 1L:0L	FOSC1:FOS		cillator Sele	ect bits					
	11 = EC osc 10 = XT osc								
	01 = RC osc								
	00 = LF osc	llator							
Shaded bits (—)	Reserved								

REGISTER 17-1: CONFIGURATION WORDS

TABLE 18-2: PIC17CXXX INSTRUCTION SET

Mnemonic	,	Description	Cycles	16-bit Opcode				Status	Notes
Operands		Description	Cycles	MSb	Sb LSb		Affected	Notes	
BYTE-ORI	ENTED	FILE REGISTER OPERATIONS						1	
ADDWF	f,d	ADD WREG to f	1	0000	111d	ffff	ffff	OV,C,DC,Z	
ADDWFC	f,d	ADD WREG and Carry bit to f	1	0001	000d	ffff	ffff	OV,C,DC,Z	
ANDWF	f,d	AND WREG with f	1	0000	101d	ffff	ffff	Z	
CLRF	f,s	Clear f, or Clear f and Clear WREG	1	0010	100s	ffff	ffff	None	3
COMF	f,d	Complement f	1	0001	001d	ffff	ffff	Z	
CPFSEQ	f	Compare f with WREG, skip if f = WREG	1 (2)	0011	0001	ffff	ffff	None	6,8
CPFSGT	f	Compare f with WREG, skip if f > WREG	1 (2)	0011	0010	ffff	ffff	None	2,6,8
CPFSLT	f	Compare f with WREG, skip if f < WREG	1 (2)	0011	0000	ffff	ffff	None	2,6,8
DAW	f,s	Decimal Adjust WREG Register	1	0010	111s	ffff	ffff	С	3
DECF	f,d	Decrement f	1	0000	011d	ffff	ffff	OV,C,DC,Z	
DECFSZ	f,d	Decrement f, skip if 0	1 (2)	0001	011d	ffff	ffff	None	6,8
DCFSNZ	f,d	Decrement f, skip if not 0	1 (2)	0010	011d	ffff	ffff	None	6,8
INCF	f,d	Increment f	1	0001	010d	ffff	ffff	OV,C,DC,Z	
INCFSZ	f,d	Increment f, skip if 0	1 (2)	0001	111d	ffff	ffff	None	6,8
INFSNZ	f,d	Increment f, skip if not 0	1 (2)	0010	010d	ffff	ffff	None	6,8
IORWF	f,d	Inclusive OR WREG with f	1	0000	100d	ffff	ffff	Z	
MOVFP	f,p	Move f to p	1	011p	pppp	ffff	ffff	None	
MOVPF	p,f	Move p to f	1	010p	pppp	ffff	ffff	Z	
MOVWF	f	Move WREG to f	1	0000	0001	ffff	ffff	None	
MULWF	f	Multiply WREG with f	1	0011	0100	ffff	ffff	None	
NEGW	f,s	Negate WREG	1	0010	110s	ffff	ffff	OV,C,DC,Z	1,3
NOP	_	No Operation	1	0000	0000	0000	0000	None	
RLCF	f,d	Rotate left f through Carry	1	0001	101d	ffff	ffff	С	
RLNCF	f,d	Rotate left f (no carry)	1	0010	001d	ffff	ffff	None	
RRCF	f,d	Rotate right f through Carry	1	0001	100d	ffff	ffff	С	
RRNCF	f,d	Rotate right f (no carry)	1	0010	000d	ffff	ffff	None	
SETF	f,s	Set f	1	0010	101s	ffff	ffff	None	3
SUBWF	f,d	Subtract WREG from f	1	0000	010d	ffff	ffff	OV,C,DC,Z	1
SUBWFB	f,d	Subtract WREG from f with Borrow	1	0000	001d	ffff	ffff	OV,C,DC,Z	1
SWAPF	f,d	Swap f	1	0001	110d	ffff	ffff	None	
TABLRD	t,i,f	Table Read	2 (3)	1010	10ti	ffff	ffff	None	7
TABLWT	t,i,f	Table Write	2	1010	11ti	ffff	ffff	None	5
TLRD	t,f	Table Latch Read	1	1010	00tx	ffff	ffff	None	
TLWT	t,f	Table Latch Write	1	1010	01tx	ffff	ffff	None	

Legend: Refer to Table 18-1 for opcode field descriptions.

Note 1: 2's Complement method.

2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL).

5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.

6: Two-cycle instruction when condition is true, else single cycle instruction.

7: Two-cycle instruction except for TABLRD to PCL (program counter low byte), in which case it takes 3 cycles.

8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead a NOP is executed.

ADD	OWFC	ADD WR	ADD WREG and Carry bit to f							
Syn	tax:	[label] A	DDWFC	f,d						
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$							
Ope	ration:	(WREG) ·	+ (f) + C –	→ (dest)						
Stat	us Affected:	OV, C, D0	OV, C, DC, Z							
Enc	oding:	0001	000d	ffff	ffff					
Des	cription:	Add WREC memory lo placed in V placed in d	cation 'f'. If VREG. If 'd	'd' is 0, th ' is 1, the	e result is result is					
Wor	ds:	1								
Сус	les:	1	1							
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read register 'f'	Proces Data	-	rite to tination					
<u>Exa</u>	mple:	ADDWFC	REG (D						
	Before Instru Carry bit REG WREG	= 1 = 0x02								
	After Instruct Carry bit REG									

AND	DLW	And Lite	And Literal with WREG						
Synt	ax:	[label] A	[<i>label</i>] ANDLW k						
Ope	rands:	$0 \le k \le 25$	55						
Ope	ration:	(WREG)	AND. (k	$() \rightarrow ()$	WR	EG)			
Statu	us Affected:	Z							
Enco	oding:	1011	0101	kkk	k	kkkk			
Des	cription:	The conter the 8-bit lite WREG.							
Wor	ds:	1	1						
Cycl	es:	1							
QC	vcle Activity:								
	Q1	Q2	Q	3		Q4			
	Decode	Read literal 'k'	Proce Dat		-	Vrite to VREG			
Example:		ANDLW	0x5F						
Before Instruction									

WREG = 0xA3 After Instruction WREG = 0x03

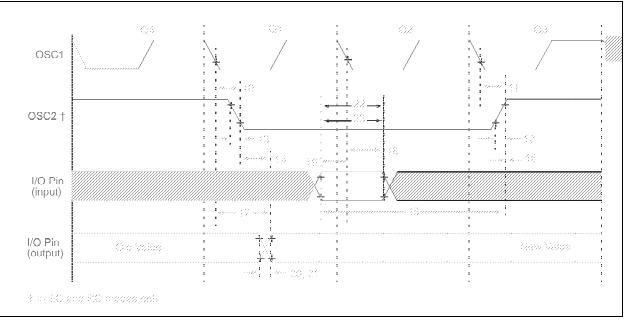
Carry bit	=	0
REG	=	0x02
WREG	=	0x50

MULLW	Multiply	Literal with \	WREG	MULV	VF	Multiply	WREG w	vith f	
Syntax:	[label]	MULLW k		Syntax	C.	[label]	MULWF	f	
Operands:	$0 \le k \le 25$	5		Opera	nds:	$0 \le f \le 2$	55		
Operation:	(k x WRE	$G) \rightarrow PROD$	H:PRODL	Opera	tion:	(WREG	$x f) \rightarrow PR$	ODH:	PRODL
Status Affected:	None			Status	Affected:	None			
Encoding:	1011	1100 kk	kk kkkk	Encod	ding:	0011	0100	ffff	ffff
Description:	out betwee and the 8-t result is pla register pa high byte. WREG is u None of the Note that n is possible	ed multiplicatio in the contents bit literal 'k'. Th aced in PRODH ir. PRODH con unchanged. e status flags a either overflow in this operatio ssible, but not	of WREG e 16-bit H:PRODL atains the are affected. v, nor carry on. A zero	Descr	Description:		An unsigned multiplication is carried out between the contents of WREG and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both WREG and 'f' are unchanged. None of the status flags are affected Note that neither overflow, nor carry is possible in this operation. A zero result is possible, but not detected.		f WREG a'r'. The air. byte. hanged. e affected. nor carry . A zero
Words:	1			Words	3:	1			
Cycles:	1			Cycle	s:	1			
Q Cycle Activity:				Q Cyc	le Activity:				
Q1	Q2	Q3	Q4		Q1	Q2	Q3		Q4
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL		Decode	Read register 'f'	Proce Data		Write registers PRODH: PRODL
<u>Example</u> :	MULLW	0xC4		Exam	<u>ple</u> :	MULWF	REG		
Before Instr WREG PRODH PRODL After Instruc WREG PRODH PRODL	$ \begin{array}{rcl} $	kE2 kC4 kAD k08			efore Instr WREG REG PRODH PRODL After Instruct WREG REG PRODH PRODL	= = = = tion = = =	0xC4 0xB5 ? ? 0xC4 0xB5 0x8A 0x94		

PIC17C7XX

NEG	W	Negate W	1		
Synt	ax:	[<i>label</i>] N	EGW	f,s	
Ope	rands:	$0 \le f \le 255$ s $\in [0,1]$	5		
Ope	ration:	WREG + 2 WREG + 2			
Status Affected: OV, C, DC, Z					
Enco	oding:	0010	110s	ffff	ffff
Description: WREG is negated using two's comple- ment. If 's' is 0, the result is placed in WREG and data memory location 'f'. If 's' is 1, the result is placed only in data memory location 'f'.					
Wor	ds:	1			
Cycl	es:	1			
QC	vcle Activity:				
	Q1	Q2	Q3	3	Q4
	Decode	Read register 'f'	Proce Dat	a re ar	Write gister 'f' nd other pecified egister
			•	•	
Example: NEGW REG, 0					
	Before Instru WREG	= 0011 1	.010 [0x :		

NOF)	No Operation							
Synt	ax:	[label]	[label] NOP						
Operands: None									
Ope	ration:	No opera	tion						
Statu	us Affected:	None							
Enco	oding:	0000	0000	0000 00		0000			
Des	cription:	No operati	No operation.						
Wor	ds:	1	1						
Cycl	es:	1							
QC	vcle Activity:								
	Q1	Q2	Q	Q3		Q4			
Decode No No operation operat					ор	No peration			


Example:

None.

WREG	=	0011	1010 [0x3A] ,
REG	=	1010	1011 [0xAB]
After Instruct	tion		
WREG	=	1100	0110 [0xC6]
REG	=	1100	0110 [0xC6]

PIC17C7XX

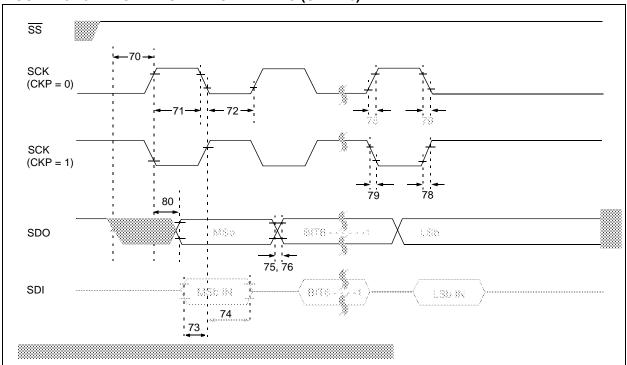


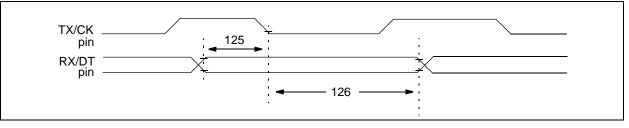
TABLE 20-2:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosL2ckL	OSC1↓ to CLKOUT↓		15	30	ns	(Note 1)
11	TosL2ckH	OSC1↓ to CLKOUT↑	—	15	30	ns	(Note 1)
12	TckR	CLKOUT rise time	—	5	15	ns	(Note 1)
13	TckF	CLKOUT fall time	—	5	15	ns	(Note 1)
14	TckH2ioV	CLKOUT ↑ to Port out valid	—	—	0.5Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKOUT [↑]	0.25Tcy + 25	—	—	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT [↑]	0	—	—	ns	(Note 1)
17	TosL2ioV	OSC1↓ (Q1 cycle) to Port out valid	—	—	100	ns	
18	TosL2iol	OSC1↓ (Q2 cycle) to Port input invalid (I/O in hold time)	0	—	_	ns	
19	TioV2osL	Port input valid to OSC1↓ (I/O in setup time)	30	—	_	ns	
20	TioR	Port output rise time	—	10	35	ns	
21	TioF	Port output fall time	—	10	35	ns	
22	TinHL	INT pin high or low time	25	—	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in EC mode, where CLKOUT output is 4 x Tosc.

FIGURE 20-13: SPI MASTER MODE TIMING (CKE = 0)


TABLE 20-8: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	—	ns	
71A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	—	ns	
72A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the of Byte2	1st clock edge	1.5Tcy + 40	—	—	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	SCK edge	100	—	—	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
78	TscR	SCK output rise time (Master mode)		_	10	25	ns	
79	TscF	SCK output fall time (Master mode)		_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SC	K edge	—	—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

FIGURE 20-20: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 20-15: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Unit s	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before $CK\downarrow$ (DT setup time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—		ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

INDEX

Α
A/D
Accuracy/Error
ADCON0 Register179
ADCON1 Register
ADIF bit
Analog Input Model Block Diagram
Analog-to-Digital Converter
Block Diagram
Configuring Analog Port Pins
Configuring the Interrupt
Configuring the Module
Connection Considerations
Conversion Clock
Converter Characteristics
Delays
Effects of a RESET
Equations
Flow Chart of A/D Operation
GO/DONE bit
Internal Sampling Switch (Rss) Impedence
Operation During SLEEP 188
Sampling Requirements
Sampling Time
Source Impedence
Time Delays
Transfer Function
A/D Interrupt
A/D Interrupt Flag bit, ADIF
A/D Module Interrupt Enable, ADIE
ACK
Acknowledge Data bit, AKD
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202
Acknowledge Data bit, AKD136Acknowledge Pulse144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWFC203ADIE36
Acknowledge Data bit, AKD.136Acknowledge Pulse.144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWF203ADIE36ADIF38
Acknowledge Data bit, AKD.136Acknowledge Pulse.144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWF203ADIE36ADIF38ADRES Register179
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADDWF 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49
Acknowledge Data bit, AKD.136Acknowledge Pulse.144Acknowledge Sequence Enable bit, AKE136Acknowledge Status bit, AKS136ADCON049ADCON149ADDLW202ADDWF202ADDWF203ADIE36ADIF38ADRES Register179
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWF 202 ADWF 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADDWF 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136, 159
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADDWF 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 ALU 11
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWF 202 ADWF 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKD 136 AKE
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKD 136 AKE 136 AKD 136 AKE 136 ALU 11 ALUSTA Register
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADLW 202 ADWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKD 136 AKE 136 AKD 136 AKS 136 AKS 136 AKS 136 AKS 136 ALU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AUU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 204
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKS 136 AUU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 74
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKS 136 ANDRESL 49 ALUSTA 136 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 74 Application Note AN578, "Use of the SSP Module 74
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKE 136 AKS 136 AUU 11 ALUSTA 198 ALUSTA Register 51 ANDLW 203 ANDWF 204 Application Note AN552, 'Implementing Wake-up 00 NKeystroke.' 74 Application Note AN578, "Use of the SSP Module 143
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 AKS 136 AKE 136 AKE 136 AKE 136 AKE 136 AKS 136 AKS 136 AKS 136 AKE 138 ALUSTA 198 ALUSTA Register 51 ANDWF 204 Application Note AN552, 'Implementing Wake-up 74 Application Note AN578, "Use of the SSP Module 143
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0. 49 ADCON1 49 ADDLW. 202 ADDWF. 202 ADDWFC 203 ADIE 36 ADIF. 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKS 136 ACOTA 198 ALUSTA Re
Acknowledge Data bit, AKD 136 Acknowledge Pulse 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0 49 ADCON1 49 ADDLW 202 ADDWF 202 ADDWFC 203 ADIE 36 ADIF 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKS 136 AKE 136 AKS 136 AKS 136 AKS 136 AKS 136 AKS 136 AKS 136 ALUSTA 198 ALUSTA Register 51 ANDWF 204 Application Note AN552, 'Implementing Wake-up 74 Application Note AN578, "Use of the SSP Module 143 Assembler 233 MPASM Assembler 233 Asynchronous Master Transmission 123 <
Acknowledge Data bit, AKD. 136 Acknowledge Pulse. 144 Acknowledge Sequence Enable bit, AKE 136 Acknowledge Status bit, AKS 136 ADCON0. 49 ADCON1 49 ADDLW. 202 ADDWF. 202 ADDWFC 203 ADIE 36 ADIF. 38 ADRES Register 179 ADRESH 49 AKD 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKE 136 AKS 136 ACOTA 198 ALUSTA Re

в

Bank Select Register (BSR) 57
Banking 46, 57
Baud Rate Formula 120
Baud Rate Generator 153
Baud Rate Generator (BRG) 120
Baud Rates
Asynchronous Mode 122
Synchronous Mode 121
BCF 204
BCLIE
BCLIF
BF 134, 144, 159, 162
Bit Manipulation 198
Block Diagrams
A/D 181
Analog Input Model 184
Baud Rate Generator 153
BSR Operation 57
External Brown-out Protection Circuit (Case1)
External Power-on Reset Circuit 24
External Program Memory Connection 45
I ² C Master Mode 151
I ² C Module 143
Indirect Addressing 54
On-chip Reset Circuit 23
PORTD 80
PORTE 82, 90, 91
Program Counter Operation 56
PWM 107
RA0 and RA172
RA2
RA373
RA4 and RA573
RB3:RB2 Port Pins75
RB7:RB4 and RB1:RB0 Port Pins74
RC7:RC0 Port Pins78
SSP (I ² C Mode)143
SSP (SPI Mode) 137
SSP Module (I ² C Master Mode) 133
SSP Module (I ² C Master Mode)
SSP Module (I ² C Master Mode)
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register110TMR1 and TMR2 in 16-bit Timer/Counter Mode105
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers112
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers.112Using CALL, GOTO.56
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers112Using CALL, GOTO56WDT193
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers112Using CALL, GOTO56WDT193BODEN31
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers112Using CALL, GOTO56WDT193BODEN31Borrow11
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers.112Using CALL, GOTO.56WDT193BODEN31Borrow11BRG120, 153
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers112Using CALL, GOTO56WDT193BODEN31Borrow11BRG120, 153Brown-out Protection31
SSP Module (I²C Master Mode)133SSP Module (I²C Slave Mode)133SSP Module (SPI Mode)133Timer3 with One Capture and One Period Register.110TMR1 and TMR2 in 16-bit Timer/Counter Mode105TMR1 and TMR2 in Two 8-bit Timer/Counter Mode104TMR3 with Two Capture Registers112Using CALL, GOTO56WDT193BODEN31Borrow111BRG120, 153Brown-out Protection31Brown-out Reset (BOR)31
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 11 BRG 120, 153 Brown-out Protection 31 BSF. 205
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 11 BRG 120, 153 Brown-out Protection 31 BSF. 205 BSR 57
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 111 BRG 120, 153 Brown-out Protection 31 BSF. 205 BSR 57 BSR Operation 57
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 11 BRG 120, 153 Brown-out Protection 31 BSF. 205 BSR 57 BSR Operation 57 BTFSC 205
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 11 BRG 120, 153 Brown-out Protection 31 BSF. 205 BSR 57 BSR Operation 57 BTFSC 205 BTFSS 206
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 111 BRG 120, 153 Brown-out Protection 31 BSF 205 BSR 57 BTFSC 205 BTFSS 206 BTG 206
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 111 BRG 120, 153 Brown-out Protection 31 BSF 205 BSR 57 BTFSC 205 BTFSS 206 BTG 206 Buffer Full bit, BF 144
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers 112 Using CALL, GOTO 56 WDT 193 BODEN 31 Borrow 111 BRG 120, 153 Brown-out Protection 31 BSF 205 BSR 57 BSR Operation 57 BTFSC 205 BTG 206 Buffer Full bit, BF 144 Buffer Full Status bit, BF 134
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers. 112 Using CALL, GOTO. 56 WDT 193 BODEN. 31 Borrow 111 BRG 120, 153 Brown-out Protection 31 BSR 205 BSR 57 BSR Operation 57 BTFSS 206 BTG 206 Buffer Full bit, BF 144 Buffer Full bit, BF 134 Bus Arbitration 170
SSP Module (I ² C Master Mode) 133 SSP Module (I ² C Slave Mode) 133 SSP Module (SPI Mode) 133 Timer3 with One Capture and One Period Register. 110 110 TMR1 and TMR2 in 16-bit Timer/Counter Mode 105 TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 104 TMR3 with Two Capture Registers 112 Using CALL, GOTO 56 WDT 193 BODEN 31 Borrow 111 BRG 120, 153 Brown-out Protection 31 BSF 205 BSR 57 BSR Operation 57 BTFSC 205 BTG 206 Buffer Full bit, BF 144 Buffer Full Status bit, BF 134