

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc756a-08-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

5.1.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: First, the internal POR signal goes high when the POR trip point is reached. If MCLR is high, then both the OST and PWRT timers start. In general, the PWRT time-out is longer, except with low frequency crystals/resonators. The total time-out also varies based on oscillator configuration. Table 5-1 shows the times that are associated with the oscillator configuration. Figure 5-5 and Figure 5-6 display these time-out sequences.

If the device voltage is not within electrical specification at the end of a time-out, the MCLR/VPP pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications.

The time-out sequence begins from the first rising edge of $\overline{\text{MCLR}}$.

Table 5-3 shows the RESET conditions for some special registers, while Table 5-4 shows the initialization conditions for all the registers.

TABLE 5-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	POR, BOR	Wake-up from SLEEP	MCLR Reset
XT, LF	Greater of: 96 ms or 1024Tosc	1024Tosc	—
EC, RC	Greater of: 96 ms or 1024Tosc	—	—

TABLE 5-2: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR ⁽¹⁾	то	PD	Event
0	0	1	1	Power-on Reset
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
1	1	0	1	WDT Reset during normal operation
1	1	0	0	WDT Wake-up during SLEEP
1	1	1	1	MCLR Reset during normal operation
1	0	1	1	Brown-out Reset
0	0	0	x	Illegal, TO is set on POR
0	0	x	0	Illegal, PD is set on POR
х	х	1	1	CLRWDT instruction executed

Note 1: When BODEN is enabled, else the BOR status bit is unknown.

TABLE 5-3: RESET CONDITION FOR THE PROGRAM COUNTER AND THE CPUSTA REGISTER

Event		PCH:PCL	CPUSTA ⁽⁴⁾	OST Active
Power-on Reset		0000h	11 1100	Yes
Brown-out Reset	wn-out Reset		11 1110	Yes
MCLR Reset during normal oper	ration	0000h	11 1111	No
MCLR Reset during SLEEP	R Reset during SLEEP		11 1011	Yes ⁽²⁾
WDT Reset during normal opera	ation	0000h	11 0111	No
WDT Reset during SLEEP ⁽³⁾		0000h	11 0011	Yes ⁽²⁾
Interrupt Wake-up from SLEEP	GLINTD is set	PC + 1	11 1011	Yes ⁽²⁾
	GLINTD is clear	PC + 1 ⁽¹⁾	10 1011	Yes ⁽²⁾

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0'

Note 1: On wake-up, this instruction is executed. The instruction at the appropriate interrupt vector is fetched and then executed.

2: The OST is only active (on wake-up) when the oscillator is configured for XT or LF modes.

- **3:** The Program Counter = 0; that is, the device branches to the RESET vector and places SFRs in WDT Reset states. This is different from the mid-range devices.
- 4: When BODEN is enabled, else the BOR status bit is unknown.

^{© 1998-2013} Microchip Technology Inc.

EXAMPLE 6-2: SAVING STATUS AND WREG IN RAM (NESTED)

; The addresses that are used to store the CPUSTA and WREG values must be in the data memory ; address range of 1Ah - 1Fh. Up to 6 locations can be saved and restored using the MOVFP ; instruction. This instruction neither affects the status bits, nor corrupts the WREG register. ; This routine uses the FRSO, so it controls the FS1 and FSO bits in the ALUSTA register. Nobank FSR EOU 0x40 Bank FSR EQU 0x41 ALU_Temp EQU 0x42 WREG TEMP EQU 0x43 BSR S1 EQU 0x01A ; 1st location to save BSR 0x01B BSR S2 EQU ; 2nd location to save BSR (Label Not used in program) BSR S3 EQU 0x01C ; 3rd location to save BSR (Label Not used in program) BSR S4 EQU 0x01D ; 4th location to save BSR (Label Not used in program) 0x01E BSR_S5 EQU ; 5th location to save BSR (Label Not used in program) 0x01F ; 6th location to save BSR (Label Not used in program) BSR_S6 EOU INITIALIZATION CALL CLEAR RAM ; Must Clear all Data RAM INIT_POINTERS ; Must Initialize the pointers for POP and PUSH CLRF BSR, F ; Set All banks to 0 CLRF ALUSTA, F ; FSR0 post increment BSF ALUSTA, FS1 CLRF WREG, F ; Clear WREG MOVLW BSR S1 ; Load FSR0 with 1st address to save BSR MOVWF FSR0 MOVWF Nobank FSR MOVLW 0x20 MOVWF Bank_FSR : ; Your code : : ; At Interrupt Vector Address PUSH BSF ALUSTA, FSO ; FSR0 has auto-increment, does not affect status bits BCF ALUSTA, FS1 ; does not affect status bits MOVFP BSR, INDF0 ; No Status bits are affected CLRF BSR, F ; Peripheral and Data RAM Bank 0 No Status bits are affected MOVPF ALUSTA, ALU_Temp ; MOVPF FSR0, Nobank_FSR ; Save the FSR for BSR values WREG, WREG TEMP MOVPF ; ; Restore FSR value for other values MOVFP Bank_FSR, FSR0 MOVFP ALU_Temp, INDF0 ; Push ALUSTA value MOVFP WREG TEMP, INDFO ; Push WREG value MOVFP PCLATH, INDF0 ; Push PCLATH value MOVPF FSR0, Bank FSR ; Restore FSR value for other values MOVFP Nobank FSR, FSR0 ; ; ; Interrupt Service Routine (ISR) code : ; POP CLRF ALUSTA, F ; FSR0 has auto-decrement, does not affect status bits MOVFP Bank FSR, FSR0 ; Restore FSR value for other values FSR0, F DECF ; ; Pop PCLATH value MOVFP INDF0, PCLATH ; Pop WREG value MOVFP INDF0, WREG ; FSR0 does not change BSF ALUSTA, FS1 MOVPF INDF0, ALU Temp ; Pop ALUSTA value MOVPF FSR0, Bank FSR ; Restore FSR value for other values Nobank_FSR, F DECF ; MOVFP Nobank FSR, FSR0 ; Save the FSR for BSR values ALU Temp, ALUSTA MOVFP ; MOVFP INDF0, BSR ; No Status bits are affected RETFIE ; Return from interrupt (enable interrupts)

TABLE 7-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM		
Microprocessor	No Access	No Access		
Microcontroller	Access	Access		
Extended Microcontroller	Access	No Access		
Protected Microcontroller	Access	Access		

The PIC17C7XX can operate in modes where the program memory is off-chip. They are the Microprocessor and Extended Microcontroller modes. The Microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 7-2: MEMORY MAP IN DIFFERENT MODES

7.1.2 EXTERNAL MEMORY INTERFACE

When either Microprocessor or Extended Microcontroller mode is selected, PORTC, PORTD and PORTE are configured as the system bus. PORTC and PORTD are the multiplexed address/data bus and PORTE<2:0> is for the control signals. External components are needed to demultiplex the address and data. This can be done as shown in Figure 7-4. The waveforms of address and data are shown in Figure 7-3. For complete timings, please refer to the electrical specification section.

FIGURE 7-3: EXTERNAL PROGRAM MEMORY ACCESS

VA	VEFURINIS
. Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
AD	
<15:0> Address out Data in	Address out Data out
ALE	
OE	
WR	
Read Cycle	Write Cycle

The system bus requires that there is no bus conflict (minimal leakage), so the output value (address) will be capacitively held at the desired value.

As the speed of the processor increases, external EPROM memory with faster access time must be used. Table 7-2 lists external memory speed requirements for a given PIC17C7XX device frequency.

In Extended Microcontroller mode, when the device is executing out of internal memory, the control signals will continue to be active. That is, they indicate the action that is occurring in the internal memory. The external memory access is ignored.

The following selection is for use with Microchip EPROMs. For interfacing to other manufacturers memory, please refer to the electrical specifications of the desired PIC17C7XX device, as well as the desired memory device to ensure compatibility.

TABLE 7-2:EPROM MEMORY ACCESSTIME ORDERING SUFFIX

PIC17C7XX Oscillator Frequency	Instruction Cycle Time (TCY)	EPROM Suffix
8 MHz	500 ns	-25
16 MHz	250 ns	-15
20 MHz	200 ns	-10
25 MHz	160 ns	-70

Note: The access times for this requires the use of fast SRAMs.

The electrical specifications now include timing specifications for the memory interface with PIC17LCXXX devices. These specifications reflect the capability of the device by characterization. Please validate your design with these timings.

10.10 I/O Programming Considerations

10.10.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read, followed by a write operation. For example, the BCF and BSF instructions read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB, will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g. bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading a port reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (BCF, BSF, BTG, etc.) on a port, the value of the port pins is read, the desired operation is performed with this value and the value is then written to the port latch.

Example 10-10 shows the possible effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 10-10: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;	Initia	l PORT sett	ngs: PO	ORTB<7:	4> Inputs
;			PO	ORTB<3:	0> Outputs
;	PORTB<	7:6> have p	ll-ups	and ar	e
;	not co	nnected to	ther c	ircuitr	У
;					
;			PORT	latch	PORT pins
;					
;					
	BCF	PORTB, 7	; 01pp	pppp	11pp pppp
	BCF	PORTB, 6	; 10pp	pppp	11pp pppp
	BCF	DDRB, 7	; 10pp	pppp	11pp pppp
	BCF	DDRB, 6	; 10pp	pppp	10pp pppp
;					
;	Note t	hat the use	may ha	ave exp	ected the
;	pin va	lues to be	0pp ppp	pp. The	2nd BCF
;	caused	l RB7 to be	atched	as the	pin value
;	(High)	•			
1					

Note: A pin actively outputting a Low or High should not be driven from external devices, in order to change the level on this pin (i.e., "wired-or", "wired-and"). The resulting high output currents may damage the device.

13.1 Timer1 and Timer2

13.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock (TcY), or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1, or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin and the counters will increment on every falling edge of the RB4/TCLK12 pin.

The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled/ disabled by setting/clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be set (PEIE = '1') and global interrupt must be enabled (GLINTD = '0').

The timers can be turned on and off under software control. When the timer on control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

13.1.1.1 External Clock Input for Timer1 and Timer2

When TMRxCS is set, the clock source is the RB4/ TCLK12 pin, and the counter will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
16h, Bank 7	TCON3	—	CA4OVF	CA30VF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
10h, Bank 2	TMR1	Timer1's F	Register							XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2's F	Register							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	-	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
14h, Bank 2	PR1	Timer1 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
15h, Bank 2	PR2	Timer2 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	—	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	_	-	_	_	xx0	uu0
10h, Bank 7	PW3DCL	DC1	DC0	TM2PW3	_	_	-	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
11h, Bank 7	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 13-3: SUMMARY OF TIMER1, TIMER2 AND TIMER3 REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0', q = value depends on condition. Shaded cells are not used by Timer1 or Timer2.

13.2 Timer3

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a another 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the counter increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer/counter to increment. When TMR3ON is clear, the timer will not increment or set flag bit TMR3IF.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- Three capture and one period register mode
- · Four capture register mode

The PIC17C7XX has up to four 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are four capture pins

(RB0/CAP1, RB1/CAP2, RG4/CAP3, and RE3/CAP4), one for each capture register pair. The capture pins are multiplexed with the I/O pins. An event can be:

- · A rising edge
- A falling edge
- · Every 4th rising edge
- · Every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture modules are truly part of the Timer3 block. Figure 13-5 and Figure 13-6 show the block diagrams for the two modes of operation.

13.2.1 THREE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode, registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 13-5. The timer increments until it equals the period register and then resets to 0000h on the next timer clock. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

FIGURE 13-5: TIMER3 WITH THREE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG1	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	Generato	r Register						0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 4	RCREG2	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	_	_	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	Generato	r Register						0000 0000	0000 0000

TABLE 14-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for synchronous master reception.

FIGURE 15-32: STOP CONDITION FLOW CHART

15.2.18.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 15-35).
- b) SCL is sampled low before SDA is asserted low (Figure 15-36).

During a START condition, both the SDA and the SCL pins are monitored.

<u>lf:</u>

the SDA pin is already low or the SCL pin is already low,

then:

the START condition is aborted, and the BCLIF flag is set, and the SSP module is reset to its IDLE state (Figure 15-35).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to '0'. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 15-37). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0 and during this time, if the SCL pin is sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the START condition and if the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start, or Stop conditions.

FIGURE 15-35: BUS COLLISION DURING START CONDITION (SDA ONLY)

ADD	DLW	ADD Lite	ADD Literal to WREG					
Synt	ax:	[label] /	[<i>label</i>] ADDLW k					
Ope	rands:	$0 \le k \le 2\xi$	55					
Ope	ration:	(WREG)	+ k \rightarrow (V	VREG)			
Statu	us Affected:	OV, C, DC, Z						
Enco	oding:	1011	0001	kkk	k	kkkk		
Des	cription:	The content the 8-bit lit placed in \	nts of WR eral 'k' an VREG.	EG are	e ado esul	ded to t is		
Wor	ds:	1	1					
Сус	les:	1						
QC	ycle Activity:							
Q1		Q2	Q2 Q3			Q4		
	Decode	Read literal 'k'	Proce Dat	ess a	W V	/rite to VREG		
Exar	nple:	ADDLW	0x15					

ADD	WF	ADD W	REG to f						
Synt	ax:	[label]	[<i>label</i>] ADDWF f,d						
Ope	rands:	$0 \le f \le 2$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$						
Ope	ration:	(WREG	$) + (f) \rightarrow (f)$	(dest)					
Statu	us Affected:	OV, C, [DC, Z						
Enco	oding:	0000	111d	ffff	ffff				
Des	cription:	Add WR result is s result is s	EG to regis stored in W stored bacl	ter 'f'. If 'd /REG. If 'd < in registe	' is 0 the ' is 1 the er 'f'.				
Wor	ds:	1							
Cycl	es:	1							
QC	vcle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	Read register 'f	Proc Dat	ess ' ta de	Write to estination				
Exar	<u>mple</u> :	ADDWF	REG,	0					
	Before Instru WREG REG	uction = 0x17 = 0xC2							

WREG = 0x10 After Instruction

Before Instruction

WREG = 0x25

After Instruction

WREG	=	0xD9
REG	=	0xC2

MULLW	Multiply I	_iteral with	WREG	MU	LWF	Multiply	WREG with	F	
Syntax:	[label]	MULLW k		Syn	tax:	[label]	[label] MULWF f		
Operands:	$0 \le k \le 255$			Ope	Operands: $0 \le f \le 255$				
Operation:	eration: $(k \times WREG) \rightarrow PRODH:PRODL$		Ope	ration:	(WREG x	(f) \rightarrow PRODE	H:PRODL		
Status Affected: None		Stat	us Affected:	None					
Encoding:	1011	1100 kk	kk kkkk	Enc	oding:	0011	0100 fff	f ffff	
Description:	An unsigne out betwee and the 8-b result is pla register pai high byte. WREG is u None of the Note that n is possible result is po	ed multiplicatio n the contents bit literal 'k'. Th aced in PROD rr. PRODH cor Inchanged. e status flags a either overflov in this operatio ssible, but not	n is carried of WREG e 16-bit H:PRODL ntains the are affected. v, nor carry on. A zero detected.	Des	scription:	An unsign out betwee and the re- 16-bit resu PRODH:P PRODH co Both WRE None of th Note that r is possible result is po	ed multiplicatio on the contents gister file locati It is stored in th RODL register ontains the high G and 'f' are un e status flags a neither overflow in this operations suble, but not	n is carried of WREG on 'f'. The pair. n byte. nchanged. are affected. w, nor carry on. A zero detected.	
Words:	1			Wo	rds:	1			
Cycles:	1			Сус	les:	1			
Q Cycle Activity:				QC	ycle Activity:				
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL		Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL	
Example:	MULLW	0xC4		Exa	imple:	MULWF	REG		
Before Instru WREG PRODH PRODL After Instruc WREG PRODH	uction = 0> = ? = ? tion = 0> = 0>	KE2 KC4 KAD			Before Instr WREG REG PRODH PRODL After Instruct WREG	uction = 0 = 0 = ? = ? tion = 0	xC4 xB5 xC4		
PRODL	= 0>	(08			REG PRODH PRODL	= 0 = 0 = 0	хВ5 x8A x94		

TLW	Т	Та	ble Lat	ch Writ	е		
Synt	ax:	[<i>la</i>	abel]	LWT t,f			
Ope	rands:	0 ⊴ t ∈	≤ f ≤ 258 ⊧ [0,1]	5			
Ope	ration:	lft f– lft f–	: = 0, → TBLA : = 1, → TBLA	TL; TH			
Statu	us Affected:	No	one				
Enco	oding:		1010	01tx	fff	f	ffff
Des	cription:	Da the If t If t Th wit me	ta from f = 16-bit ta = 1; high = 0; low is instruc h TABLW emory to	ile registe able latch n byte is byte is v ction is us rr to tran program	er 'f' is n (TBL writter vritten sed in sfer d memo	s wrif AT). n conj ata f ory.	ten into junction rom data
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1		Q2	Q3	3		Q4
	Decode	F reg	Read ister 'f'	Proce Dat	ess a	r TB T	Write egister LATH or BLATL
Exar	mple:	TL	WT	t, RAM			
	Before Instru	ictior	n				
	t	=	0				
	RAM TBLAT	=	0xB7 0x0000	(TBLA (TBLA	TH = (0x00)x00)))
	After Instruct	ion					
	RAM TBLAT	=	0xB7 0x00B7	(TBLA (TBLA	NTH = .TL = (0x0()xB7))

Before Instruction

	t	=	1	
	RAM	=	0xB7	
	TBLAT	=	0x0000	(TBLATH = 0x00)
				(TBLATL = 0x00)
Afte	r Instruct	ion		
	RAM	=	0xB7	
	TBLAT	=	0xB700	(TBLATH = 0xB7) (TBLATL = 0x00)

TST	FSZ	Test f, ski	p if 0					
Synt	ax:	[label] T	STFSZ f					
$Operands: \qquad 0 \leq f \leq 255$								
Ope	ration:	skip if f = 0						
Statu	us Affected:	None						
Enco	oding:	0011	0011 fff	f ffff				
Desc	cription:	If 'f' = 0, the during the c is discarded making this	If 'f' = 0, the next instruction, fetched during the current instruction execution, is discarded and a NOP is executed, making this a two-cycle instruction.					
Word	ds:	1						
Cycl	es:	1 (2)						
QC	cle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	No operation				
lf ski	p:							
	Q1	Q2	Q3	Q4				
	No operation	No operation	No operation	No operation				
<u>Exar</u>	nple:	HERE T NZERO ZERO	ISTFSZ CNT : :					
Before Instruction PC = Address (HERE)								
	After Instruct If CNT PC If CNT PC	ion = 0x = Ad ¼ 0x = Ad	00, dress (ZERO) 00, dress (NZERO))				

19.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

19.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

19.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

20.4 Timing Diagrams and Specifications

TABLE 20-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN	DC	_	8	MHz	EC osc mode - 08 devices (8 MHz devices)
		Frequency (Note 1)	DC	—	16	MHz	- 16 devices (16 MHz devices)
			DC	—	33	MHz	- 33 devices (33 MHz devices)
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	2	—	8	MHz	XT osc mode - 08 devices (8 MHz devices)
			2	_	16	MHz	 16 devices (16 MHz devices)
			2	—	33	MHz	- 33 devices (33 MHz devices)
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	125	—	—	ns	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	62.5	_	—	ns	 16 devices (16 MHz devices)
			30.3	—	—	ns	- 33 devices (33 MHz devices)
		Oscillator Period	250	Ι		ns	RC osc mode
		(Note 1)	125	_	1,000	ns	XT osc mode - 08 devices (8 MHz devices)
			62.5	—	1,000	ns	 16 devices (16 MHz devices)
			30.3	—	1,000	ns	- 33 devices (33 MHz devices)
			500	-	—	ns	LF osc mode
2	TCY	Instruction Cycle Time	121.2	4/Fosc	DC	ns	
		(Note 1)					
3	TosL,	Clock in (OSC1)	10			ns	EC oscillator
	TosH	High or Low Time					
4	TosR,	Clock in (OSC1)		_	5	ns	EC oscillator
	TosF	Rise or Fall Time					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

	TABLE 20-2:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosL2ckL	OSC1↓ to CLKOUT↓	—	15	30	ns	(Note 1)
11	TosL2ckH	OSC1↓ to CLKOUT↑	—	15	30	ns	(Note 1)
12	TckR	CLKOUT rise time	—	5	15	ns	(Note 1)
13	TckF	CLKOUT fall time	—	5	15	ns	(Note 1)
14	TckH2ioV	CLKOUT ↑ to Port out valid	—	_	0.5TCY + 20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKOUT↑	0.25Tcy + 25	_	—	ns	(Note 1)
16	TckH2iol	Port in hold after CLKOUT [↑]	0	_	—	ns	(Note 1)
17	TosL2ioV	OSC1 \downarrow (Q1 cycle) to Port out valid	—	_	100	ns	
18	TosL2iol	OSC1 \downarrow (Q2 cycle) to Port input	0	_	—	ns	
		invalid (I/O in hold time)					
19	TioV2osL	Port input valid to OSC1↓ (I/O in setup time)	30	-	—	ns	
20	TioR	Port output rise time	—	10	35	ns	
21	TioF	Port output fall time	—	10	35	ns	
22	TinHL	INT pin high or low time	25	—	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in EC mode, where CLKOUT output is 4 x Tosc.