

 Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc752t-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC17CXXX FAMILY OF DEVICES

Feature	s	PIC17C42A	PIC17C43	PIC17C44	PIC17C752	PIC17C756A	PIC17C762	PIC17C766
Maximum Frequer of Operation	ю	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz
Operating Voltage	Range	2.5 - 6.0V	2.5 - 6.0V	2.5 - 6.0V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V
Program	(EPROM)	2 K	4 K	8 K	8 K	16 K	8 K	16 K
Memory (x16)	(ROM)	_	—	_	_	—	—	_
Data Memory (byte	es)	232	454	454	678	902	678	902
Hardware Multiplie	er (8 x 8)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit post	scaler)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Capture inputs (16	-bit)	2	2	2	4	4	4	4
PWM outputs (up t	o 10-bit)	2	2	2	3	3	3	3
USART/SCI		1	1	1	2	2	2	2
A/D channels (10-I		_	—	_	12	12	16	16
SSP (SPI/I ² C w/Ma mode)	aster	—	—	—	Yes	Yes	Yes	Yes
Power-on Reset		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes	Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	18	18	18	18
Code Protect		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset			—		Yes	Yes	Yes	Yes
In-Circuit Serial Programming			—		Yes	Yes	Yes	Yes
I/O Pins		33	33	33	50	50	66	66
I/O High	Source	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA
Current Capability	Sink	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾
Package Types		40-pin DIP 44-pin PLCC 44-pin MQFP 44-pin TQFP	40-pin DIP 44-pin PLCC 44-pin MQFP 44-pin TQFP	40-pin DIP 44-pin PLCC 44-pin MQFP 44-pin TQFP	64-pin TQFP 68-pin PLCC	64-pin TQFP 68-pin PLCC	80-pin TQFP 84-pin PLCC	80-pin TQFP 84-pin PLCC

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

PIC17C7XX

NOTES:

6.0 INTERRUPTS

PIC17C7XX devices have 18 sources of interrupt:

- External interrupt from the RA0/INT pin
- Change on RB7:RB0 pins
- TMR0 Overflow
- TMR1 Overflow
- TMR2 Overflow
- TMR3 Overflow
- USART1 Transmit buffer empty
- USART1 Receive buffer full
- USART2 Transmit buffer empty
- USART2 Receive buffer full
- SSP Interrupt
- SSP I²C bus collision interrupt
- A/D conversion complete
- Capture1
- Capture2
- Capture3
- Capture4
- T0CKI edge occurred

There are six registers used in the control and status of interrupts. These are:

- CPUSTA
- INTSTA
- PIE1
- PIR1
- PIE2
- PIR2

The CPUSTA register contains the GLINTD bit. This is the Global Interrupt Disable bit. When this bit is set, all interrupts are disabled. This bit is part of the controller core functionality and is described in the Section 6.4.

FIGURE 6-1: INTERRUPT LOGIC

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with the interrupt vector address. There are four interrupt vectors. Each vector address is for a specific interrupt source (except the peripheral interrupts, which all vector to the same address). These sources are:

- External interrupt from the RA0/INT pin
- TMR0 Overflow
- T0CKI edge occurred
- Any peripheral interrupt

When program execution vectors to one of these interrupt vector addresses (except for the peripheral interrupts), the interrupt flag bit is automatically cleared. Vectoring to the peripheral interrupt vector address does not automatically clear the source of the interrupt. In the peripheral Interrupt Service Routine, the source(s) of the interrupt can be determined by testing the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

When an interrupt condition is met, that individual interrupt flag bit will be set, regardless of the status of its corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt latency. For two-cycle instructions, the latency could be one instruction cycle longer.

The "return from interrupt" instruction, RETFIE, can be used to mark the end of the Interrupt Service Routine. When this instruction is executed, the stack is "POPed" and the GLINTD bit is cleared (to re-enable interrupts).

8.1 Table Writes to Internal Memory

A table write operation to internal memory causes a long write operation. The long write is necessary for programming the internal EPROM. Instruction execution is halted while in a long write cycle. The long write will be terminated by any enabled interrupt. To ensure that the EPROM location has been well programmed, a minimum programming time is required (see specification #D114). Having only one interrupt enabled to terminate the long write ensures that no unintentional interrupts will prematurely terminate the long write.

The sequence of events for programming an internal program memory location should be:

- 1. Disable all interrupt sources, except the source to terminate EPROM program write.
- 2. Raise MCLR/VPP pin to the programming voltage.
- 3. Clear the WDT.
- 4. Do the table write. The interrupt will terminate the long write.
- 5. Verify the memory location (table read).
 - Note 1: Programming requirements must be met. See timing specification in electrical specifications for the desired device. Violating these specifications (including temperature) may result in EPROM locations that are not fully programmed and may lose their state over time.
 - 2: If the VPP requirement is not met, the table write is a 2-cycle write and the program memory is unchanged.

8.1.1 TERMINATING LONG WRITES

An interrupt source or RESET are the only events that terminate a long write operation. Terminating the long write from an interrupt source requires that the interrupt enable and flag bits are set. The GLINTD bit only enables the vectoring to the interrupt address.

If the TOCKI, RA0/INT, or TMR0 interrupt source is used to terminate the long write, the interrupt flag of the highest priority enabled interrupt, will terminate the long write and automatically be cleared.

- **Note 1:** If an interrupt is pending, the TABLWT is aborted (a NOP is executed). The highest priority pending interrupt, from the TOCKI, RA0/INT, or TMR0 sources that is enabled, has its flag cleared.
 - 2: If the interrupt is not being used for the program write timing, the interrupt should be disabled. This will ensure that the interrupt is not lost, nor will it terminate the long write prematurely.

If a peripheral interrupt source is used to terminate the long write, the interrupt enable and flag bits must be set. The interrupt flag will not be automatically cleared upon the vectoring to the interrupt vector address.

The GLINTD bit determines whether the program will branch to the interrupt vector when the long write is terminated. If GLINTD is clear, the program will vector, if GLINTD is set, the program will not vector to the interrupt address.

Interrupt Source	GLINTD	Enable Bit	Flag Bit	Action
RA0/INT,	0	1	1	Terminate long table write (to internal program memory),
TMR0,				branch to interrupt vector (branch clears flag bit).
TOCKI	0	1	0	None.
	1	0	x	None.
	1	1	1	Terminate long table write, do not branch to interrupt vector (flag is automatically cleared).
Peripheral	0	1	1	Terminate long table write, branch to interrupt vector.
	0	1	0	None.
	1	0	x	None.
	1	1	1	Terminate long table write, do not branch to interrupt vector (flag remains set).

TABLE 8-1: INTERRUPT - TABLE WRITE INTERACTION

10.0 I/O PORTS

PIC17C75X devices have seven I/O ports, PORTA through PORTG. PIC17C76X devices have nine I/O ports, PORTA through PORTJ. PORTB through PORTJ have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA, PORTB, PORTE<3>, PORTF, PORTG and the upper four bits of PORTH are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer Modules
- Capture Modules
- PWM Modules
- USART/SCI Modules
- SSP Module
- A/D Module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM Module
- SSP Module
- USART/SCI Module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

The other peripheral modules (which require an input) must have their data direction bits configured appropriately.

Note:	A pin that is a peripheral input, can be con-
	figured as an output (DDRx <y> is cleared).</y>
	The peripheral events will be determined
	by the action output on the port pin.

When the device enters the "RESET state", the Data Direction registers (DDR) are forced set, which will make the I/O hi-impedance inputs. The RESET state of some peripheral modules may force the I/O to other operations, such as analog inputs or the system bus.

Name	Bit	Buffer Type	Function
RB0/CAP1	bit0	ST	Input/output or the Capture1 input pin. Software programmable weak pull-up and interrupt-on-change features.
RB1/CAP2	bit1	ST	Input/output or the Capture2 input pin. Software programmable weak pull-up and interrupt-on-change features.
RB2/PWM1	bit2	ST	Input/output or the PWM1 output pin. Software programmable weak pull-up and interrupt-on-change features.
RB3/PWM2	bit3	ST	Input/output or the PWM2 output pin. Software programmable weak pull-up and interrupt-on-change features.
RB4/TCLK12	bit4	ST	Input/output or the external clock input to Timer1 and Timer2. Software programmable weak pull-up and interrupt-on-change features.
RB5/TCLK3	bit5	ST	Input/output or the external clock input to Timer3. Software programmable weak pull-up and interrupt-on-change features.
RB6/SCK	bit6	ST	Input/output or the Master/Slave clock for the SPI. Software programmable weak pull-up and interrupt-on-change features.
RB7/SDO	bit7	ST	Input/output or data output for the SPI. Software programmable weak pull-up and interrupt-on-change features.

TABLE 10-3:	PORTB FUNCTIONS
-------------	-----------------

Legend: ST = Schmitt Trigger input

TABLE 10-4: REGISTERS/BITS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
12h, Bank 0	PORTB	RB7/ SDO	RB6/ SCK	RB5/ TCLK3	RB4/ TCLK12	RB3/ PWM2	RB2/ PWM1	RB1/ CAP2	RB0/ CAP1	XXXX XXXX	uuuu uuuu
11h, Bank 0	DDRB	Data Dire	ction Regis	ter for PORT	В					1111 1111	1111 1111
10h, Bank 0	PORTA	RBPU	—	RA5/ TX1/CK1	RA4/ RX1/DT1	RA3/ SDI/SDA	<u>R</u> A2/ SS/SCL	RA1/T0CKI	RA0/INT	0-xx 11xx	0-uu 11uu
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	TOCKIE	T0IE	INTE	0000 0000	0000 0000
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3		TMR2ON	TMR10N	0000 0000	

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition. Shaded cells are not used by PORTB.

TABLE 10-5: PORTC FUNCTIONS

Name	Bit	Buffer Type	Function
RC0/AD0	bit0	TTL	Input/output or system bus address/data pin.
RC1/AD1	bit1	TTL	Input/output or system bus address/data pin.
RC2/AD2	bit2	TTL	Input/output or system bus address/data pin.
RC3/AD3	bit3	TTL	Input/output or system bus address/data pin.
RC4/AD4	bit4	TTL	Input/output or system bus address/data pin.
RC5/AD5	bit5	TTL	Input/output or system bus address/data pin.
RC6/AD6	bit6	TTL	Input/output or system bus address/data pin.
RC7/AD7	bit7	TTL	Input/output or system bus address/data pin.

Legend: TTL = TTL input

TABLE 10-6: REGISTERS/BITS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
11h, Bank 1	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
10h, Bank 1	DDRC	Data Dir	ection Re	gister for P	ORTC					1111 1111	1111 1111

Legend: x = unknown, u = unchanged

10.10.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 10-20). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before executing the instruction that reads the values on that I/O port. Otherwise, the previous state of that pin may be read into the CPU, rather than the "new" state. When in doubt, it is better to separate these instructions with a NOP, or another instruction not accessing this I/O port.

Figure 10-21 shows the I/O model which causes this situation. As the effective capacitance (C) becomes larger, the rise/fall time of the I/O pin increases. As the device frequency increases, or the effective capacitance increases, the possibility of this subsequent PORTx read-modify-write instruction issue increases. This effective capacitance includes the effects of the board traces.

The best way to address this is to add a series resistor at the I/O pin. This resistor allows the I/O pin to get to the desired level before the next instruction.

The use of NOP instructions between the subsequent PORTx read-modify-write instructions, is a lower cost solution, but has the issue that the number of NOP instructions is dependent on the effective capacitance C and the frequency of the device.

FIGURE 10-20: SUCCESSIVE I/O OPERATION

FIGURE 10-21: I/O CONNECTION ISSUES

12.1 Timer0 Operation

When the TOCS (T0STA<5>) bit is set, TMR0 increments on the internal clock. When TOCS is clear, TMR0 increments on the external clock (RA1/T0CKI pin). The external clock edge can be selected in software. When the T0SE (T0STA<6>) bit is set, the timer will increment on the rising edge of the RA1/T0CKI pin. When T0SE is clear, the timer will increment on the falling edge of the RA1/T0CKI pin. The prescaler can be programmed to introduce a prescale of 1:1 to 1:256. The timer increments from 0000h to FFFFh and rolls over to 0000h. On overflow, the TMR0 Interrupt Flag bit (T0IF) is set. The TMR0 interrupt can be masked by clearing the corresponding TMR0 Interrupt Enable bit (T0IE). The TMR0 Interrupt Flag bit (T0IF) is automatically cleared when vectoring to the TMR0 interrupt vector.

12.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it is synchronized with the internal phase clocks. Figure 12-2 shows the synchronization of the external clock. This synchronization is done after the prescaler. The output of the prescaler (PSOUT) is sampled twice in every instruction cycle to detect a rising or a falling edge. The timing requirements for the external clock are detailed in the electrical specification section.

12.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time TMR0 is actually incremented. Figure 12-2 shows that this delay is between 3Tosc and 7Tosc. Thus, for example, measuring the interval between two edges (e.g. period) will be accurate within \pm 4Tosc (\pm 121 ns @ 33 MHz).

FIGURE 12-1: TIMER0 MODULE BLOCK DIAGRAM

15.2.1.3 Slave Transmission

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then SCL pin should be enabled by setting bit CKP (SSPCON1<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 15-13). An SSP interrupt is generated for each data transfer byte. The SSPIF flag bit must be cleared in software, and the SSPSTAT register is used to determine the status of the byte transfer. The SSPIF flag bit is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the not ACK is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, the SCL pin should be enabled by setting the CKP bit.

FIGURE 15-12: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

FIGURE 15-13: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

15.2.13 ACKNOWLEDGE SEQUENCE TIMING

An acknowledge sequence is enabled by setting the acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the acknowledge data bit is presented on the SDA pin. If the user wishes to generate an acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG), and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the SSP module then goes into IDLE mode (Figure 15-29).

15.2.13.1 WCOL Status Flag

If the user writes the SSPBUF when an acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-29: ACKNOWLEDGE SEQUENCE WAVEFORM

15.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 15-33).

15.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

15.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

FIGURE 15-33: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

15.2.18.3 Bus Collision During a STOP Condition

Bus collision occurs during a STOP condition if:

- a) After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to '0'. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0'. If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 15-40).

FIGURE 15-40: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 15-41: BUS COLLISION DURING A STOP CONDITION (CASE 2)

15.4 Example Program

Example 15-2 shows MPLAB[®] C17 'C' code for using the I²C module in Master mode to communicate with a 24LC01B serial EEPROM. This example uses the PIC[®] MCU 'C' libraries included with MPLAB C17.

EXAMPLE 15-2: INTERFACING TO A 24LC01B SERIAL EEPROM (USING MPLAB C17)

```
// Include necessary header files
#include <p17c756.h>
                       // Processor header file
                       // Delay routines header file
// Standard Library header file
#include <delays.h>
#include <stdlib.h>
                       // Standard Lizzard
// I2C routines header file
#include <i2c16.h>
#define CONTROL 0xa0
                        // Control byte definition for 24LC01B
// Function declarations
void main(void);
void WritePORTD(static unsigned char data);
void ByteWrite(static unsigned char address, static unsigned char data);
unsigned char ByteRead(static unsigned char address);
void ACKPoll(void);
// Main program
void main(void)
{
static unsigned char address; // I2C address of 24LC01B
static unsigned char datao; // Data written to 24LC01B
static unsigned char datai;
                                // Data read from 24LC01B
                                  // Preset address to 0
    address = 0;
   OpenI2C(MASTER,SLEW_ON);
                                 // Configure I2C Module Master mode, Slew rate control on
   SSPADD = 39;
                                 // Configure clock for 100KHz
    while(address<128)
                                 // Loop 128 times, 24LC01B is 128x8
    {
        datao = PORTB;
        do
        {
            ByteWrite(address,datao); // Write data to EEPROM
            ACKPoll();
                                        // Poll the 24LC01B for state
            datai = ByteRead(address); // Read data from EEPROM into SSPBUF
        while(datai != datao);
                                        // Loop as long as data not correctly
                                         11
                                             written to 24LC01B
        address++;
                                        // Increment address
    }
    while(1)
                                         // Done writing 128 bytes to 24LC01B, Loop forever
    {
        Nop();
    }
```

PIC17C7XX

BSF		Bit Set f						
Synt	ax:	[<i>label</i>] E	[<i>label</i>] BSF f,b					
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Ope	ration:	$1 \rightarrow (f < b >$	•)					
State	us Affected:	None						
Enco	oding:	1000	0bbb	ffff	ffff			
Des	cription:	Bit 'b' in reg	gister 'f' is	s set.				
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register 'f'	Proce Dat		Write register 'f'			
<u>Exa</u>	mple:		FLAG_RE	G, 7				
	Before Instru FLAG_RI		:0A					
	After Instruct FLAG_RI		:8A					

BTF	SC	Bit Test,	skip if Cle	ear				
Synt	ax:	[label] E	[label] BTFSC f,b					
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Ope	ration:	skip if (f<ł	o>) = 0					
Statu	us Affected:	None						
Enco	oding:	1001	1bbb	ffff	ffff			
Desc	cription:	instruction If bit 'b' is 0 fetched du cution is dia	If bit 'b' in register 'f' is 0, then the next instruction is skipped. If bit 'b' is 0, then the next instruction fetched during the current instruction exe- cution is discarded and a NOP is executed instead, making this a two-cycle instruction					
Word	ds:	1						
Cycl	es:	1(2)						
QC	cle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proce Data		No peration			
lf ski	ip:							
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operat	ion op	No peration			
<u>Exar</u>		operation HERE FALSE	operat	FLAG, 1				
	operation	operation HERE I FALSE TRUE Ction	operati BTFSC	FLAG,1				

INCF	Incremen	tf		
Syntax:	[label]	INCF f	,d	
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5		
Operation:	(f) + 1 \rightarrow (dest)		
Status Affected:	OV, C, DC	;, Z		
Encoding:	0001	010d	ffff	ffff
Description:	d' is 0, th	ster 'f' are e result is e result is _l	placed in	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce Dat		Vrite to stination
Example:	INCF	CNT,	1	
Before Instr				
CNT Z C	= 0xFF = 0 = ?			
After Instruc	tion			
CNT Z C	= 0x00 = 1 = 1			

INC	FSZ	Incremen	Increment f, skip if 0				
Syntax:		[label]	[label] INCFSZ f,d				
Operands:		$0 \le f \le 255$ d $\in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$				
Operation:			$(f) + 1 \rightarrow (dest)$ skip if result = 0				
Status Affected:		None	None				
Encoding:		0001	111d ff	ff ffff			
Des	cription:	mented. If ' WREG. If 'd back in regi If the result which is alr and a NOP i	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction.				
Wor	ds:	1	•				
Cyc	es:	1(2)					
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	Write to destination			
lf sk	ip:						
	Q1	Q2	Q3	Q4			
	No operation	No operation	No operation	No operation			
Example:		NZERO	INCFSZ C :	NT, 1			
	Before Instru PC		(HERE)				
	After Instruct CNT If CNT PC	= CNT + = 0;	l S(ZERO)				

- If CNT \neq 0;
 - PC = Address (NZERO)

TABLRD	Table Re	ead	
Example1:	TABLRD	1, 1,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instructi	on (table v	write co	
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA357
MEMORY	(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instructi	on (table v	write co	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234

TABLWT	Table Write					
Syntax:	[label] TABLWT t,i,f	[label] TABLWT t,i,f				
Operands:	$0 \le f \le 255$					
	ı ∈ [0,1] t ∈ [0,1]	$i \in [0,1]$				
Operation:	lf t = 0,					
Operation.	$f \rightarrow TBLATL;$					
	If t = 1,					
	$f \rightarrow TBLATH;$ TBLAT $\rightarrow Prog Mem (TBLPTR);$					
	If $i = 1$,					
	TBLPTR + 1 \rightarrow TBLPTR	TBLPTR + 1 \rightarrow TBLPTR				
	If I = 0, TBLPTR is unchanged	If i = 0, TPL DTP is upshapaed				
Status Affected	-					
Encoding:	1010 11ti ffff ff	ff				
Description:	1. Load value in 'f' into 16-bit tab					
	latch (TBLAT)	16				
	If t = 1: load into high byte; If t = 0: load into low byte					
	2. The contents of TBLAT are wr	rit-				
	ten to the program memo	ory				
	location pointed to by TBLPTF If TBLPTR points to extern					
	If TBLPTR points to external program memory location, then					
	the instruction takes two-cycle.					
	the instruction takes two-cycle) .				
	the instruction takes two-cycle If TBLPTR points to an intern) .				
	the instruction takes two-cycle If TBLPTR points to an intern EPROM location, then the instruction is terminated who	e. nal he				
Note: The	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received.	e. hal he en				
volta	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming of interview of the programming of interview.	e. hal he en				
volta m <u>err</u>	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming of interview of the programming of interview.	e. hal he en				
volta m <u>em</u> If M0 the p	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then th instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem-	e. hal he en ning rna				
volta mem If M0 the p will	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- tory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur	e. hal he en ning rna				
volta mem If M0 the p will	the instruction takes two-cycle If TBLPTR points to an intern EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- tory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not	e. hal he en ning rna				
volta m <u>en</u> If M0 the p will I TCY)	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then th instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not sted. 3. The TBLPTR can be automa	e. hal he en ning rna nory t be				
volta m <u>en</u> If M0 the p will I TCY)	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then th instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur the internal memory location will not sted. 3. The TBLPTR can be automa- cally incremented	e. hal he en ning rna nory t be				
volta m <u>en</u> If M0 the p will I TCY)	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then th instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur the internal memory location will not sted. 3. The TBLPTR can be automal cally incremented If i = 1; TBLPTR is not incremented	e. hal he en ning rna nory t be				
volta m <u>em</u> If MC the p will I Tcy) affec	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then th instruction is terminated who an interrupt is received. <u>MCLR/VPP pin must be at the programming</u> ory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automatic cally incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented	e. hal he en ning rna nory t be				
volta mem If MC the p will Tcy) affec	the instruction takes two-cycle If TBLPTR points to an intern EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automatic cally incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented	e. hal he en ning rna nory t be				
volta mem If MC the p will Tcy) affec	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- tory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automatic cally incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented 1 2 (many if write is to on-chip	e. hal he en ning rna nory t be				
volta mem If MC the p will I Tcy) affec Words: Cycles:	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming rory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur ted. 3. The TBLPTR can be automaticated incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented If i = 0; I	e. hal he en ning rna nory t be				
volta mem If MC the p will I Tcy) affec Words: Cycles:	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming rory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur ted. 3. The TBLPTR can be automaticated incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented If i = 0; I	e. hal he en ning rna nory t be				
volta mem If MC the p will I Tcy) affec Words: Cycles: Q Cycle Activity	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not teted. 3. The TBLPTR can be automatic cally incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) /:	e. hal he en ning rna nory r (2 t be				
volta mem If MC the p will Tcy) affec Words: Cycles: Q Cycle Activity Q1	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automaticated If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented Mean incremented If i = 0; TBLPTR is incremented Mean incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented Mean incremented If i = 0; TBLPTR is incremented Mean incremented If i = 0; TBLPTR is incremented If	e. hal he en nory r (2 t be tti-				
volta mem If MC the p will Tcy) affec Words: Cycles: Q Cycle Activity Q1	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automatic cally incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) /: Q2 Q3 Q4 Read Process Write	e. hal he en nory r (2 t be tti- ed				
volta mem If MC the p will Tcy) affec Words: Cycles: Q Cycle Activity Q1	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- nory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automaticated If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented MCLR/VPP = VDD	e. hal he en nory r (2 t be tti- ed				
volta mem If MC the p will Tcy) affec Words: Cycles: Q Cycle Activity Q1 Decode	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- tory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automatic cally incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is incremented If a contained is to on-chip EPROM program memory) /: Q2 Q3 Q4 Read Process Write register 'f' Data register TBLATH TBLATH No No No No operation operation operation	e. hal he en ning rrna nor) r (2 t be nti-				
Volta mem If MC the p will Tcy) affec Words: Cycles: Q Cycle Activity Q1 Decode No	the instruction takes two-cycle If TBLPTR points to an interr EPROM location, then the instruction is terminated who an interrupt is received. MCLR/VPP pin must be at the programming ge for successful programming of inter- tory. CLR/VPP = VDD programming sequence of internal mem- be interrupted. A short write will occur . The internal memory location will not ted. 3. The TBLPTR can be automatic cally incremented If i = 1; TBLPTR is not incremented If i = 0; TBLPTR is incremented If i = 0; TBLPTR is increm	e. hal he en ning rrna nory r (2 t be tti- ed or - n or				

XORLW	Exclusiv WREG	Exclusive OR Literal with WREG				
Syntax:	[label]]	[label] XORLW k				
Operands:	$0 \le k \le 2$	$0 \leq k \leq 255$				
Operation:	(WREG)	(WREG) .XOR. $k \rightarrow$ (WREG)				
Status Affected:	Z	Z				
Encoding:	1011	0100 kkkk		kkkk		
Description:	with the 8	The contents of WREG are XOR'ed with the 8-bit literal 'k'. The result is placed in WREG.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Proce: Data		Write to WREG		
Example: Before Instru		0xAF				
WREG	= 0xB5					
After Instruc WREG						

XOR	WF	Exclusive OR WREG with f				
Synt	ax:	[label]	XORWF	f,d		
Operands:		$0 \le f \le 255$ $d \in [0,1]$	5			
Ope	ration:	(WREG) .	XOR. (f	\rightarrow (des	st)	
Statu	us Affected:	Z				
Enco	oding:	0000	110d	ffff	ffff	
Description:		with registe stored in W	Exclusive OR the contents of WREG with register 'f'. If 'd' is 0, the result is stored in WREG. If 'd' is 1, the result is stored back in the register 'f'.			
Wor	ds:	1				
Cycl	es:	1				
QC	cle Activity:					
	Q1	Q2	Q3	3	Q4	
	Decode	Read register 'f'	Proce Dat		Write to estination	
<u>Exar</u>	nple:	XORWF	REG, 1			
	Before Instru REG WREG	iction = 0xAF = 0xB5	1010 1011			

WINEO	-	0,00	1011 0101
After Instruc	tion		
REG	=	0x1A	0001 1010
WREG	=	0xB5	

Bus Collision During a RESTART Condition	
Bus Collision During a START Condition	
Bus Collision During a STOP Condition	
Bus Collision Interrupt Enable, BCLIE	
Bus Collision Interrupt Flag bit, BCLIF	.38
C	
C11,	51
CA1/PR3 1	102
CA1ED0 1	101
CA1ED1 1	101
CA1IE	35
CA1IF	37
CA10VF1	102
CA2ED0	101
CA2ED1 1	101
CA2H	49
CA2IE	111
CA2IF	111
CA2L	49
CA2OVF	102
CA3H	
CA3IE	36
CA3IF	.38
CA3L	
CA4H	
CA4IE	36
CA4IF	
Calculating Baud Rate Error	
CALL	
Capacitor Selection	- • ·
Ceramic Resonators	18
Crystal Oscillator	
Capture	110
Capture Sequence to Read Example	113
Capture Sequence to Read Example1 Capture1	13
Capture1	
Capture1 Mode1	101
Capture1 Mode Overflow102,	101 103
Capture1 Mode Overflow	101 103
Capture1 Mode Overflow	101 103 .37
Capture1 Mode Overflow	101 103 .37
Capture1 Mode Overflow	101 103 . 37 101 103
Capture1 Mode	101 103 .37 101 103 .37
Capture1 Mode	101 103 .37 101 103 .37 .36
Capture1 Mode	101 103 .37 101 103 .37 .36 .38
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .36 .38
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .11
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .36 .38 .36 .38 .11
Capture1 Mode	101 103 .37 103 .36 .38 .36 .38 .38 .11 .17 .54
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .38 .11 .17 .54 134
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .38 .11 .17 .54 134 135
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .36 .38 .11 .17 .54 134 135 193
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .11 .17 .54 135 193 135
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .38 .38 .11 .17 .54 135 135 .21
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .11 .17 .54 135 .21 .21
Capture1 Mode	101 103 .37 .01 103 .37 .36 .38 .37 .36 .38 .11 .17 .54 135 .21 .21 .207
Capture1 Mode	101 103 .37 .01 103 .37 .36 .38 .37 .36 .38 .11 .17 .54 135 .21 .21 .207
Capture1 Mode	101 103 .37 .01 103 .37 .36 .38 .36 .38 .11 .17 .54 135 .21 .21 207
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .38 .38 .117 .54 135 .21 .207 208 .55
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .38 .38 .11 .54 135 .21 .207 208 .55 138
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .36 .38 .36 .38 .36 .38 .37 .54 135 .21 .207 208 .55 .38 .42
Capture1 Mode	101 103 .37 101 103 .37 .36 .38 .38 .38 .38 .37 .36 .38 .37 .36 .38 .37 .36 .38 .37 .36 .38 .37 .36 .38 .37 .36 .38 .37 .37 .36 .38 .37 .37 .36 .37 .37 .36 .37 .37 .36 .37 .37 .36 .38 .37 .37 .36 .37 .37 .37 .36 .37 .37 .36 .38 .37 .37 .36 .38 .37 .37 .36 .38 .37 .37 .36 .38 .37 .37 .36 .38 .37 .37 .36 .38 .37 .37 .36 .38 .37 .37 .36 .38 .37 .37 .37 .36 .38 .37 .37 .37 .37 .36 .38 .37 .37 .37 .37 .37 .37 .37 .37 .37 .37
Capture1 Mode	101 103 .37 .01 103 .37 .36 .38 .38 .38 .38 .38 .38 .38 .38 .38 .38
Capture1 Mode	101 103 .37 .01 103 .37 .36 .38 .38 .38 .38 .38 .38 .38 .38 .38 .38

Configuration	
Bits	
Locations	192
Oscillator1	7, 192
Word	191
CPFSEQ	209
CPFSGT	209
CPFSLT	
CPUSTA	
Crystal Operation, Overtone Crystals	
Crystal or Ceramic Resonator Operation	
Crystal Oscillator	
, ,	17
D	
D/Ā	134
Data Memory	
GPR	43, 46
Indirect Addressing	54
Organization	
SFR	
Data Memory Banking	
Data/Address bit, D/A	
DAW	
DC	, -
DDRB	,
DDRC	,
DDRD	
DDRE	,
DDRF	49
DDRG	49
DECF	211
DECFSNZ	212
DECFSZ	
Delay From External Clock Edge	
Digit Borrow	
Digit Carry (DC)	
Duty Cycle	107
E	
Electrical Characteristics	
PIC17C752/756	
Absolute Maximum Ratings	239
Capture Timing	253
CLKOUT and I/O Timing	250
DC Characteristics	242
External Clock Timing	
Memory Interface Read Timing	
Memory Interface Write Timing	
Parameter Measurement Information	
Reset, Watchdog Timer, Oscillator Start-up	240
e 1	054
Timer and Power-up Timer Timing	
Timer0 Clock Timing	
Timer1, Timer2 and Timer3 Clock Timing	
Timing Parameter Symbology	
USART Module Synchronous Receive Timin	g. 261
USART Module Synchronous Transmission	
Timing	260
EPROM Memory Access Time Order Suffix	45
Errata	
Extended Microcontroller	
Extended Microcontroller Mode	
External Memory Interface	
External Program Memory Waveforms	
External royant wentury waveloning	40

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events