

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	678 × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc752t-08i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1: PINOUT DESCRIPTIONS (CONTINUED)										
	F	PIC17C7	5X	PIC17	7C76X					
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description		
								PORTC is a bi-directional I/O Port.		
RC0/AD0	2	3	58	3	72	I/O	TTL	This is also the least significant byte (LSB) of		
RC1/AD1	63	67	55	83	69	I/O	TTL	the 16-bit wide system bus in Microprocessor		
RC2/AD2	62	66	54	82	68	I/O	TTL	mode or Extended Microcontroller mode. In		
RC3/AD3	61	65	53	81	67	I/O	TTL	multiplexed system bus configuration, these pins are address output as well as data input of		
RC4/AD4	60	64	52	80	66	I/O	TTL	output.		
RC5/AD5	58	63	51	79	65	I/O	TTL			
RC6/AD6	58	62	50	78	64	I/O	TTL			
RC7/AD7	57	61	49	77	63	I/O	TTL			
								PORTD is a bi-directional I/O Port.		
RD0/AD8	10	11	2	15	4	I/O	TTL	This is also the most significant byte (MSB) of		
RD1/AD9	9	10	1	14	3	I/O	TTL	the 16-bit system bus in Microprocessor mode		
RD2/AD10	8	9	64	9	78	I/O	TTL	or Extended Microcontroller mode. In multi-		
RD3/AD11	7	8	63	8	77	I/O	TTL	plexed system bus configuration, these pins an address output as well as data input or output.		
RD4/AD12	6	7	62	7	76	I/O	TTL			
RD5/AD13	5	6	61	6	75	I/O	TTL			
RD6/AD14	4	5	60	5	74	I/O	TTL			
RD7/AD15	3	4	59	4	73	I/O	TTL			
								PORTE is a bi-directional I/O Port.		
RE0/ALE	11	12	3	16	5	I/O	TTL	In Microprocessor mode or Extended Microcor troller mode, RE0 is the Address Latch Enable (ALE) output. Address should be latched on the falling edge of ALE output.		
RE1/OE	12	13	4	17	6	I/O	TTL	In Microprocessor or Extended Microcontroller mode, RE1 is the Output Enable (OE) control output (active low).		
RE2/WR	13	14	5	18	7	I/O	TTL	In Microprocessor or Extended Microcontroller mode, RE2 is the Write Enable (WR) control output (active low).		
RE3/CAP4	14	15	6	19	8	I/O	ST	RE3 can also be the Capture4 input pin.		
								PORTF is a bi-directional I/O Port.		
RF0/AN4	26	28	18	36	24	I/O	ST	RF0 can also be analog input 4.		
RF1/AN5	25	27	17	35	23	I/O	ST	RF1 can also be analog input 5.		
RF2/AN6	24	26	16	30	18	I/O	ST	RF2 can also be analog input 6.		
RF3/AN7	23	25	15	29	17	I/O	ST	RF3 can also be analog input 7.		
RF4/AN8	22	24	14	28	16	I/O	ST	RF4 can also be analog input 8.		
RF5/AN9	21	23	13	27	15	I/O	ST	RF5 can also be analog input 9.		
RF6/AN10	20	22	12	26	14	I/O	ST	RF6 can also be analog input 10.		
RF7/AN11	19	21	11	25	13	I/O	ST	RF7 can also be analog input 11.		

TABLE 3-1: PINOUT DESCRIPTIONS (CONTINUED)

Legend: I = Input only; O = Output only; I/O = Inp P = Power; — = Not Used; TTL = T

I/O = Input/Output; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.2: Open drain input/output pin. Pin forced to input upon any device RESET.

7.2.2.2 CPU Status Register (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register has a bit that is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the Interrupt Status (INTSTA) register and the Peripheral Interrupt Enable (PIE) registers. The CPUSTA register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device

logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

The $\overrightarrow{\text{POR}}$ bit allows the differentiation between a Power-on Reset, external $\overrightarrow{\text{MCLR}}$ Reset, or a WDT Reset. The BOR bit indicates if a Brown-out Reset occurred.

Note 1: The BOR status bit is a don't care and is not necessarily predictable if the Brown-out circuit is disabled (when the BODEN bit in the Configuration word is programmed).

REGISTER 7-2: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

_	U-0	U-0	R-1	R/W-1	R-1	R-1	R/W-0	R/W-1
	_		STKAV	GLINTD	TO	PD	POR	BOR
	bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5	 STKAV: Stack Available bit This bit indicates that the 4-bit stack pointer value is Fh, or has rolled over from Fh → 0h (stack overflow). 1 = Stack is available 0 = Stack is full, or a stack overflow may have occurred (once this bit has been cleared by a stack overflow, only a device RESET will set this bit)
bit 4	 GLINTD: Global Interrupt Disable bit This bit disables all interrupts. When enabling interrupts, only the sources with their enable bits set can cause an interrupt. 1 = Disable all interrupts 0 = Enables all unmasked interrupts
bit 3	TO: WDT Time-out Status bit 1 = After power-up, by a CLRWDT instruction, or by a SLEEP instruction 0 = A Watchdog Timer time-out occurred
bit 2	PD : Power-down Status bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 1	POR : Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set by software)
bit 0	BOR: Brown-out Reset Status bit
	When BODEN Configuration bit is set (enabled): 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set by software)
	When BODEN Configuration bit is clear (disabled): Don't care
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.0 TABLE READS AND TABLE WRITES

The PIC17C7XX has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t, f and TABLWT t, i, f instructions are used to write data from the data memory space to the program memory space. The TLRD t, f and TABLRD t, i, f instructions are used to write data from the program memory space to the data memory space.

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in Microprocessor or Extended Microcontroller mode.

Figure 8-1 through Figure 8-4 show the operation of these four instructions. The steps show the sequence of operation.

FIGURE 8-1: TLWT INSTRUCTION OPERATION

FIGURE 8-2: TABLWT INSTRUCTION OPERATION

10.4 PORTD and DDRD Registers

PORTD is an 8-bit bi-directional port. The corresponding data direction register is DDRD. A '1' in DDRD configures the corresponding port pin as an input. A '0' in the DDRD register configures the corresponding port pin as an output. Reading PORTD reads the status of the pins, whereas writing to PORTD will write to the port latch. PORTD is multiplexed with the system bus. When operating as the system bus, PORTD is the high order byte of the address/data bus (AD15:AD8). The timing for the system bus is shown in the Electrical Specifications section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 10-4 shows an instruction sequence to initialize PORTD. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-4: INITIALIZING PORTD

MOVLB	1		;	Select Bank 1
CLRF	PORTD,	F	;	Initialize PORTD data
			;	latches before setting
			;	the data direction reg
MOVLW	0xCF		;	Value used to initialize
			;	data direction
MOVWF	DDRD		;	Set RD<3:0> as inputs
			;	RD<5:4> as outputs
			;	RD<7:6> as inputs

FIGURE 10-10: BLOCK DIAGRAM OF RD7:RD0 PORT PINS (IN I/O PORT MODE)

10.5 PORTE and DDRE Register

PORTE is a 4-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to PORTE will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (OE) and Write (WR). The control signals OE and WR are active low signals. The timing for the system bus is shown in the Electrical Specifications section.

Note: Three pins of this port are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. The other pin is a general purpose I/O or Capture4 pin. In the two other microcontroller modes, RE2:RE0 are general purpose I/O pins. Example 10-5 shows an instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-5: INITIALIZING PORTE

MOVLB	1		;	Select Bank 1
CLRF	PORTE,	F	;	Initialize PORTE data
			;	latches before setting
			;	the data direction
			;	register
MOVLW	0x03		;	Value used to initialize
			;	data direction
MOVWF	DDRE		;	Set RE<1:0> as inputs
			;	RE<3:2> as outputs
			;	RE<7:4> are always
			;	read as '0'

FIGURE 10-11: BLOCK DIAGRAM OF RE2:RE0 (IN I/O PORT MODE)

TABLE 10-13: PORTG FUNCTIONS

Name	Bit	Buffer Type	Function
RG0/AN3	bit0	ST	Input/output or analog input 3.
RG1/AN2	bit1	ST	Input/output or analog input 2.
RG2/AN1/VREF-	bit2	ST	Input/output or analog input 1 or the ground reference voltage.
RG3/AN0/VREF+	bit3	ST	Input/output or analog input 0 or the positive reference voltage.
RG4/CAP3	bit4	ST	Input/output or the Capture3 input pin.
RG5/PWM3	bit5	ST	Input/output or the PWM3 output pin.
RG6/RX2/DT2	bit6	ST	Input/output or the USART2 (SCI) Asynchronous Receive or USART2 (SCI) Synchronous Data.
RG7/TX2/CK2	bit7	ST	Input/output or the USART2 (SCI) Asynchronous Transmit or USART2 (SCI) Synchronous Clock.

Legend: ST = Schmitt Trigger input

TABLE 10-14: REGISTERS/BITS ASSOCIATED WITH PORTG

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
12h, Bank 5	DDRG	Data Direc	tion Registe	r for PORTO	3					1111 1111	1111 1111
13h, Bank 5	PORTG	RG7/ TX2/CK2	RG6/ RX2/DT2	RG5/ PWM3	RG4/ CAP3	RG3/ AN0	RG2/ AN1	RG1/ AN2	RG0/ AN3	xxxx 0000	uuuu 0000
15h, Bank 5	ADCON1	ADCS1	ADCS0	ADFM	—	PCFG3	PCFG2	PCFG1	PCFG0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTG.

10.9 PORTJ and DDRJ Registers (PIC17C76X only)

PORTJ is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRJ. A '1' in DDRJ configures the corresponding port pin as an input. A '0' in the DDRJ register configures the corresponding port pin as an output. Reading PORTJ reads the status of the pins, whereas writing to PORTJ will write to the respective port latch.

PORTJ is a general purpose I/O port.

EXAMPLE 10-9: INITIALIZING PORTJ

MOVLB	8	;	Select Bank 8
CLRF	PORTJ,	F;	Initialize PORTJ data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRJ	;	Set RJ<3:0> as inputs
		;	RJ<5:4> as outputs
		;	RJ<7:6> as inputs

13.2.2 FOUR CAPTURE MODE

This mode is selected by setting bit CA1/PR3. A block diagram is shown in Figure 13-6. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this rollover. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set upon detection of the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

All the captures operate in the same manner. Refer to Section 13.2.1 for the operation of capture.

FIGURE 13-6: TIMER3 WITH FOUR CAPTURES BLOCK DIAGRAM

TABLE 14-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x00-000x	0000 -00u
16h, Bank 0	TXREG1	Serial Port	Transmit I	Register (L	JSART1)					xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register	(USART1)					0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	_	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE		CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x00- 0000	0000 -00u
16h, Bank 4	TXREG2	Serial Port	Transmit I	Register (L	JSART2)					xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register	(USART2)				-	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for asynchronous transmission.

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- 7. Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 14-7: ASYNCHRONOUS RECEPTION

TABLE 14-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC		—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	0000 0000	0000 0000								

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for asynchronous reception.

15.2.6 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored for arbitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A START Condition
- A Repeated Start Condition
- An Acknowledge Condition

15.2.7 I²C MASTER MODE SUPPORT

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. Once Master mode is enabled, the user has six options.

- · Assert a START condition on SDA and SCL.
- Assert a Repeated Start condition on SDA and SCL.
- Write to the SSPBUF register initiating transmission of data/address.
- Generate a STOP condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.

Note:	The MSSP Module, when configured in I ² C
	Master mode, does not allow queueing of
	events. For instance: The user is not
	allowed to initiate a START condition and
	immediately write the SSPBUF register to
	initiate transmission before the START
	condition is complete. In this case, the
	SSPBUF will not be written to and the
	WCOL bit will be set, indicating that a write
	to the SSPBUF did not occur.

15.2.7.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I²C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSP-BUF. Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state

15.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit PEN (SSPCON2<2>). At the end of a receive/ transmit the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to '0'. When the baud rate generator times out, the SCL pin will be brought high and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-31).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

15.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

Figure 16-2 shows the conversion sequence and the terms that are used. Acquisition time is the time that the A/D module's holding capacitor is connected to the external voltage level. Then, there is the conversion time of 12 TAD, which is started when the GO bit is set. The sum of these two times is the sampling time. There is a minimum acquisition time to ensure that the holding capacitor is charged to a level that will give the desired accuracy for the A/D conversion.

FIGURE 16-2: A/D CONVERSION SEQUENCE

Acquisition Time	A/D Conversion Time
	A/D conversion complete, result is loaded in ADRES register. Holding capacitor begins acquiring voltage level on selected channel, ADIF bit is set.
	/hen A/D conversion is started setting the GO bit).
When A/D holding cap After A/D conversion, c	acitor starts to charge. In when new A/D channel is selected.

RLNCF	Rotate L	eft f (no c	carry)	1	RRC
Syntax:	[label]	RLNCF	f,d		Synt
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	5			Ope
Operation:	$f < n > \rightarrow d$ $f < 7 > \rightarrow d$,			Ope
Status Affected:	None				
Encoding:	0010	001d	fff	f ffff	Statu
Description:	one bit to t placed in \	he left. If 'c	d' is 0, d' is 1,	are rotated the result is the result is	D 000
		regis	ster f		
Words:	1				
Cycles:	1				14/
Q Cycle Activity:					Wor
Q1	Q2	Q3		Q4	Cycl
Decode	Read register 'f'	Process Data	-	Write to destination	QC
Example:	RLNCF	REG,	, 1		
Before Instr	uction				Буа
C REG	= 0 = 1110 1	.011			<u>Exar</u>
After Instruc C REG	tion = = 1101 0	111			

RCF	Rotate Ri	ght f th	rough C	arry	
Syntax:	[label]	RRCF	f,d		
)perands:	$0 \le f \le 255$ $d \in [0,1]$	5			
Operation:	$f < n > \rightarrow d < f < 0 > \rightarrow C$ $f < 0 > \rightarrow C$				
Status Affected:	С				
ncoding:	0001	100d	ffff	ffff	
Description: Vords:	The conten one bit to th Flag. If 'd' is WREG. If 'c back in reg	ne right the r s 0, the r t' is 1, the ister 'f'.	hrough the esult is pl	e Carry aced in	
Cycles:	1				
Q Cycle Activity:	•				
Q1	Q2	Q	3	Q4	
Decode	Read register 'f'	Proce Dat		Write to estination	
xample:	RRCF REG	1,0			
Before Instruction					

REG1 = 1110 0110

WREG = 0111 0011

= 0

= 0

1110 0110

С

С

After Instruction REG1 =

19.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

19.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

19.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

19.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

PIC17C7XX

NOTES:

FIGURE 20-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET TIMING

TABLE 20-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Sym	Characte	ristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)		100	_	_	ns	Vdd = 5V
31	Twdt	Watchdog Timer Time-out Period (Postscale = 1)		5	12	25	ms	VDD = 5V
32	Tost	Oscillation Start-up Timer Period		—	1024Tosc	_	ms	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period		40	96	200	ms	VDD = 5V
34	Tioz	MCLR to I/O hi-impedance		100	_	_	ns	Depends on pin load
35	TmcL2adI	MCLR to System	PIC17 C 7XX	_		100	ns	
		Interface bus (AD15:AD0>) invalid	PIC17 LC 7XX	—		120	ns	
36	TBOR	Brown-out Reset Pulse Width (low)		100	—	—	ns	VDD within VBOR limits (parameter D005)
†	Data in "Typ'	Typ" column is at 5V, 25°C unless otherwise stated.						

.

FIGURE 20-9: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 20-4: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Character	istic	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	—	_	ns	
			With Prescaler	10	—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	—	—	ns	
			With Prescaler	10	_	-	ns	
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40</u> N			ns	N = prescale value (1, 2, 4,, 256)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

FIGURE 20-10: TIMER1, TIMER2 AND TIMER3 EXTERNAL CLOCK TIMINGS

TABLE 20-5: TIMER1, TIMER2 AND TIMER3 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20	—	_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5TCY + 20	—	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> N	Ι		ns	N = prescale value $(1, 2, 4, 8)$
48	TckE2tmrl	Delay from selected External Clock Edge to Timer increment	2Tosc	_	6Tosc	_	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

21.0 PIC17C7XX DC AND AC CHARACTERISTICS

The graphs and tables provided in this section are for design guidance and are not tested nor guaranteed. In some graphs or tables the data presented is outside specified operating range (e.g., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time.

- Typ or Typical represents the mean of the distribution at 25°C.
- Max or Maximum represents (mean + 3 σ) over the temperature range of -40°C to 85°C.
- Min or Minimum represents (mean 3σ) over the temperature range of -40°C to 85° C.
- **Note:** Standard deviation is denoted by sigma (σ).

TABLE 21-1: PIN CAPACITANCE PER PACKAGE TYPE

Pin Name	Typical Capacitance (pF)			
	68-pin PLCC	64-pin TQFP		
All pins, except MCLR, VDD, and Vss	10	10		
MCLR pin	20	20		

FIGURE 21-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

R	
R/W	
R/W bit	145
R/W bit	145
RA1/T0CKI pin	
RBIE	
<u>RBIF</u>	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RC1IE	
RC1IF	÷ · · · · · ·
RC2IE	
RC2IF	
RCE, Receive Enable bit, RCE	
RCREG	
RCREG1	,
RCREG2	
RCSTA1	, ,
RCSTA1	,
Read/Write bit, R/W	, -
Reading 16-bit Value	
Receive Overflow Indicator bit, SSPOV	
Receive Status and Control Register	
Register File Map	
Registers	
ADCON0	
ADCON1	
ADRESH	
ADRESL	
ALUSTA	
BRG	
BSR	
CA2H	
CA2L	
САЗН	
CA3L	
CA4H	
CA4L	
	,
DDRB	
DDRC	
DDRD	-
DDRE	
DDRF DDRG	-
FSR0	•
FSR1	,
INDF0	-) -
INDF1	
INSTA	,
INTSTA	
PCL	
PCLATH	
PIE1	
PIE2	
PIR1	
PIR2	
PORTA	
PORTB	-
PORTC	
PORTD	
PORTE	-
PORTF	
PORTG	

PR14	19
PR24	19
PR3H/CA1H4	19
PR3L/CA1L	19
PRODH	50
PRODL	
PW1DCH	
PW1DCL	-
PW2/DCL	
PW2DCH	
PW3DCH	
PW3DCL	
RCREG14 RCREG2	
RCSTA1	-
RCSTA2	-
SPBRG1	-
SPBRG2	-
SSPADD	
SSPBUF	50
SSPCON15	50
SSPCON2 5	50
SSPSTAT 50, 13	34
T0STA 48, 53, 9	97
TBLPTRH4	
TBLPTRL	
TCON1 49, 10	
TCON2	
TCON3 50, 10	
TMR0H	
TMR1	-
TMR3H	
	τυ.
TMB3I 4	19
TMR3L	-
TMR3L	18
TXREG1	18 19
TXREG1	18 19 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 4	18 19 18 19
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 2	18 19 18 19 19 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters TMROL	18 19 18 19 19 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters TMR0L Reset 2	18 19 18 19 18 19
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2	18 19 18 19 18 19 18 18
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2	18 19 18 19 18 19 18 18 18 18 23 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2	18 19 18 19 18 19 18 19 18 18 23 25 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2	18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 25 25 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13	18 19 18 19 18 19 18 19 18 18 18 25 25 25 25 36
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22	18 19 18 19 18 19 18 19 18 18 25 25 25 25 25 25 25 25 25 25 25 25 25
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22	18 19 18 19 18 19 18 18 23 25 26 21
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22	18 19 18 19 18 19 18 18 23 25 26 21 22
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22 RLCF 22	18 19 18 19 18 19 18 19 18 23 25 26 21 22 22 23 24 25 26 21 22
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22 RLOF 22	18 18 19 18 19 18 19 18 19 18 19 18 19 18 18 25 25 26 21 22 23
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETLW 22 RETURN 22 RLCF 22	18 18 19 18 19 18 19 18 19 18 19 18 23 25 26 21 22 23 23
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 TMROL 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RLOF 22 RROF 22 RRNOF 22 RSE 13	18 18 19 18 19 18 25 25 26 21 22 23 24 36
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 RETFIE 22 RETLW 22 RETURN 22 RLCF 22 RRCF 22 RRNCF 22 RSE 13 RX Pin Sampling Scheme 12	18 18 19 18 19 18 25 25 26 21 22 23 24 36
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 TMROL 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 REUF 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12	18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 19 19 19 10 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 TMROL 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13	18 19 18 19 18 19 18 19 18 19 18 19 18 19 19 10 18 19 19 10 18 19 10 10 18 19 10 10 19 10 10 10 19 10 10 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RECF 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13	18 19 19 10 19 10 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 Sampling 14	18 18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Reset 39, 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RLCF 22 RRCF 22 RRCF 22 RSE 13 SXP in Sampling Scheme 12 S 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2	18 18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Section 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 SAE 13 SAE 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 24	18 18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2 SCL 14	18 18 <td< td=""></td<>
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2 SCK 13 SDA 14	189 1
TXREG1 2 TXREG2 2 TXSTA1 2 TXSTA2 2 WREG 39, 2 Regsters 39, 2 Regsters 39, 2 Reset 2 Status Bits and Their Significance 2 Time-Out in Various Situations 2 Time-Out Sequence 2 Restart Condition Enabled bit, RSE 13 RETFIE 22 RETURN 22 RETURN 22 RECF 22 RRCF 22 RRCF 22 RSE 13 RX Pin Sampling Scheme 12 S 13 SAE 13 SAE 13 SAE 13 Sampling 12 Saving STATUS and WREG in RAM 2 SCL 14	189 1