

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc756at-08-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	PINC	DUT DE	SCRIP	TIONS		T		
	F	PIC17C7	5X	PIC17	7C76X			
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	47	50	39	62	49	Ι	ST	Oscillator input in Crystal/Resonator or RC Oscillator mode. External clock input in External Clock mode.
OSC2/CLKOUT	48	51	40	63	50	0		Oscillator output. Connects to crystal or resonator in Crystal Oscillator mode. In RC Oscillator or External Clock modes, OSC2 pin outputs CLKOUT which has one fourth the frequency (Fosc/4) of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	15	16	7	20	9	I/P	ST	Master clear (RESET) input or Programming Voltage (VPP) input. This is the active low RESET input to the device.
								PORTA pins have individual differentiations that are listed in the following descriptions:
RA0/INT	56	60	48	72	58	I	ST	RA0 can also be selected as an external inter- rupt input. Interrupt can be configured to be on positive or negative edge. Input only pin.
RA1/T0CKI	41	44	33	56	43	I	ST	RA1 can also be selected as an external inter- rupt input and the interrupt can be configured to be on positive or negative edge. RA1 can also be selected to be the clock input to the Timer0 timer/counter. Input only pin.
RA2/SS/SCL	42	45	34	57	44	I/O ⁽²⁾	ST	RA2 can also be used as the slave select input for the SPI or the clock input for the I ² C bus. High voltage, high current, open drain port pin.
RA3/SDI/SDA	43	46	35	58	45	I/O ⁽²⁾	ST	RA3 can also be used as the data input for the SPI or the data for the I ² C bus. High voltage, high current, open drain port pin.
RA4/RX1/DT1	40	43	32	51	38	I/O ⁽¹⁾	ST	RA4 can also be selected as the USART1 (SCI) Asynchronous Receive or USART1 (SCI) Synchronous Data. Output available from USART only.
RA5/TX1/CK1	39	42	31	50	37	I/O ⁽¹⁾	ST	RA5 can also be selected as the USART1 (SCI) Asynchronous Transmit or USART1 (SCI) Synchronous Clock. Output available from USART only.
								PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	55	59	47	71	57	I/O	ST	RB0 can also be the Capture1 input pin.
RB1/CAP2	54	58	46	70	56	I/O	ST	RB1 can also be the Capture2 input pin.
RB2/PWM1	50	54	42	66	52	I/O	ST	RB2 can also be the PWM1 output pin.
RB3/PWM2	53	57	45	69	55	I/O	ST	RB3 can also be the PWM2 output pin.
RB4/TCLK12	52	56	44	68	54	I/O	ST	RB4 can also be the external clock input to Timer1 and Timer2.
RB5/TCLK3	51	55	43	67	53	I/O	ST	RB5 can also be the external clock input to Timer3.
RB6/SCK	44	47	36	59	46	I/O	ST	RB6 can also be used as the master/slave clock for the SPI.
RB7/SDO	45	48	37	60	47	I/O	ST	RB7 can also be used as the data output for the SPI.

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

DS30289C-page 14

TABLE 3-1:	PINC		SCRIP	TIONS	(CON	TINUE	D)	
	PIC17C75X PIC17C76X				7C76X			
Name	DIP No.	PLCC No.	TQFP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
								PORTG is a bi-directional I/O Port.
RG0/AN3	32	34	24	42	30	I/O	ST	RG0 can also be analog input 3.
RG1/AN2	31	33	23	41	29	I/O	ST	RG1 can also be analog input 2.
RG2/AN1/VREF-	30	32	22	40	28	I/O	ST	RG2 can also be analog input 1, or the ground reference voltage.
RG3/AN0/VREF+	29	31	21	39	27	I/O	ST	RG3 can also be analog input 0, or the positive reference voltage.
RG4/CAP3	35	38	27	46	33	I/O	ST	RG4 can also be the Capture3 input pin.
RG5/PWM3	36	39	28	47	34	I/O	ST	RG5 can also be the PWM3 output pin.
RG6/RX2/DT2	38	41	30	49	36	I/O	ST	RG6 can also be selected as the USART2 (SCI) Asynchronous Receive or USART2 (SCI) Synchronous Data.
RG7/TX2/CK2	37	40	29	48	35	I/O	ST	RG7 can also be selected as the USART2 (SCI) Asynchronous Transmit or USART2 (SCI) Synchronous Clock.
								PORTH is a bi-directional I/O Port. PORTH is only
RH0	—	—	—	10	79	I/O	ST	available on the PIC17C76X devices.
RH1	—	—	—	11	80	I/O	ST	
RH2	—	—	—	12	1	I/O	ST	
RH3	—	—	—	13	2	I/O	ST	
RH4/AN12	—	—	—	31	19	I/O	ST	RH4 can also be analog input 12.
RH5/AN13	—	—	—	32	20	I/O	ST	RH5 can also be analog input 13.
RH6/AN14	—	—	—	33	21	I/O	ST	RH6 can also be analog input 14.
RH7/AN15	_	_	—	34	22	I/O	ST	RH7 can also be analog input 15.
								PORTJ is a bi-directional I/O Port. PORTJ is only available on the PIC17C76X devices.
RJ0	—	—	—	52	39	I/O	ST	
RJ1	—	—	—	53	40	I/O	ST	
RJ2	—	—	—	54	41	I/O	ST	
RJ3	—	—	—	55	42	I/O	ST	
RJ4	—	—	—	73	59	I/O	ST	
RJ5	—	—	—	74	60	I/O	ST	
RJ6	—	—	—	75	61	I/O	ST	
RJ7			—	76	62	I/O	ST	
TEST	16	17	8	21	10	Ι	ST	Test mode selection control input. Always tie to Vss for normal operation.
Vss	17, 33, 49, 64	19, 36, 53, 68	9, 25, 41, 56	23, 44, 65, 84	11, 31, 51, 70	Р		Ground reference for logic and I/O pins.
Vdd	1, 18, 34, 46	2, 20, 37, 49,	10, 26, 38, 57	24, 45, 61, 2	12, 32, 48, 71	Ρ		Positive supply for logic and I/O pins.
AVss	28	30	20	38	26	Р		Ground reference for A/D converter. This pin MUST be at the same potential as Vss.
AVdd	27	29	19	37	25	Р		Positive supply for A/D converter. This pin MUST be at the same potential as VDD.
NC	_	1, 18, 35, 52	_	1, 22, 43, 64	_			No Connect. Leave these pins unconnected.

TABLE 3-1: PINOUT DESCRIPTIONS (CONTINUED)

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input;

ST = Schmitt Trigger input

Note 1: The output is only available by the peripheral operation.

2: Open drain input/output pin. Pin forced to input upon any device RESET.

7.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC17C7XX; program memory and data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into General Purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

7.1 Program Memory Organization

PIC17C7XX devices have a 16-bit program counter capable of addressing a 64K x 16 program memory space. The RESET vector is at 0000h and the interrupt vectors are at 0008h, 0010h, 0018h, and 0020h (Figure 7-1).

7.1.1 PROGRAM MEMORY OPERATION

The PIC17C7XX can operate in one of four possible program memory configurations. The configuration is selected by configuration bits. The possible modes are:

- Microprocessor
- Microcontroller
- Extended Microcontroller
- Protected Microcontroller

The **Microcontroller** and **Protected Microcontroller** modes only allow internal execution. Any access beyond the program memory reads unknown data. The Protected Microcontroller mode also enables the code protection feature.

The **Extended Microcontroller** mode accesses both the internal program memory, as well as external program memory. Execution automatically switches between internal and external memory. The 16-bits of address allow a program memory range of 64K-words.

The **Microprocessor** mode only accesses the external program memory. The on-chip program memory is ignored. The 16-bits of address allow a program memory range of 64K-words. Microprocessor mode is the default mode of an unprogrammed device.

The different modes allow different access to the configuration bits, test memory and boot ROM. Table 7-1 lists which modes can access which areas in memory. Test Memory and Boot Memory are not required for normal operation of the device. Care should be taken to ensure that no unintended branches occur to these areas.

FIGURE 7-1:

PROGRAM MEMORY MAP AND STACK

7.1.2 EXTERNAL MEMORY INTERFACE

When either Microprocessor or Extended Microcontroller mode is selected, PORTC, PORTD and PORTE are configured as the system bus. PORTC and PORTD are the multiplexed address/data bus and PORTE<2:0> is for the control signals. External components are needed to demultiplex the address and data. This can be done as shown in Figure 7-4. The waveforms of address and data are shown in Figure 7-3. For complete timings, please refer to the electrical specification section.

FIGURE 7-3: EXTERNAL PROGRAM MEMORY ACCESS

VA	VEFORMS
Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
AD(
<15:0> Address out Data in	Address out Data out
ALE	
OE	1 <u> </u>
WR	·
Read Cycle	Write Cycle

The system bus requires that there is no bus conflict (minimal leakage), so the output value (address) will be capacitively held at the desired value.

As the speed of the processor increases, external EPROM memory with faster access time must be used. Table 7-2 lists external memory speed requirements for a given PIC17C7XX device frequency.

In Extended Microcontroller mode, when the device is executing out of internal memory, the control signals will continue to be active. That is, they indicate the action that is occurring in the internal memory. The external memory access is ignored.

The following selection is for use with Microchip EPROMs. For interfacing to other manufacturers memory, please refer to the electrical specifications of the desired PIC17C7XX device, as well as the desired memory device to ensure compatibility.

TABLE 7-2:EPROM MEMORY ACCESSTIME ORDERING SUFFIX

PIC17C7XX Oscillator Frequency	Instruction Cycle Time (TCY)	EPROM Suffix
8 MHz	500 ns	-25
16 MHz	250 ns	-15
20 MHz	200 ns	-10
25 MHz	160 ns	-70

Note: The access times for this requires the use of fast SRAMs.

The electrical specifications now include timing specifications for the memory interface with PIC17LCXXX devices. These specifications reflect the capability of the device by characterization. Please validate your design with these timings.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
Bank 6	•		•								
10h	SSPADD	SSP Addre	ess Register	in I ² C Slave	e mode. SSF	Baud Rate	Reload Regi	ster in I ² C Ma	aster mode	0000 0000	0000 0000
11h	SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
12h	SSPCON2	GCEN	AKSTAT	AKDT	AKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
13h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
14h	SSPBUF	Synchrono	ous Serial Po	ort Receive E	Buffer/Transr	nit Register		•	•	xxxx xxxx	uuuu uuuu
15h	Unimplemented	_	—	—	—	_	—	—	_		
16h	Unimplemented	_	_	_	_	_	_	_	_		
17h	Unimplemented	_	_		_	_	_	_	_		
Bank 7	•					•			•		
10h	PW3DCL	DC1	DC0	TM2PW3	_	_	_	_	_	xx0	uu0
11h	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
12h	CA3L	Capture3 I	_ow Byte							xxxx xxxx	uuuu uuuu
13h	САЗН	Capture3 I								xxxx xxxx	uuuu uuuu
14h	CA4L	Capture4 I	_ow Byte							xxxx xxxx	uuuu uuuu
15h	CA4H	Capture4 I	High Byte							xxxx xxxx	uuuu uuuu
16h	TCON3		CA40VF	CA30VF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
17h	Unimplemented	_		_		_	_	_	_		
Bank 8 ⁽³⁾						•			•		
10h ⁽³⁾	DDRH	Data Direc	tion Registe	r for PORTH	1					1111 1111	1111 1111
	PORTH ⁽⁴⁾	RH7/ AN15	RH6/ AN14	RH5/ AN13	RH4/ AN12	RH3	RH2	RH1	RH0	xxxx xxxx	uuuu uuuu
12h ⁽³⁾	DDRJ	Data Direc	tion Registe	r for PORTJ						1111 1111	1111 1111
13h ⁽³⁾	PORTJ ⁽⁴⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx xxxx	uuuu uuuu
14h ⁽³⁾	Unimplemented	_	_	_	_	_		_	_		
15h ⁽³⁾	Unimplemented		_	_	_	_	_	_	_		
16h ⁽³⁾	Unimplemented			_	_	_	_	_	_		
17h ⁽³⁾	Unimplemented			_		_			_		
Unbanke			1								
18h	PRODL	Low Byte of	of 16-bit Pro	duct (8 x 8 F	lardware Mu	ltiply)				XXXX XXXX	uuuu uuuu
19h	PRODH	-			Hardware Mu					xxxx xxxx	uuuu uuuu

SPECIAL FUNCTION REGISTERS (CONTINUED) TABLE 7-3

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose

contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

10.2 PORTB and DDRB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to PORTB will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any RESET.

PORTB also has an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB0 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'd together to set the PORTB Interrupt Flag bit, RBIF (PIR1<7>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt by:

- a) Read-Write PORTB (such as: MOVPF PORTB, PORTB). This will end the mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading, then writing PORTB, will end the mismatch condition and allow the RBIF bit to be cleared.

This interrupt-on-mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a keypad and makes it possible for wakeup on key depression. For an example, refer to Application Note AN552, "Implementing Wake-up on Keystroke."

The interrupt-on-change feature is recommended for wake-up on operations, where PORTB is only used for the interrupt-on-change feature and key depression operations.

Note: On a device RESET, the RBIF bit is indeterminate, since the value in the latch may be different than the pin.

FIGURE 10-5: BLOCK DIAGRAM OF RB5:RB4 AND RB1:RB0 PORT PINS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
16h, Bank 7	TCON3	—	CA4OVF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
10h, Bank 2	TMR1	Timer1's F	Register	•						XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2's F	Register							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
14h, Bank 2	PR1	Timer1 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
15h, Bank 2	PR2	Timer2 Pe	eriod Registe	er						XXXX XXXX	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	—	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	_		—	—	xx0	uu0
10h, Bank 7	PW3DCL	DC1	DC0	TM2PW3	_	_		—	—	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
11h, Bank 7	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

TABLE 13-3: SUMMARY OF TIMER1, TIMER2 AND TIMER3 REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0', q = value depends on condition. Shaded cells are not used by Timer1 or Timer2.

14.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULES

Each USART module is a serial I/O module. There are two USART modules that are available on the PIC17C7XX. They are specified as USART1 and USART2. The description of the operation of these modules is generic in regard to the register names and pin names used. Table 14-1 shows the generic names that are used in the description of operation and the actual names for both USART1 and USART2. Since the control bits in each register have the same function, their names are the same (there is no need to differentiate).

The Transmit Status and Control Register (TXSTA) is shown in Figure 14-1, while the Receive Status and Control Register (RCSTA) is shown in Figure 14-2.

TABLE 14-1: USART MODULE GENERIC NAMES

Generic Name	USART1 Name	USART2 Name						
Registers								
RCSTA	RCSTA1	RCSTA2						
TXSTA	TXSTA1	TXSTA2						
SPBRG	SPBRG1	SPBRG2						
RCREG	RCREG1	RCREG2						
TXREG	TXREG1	TXREG2						
In	terrupt Control Bit	S						
RCIE	RC1IE	RC2IE						
RCIF	RC1IF	RC2IF						
TXIE	TX1IE	TX2IE						
TXIF	TX1IF	TX2IF						
	Pins							
RX/DT	RA4/RX1/DT1	RG6/RX2/DT2						
TX/CK	RA5/TX1/CK1	RG7/TX2/CK2						

REGISTER 14-1: TXSTA1 REGISTER (ADDRESS: 15h, BANK 0) TXSTA2 REGISTER (ADDRESS: 15h, BANK 4)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R-1	R/W-x
	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D
	bit 7							bit 0
bit 7	CSRC: Clo	ock Source S	elect bit					
		o <u>us mode:</u> r mode (clock mode (clock f	•	•	m BRG)			
	<u>Asynchron</u> Don't care	ious mode:						
bit 6	TX9 : 9-bit Transmit Select bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission							
bit 5	1 = Transr 0 = Transr	nsmit Enable nit enabled nit disabled EN overrides		YNC mode				
bit 4	(Synchron 1 = Synch	ART Mode S ous/Asynchro ronous mode hronous mod	onous)					
bit 3-2	Unimplem	nented: Read	as '0'					
bit 1	TRMT : Transmit Shift Register (TSR) Empty bit 1 = TSR empty 0 = TSR full							
bit 0	TX9D : 9th	bit of Transm	nit Data (car	be used to	calculate the	e parity in soft	ware)	
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unin	nplemented b	it, read as '0	,
	- n = Value	e at POR Res	et '1' = B	it is set	'0' = Bit i	s cleared	x = Bit is ur	nknown

TABLE 14-5: BAUD R	ATES FOR ASYNCHRONOUS MODE
--------------------	----------------------------

BAUD	Fosc =	= 33 MHz	SPBRG	FOSC = 25	MHz	SPBRG	FOSC = 2	0 MHz	SPBRG	Fosc = 1	6 MHz	SPBRG
RATE (K)	KBAU	D %ERROR	VALUE (DECIMAL)	KBAUD 9	%ERROR	VALUE (DECIMAL)	KBAUD	%ERROR	VALUE (DECIMAL)	KBAUD	%ERROR	VALUE (DECIMAL)
0.3	NA			NA	_		NA	_		NA	_	
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548		53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09		26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	6 -4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.1	2 +7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.8	1 -14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	_
500	515.6	2 +3.13	0	NA	_	_	NA	_	_	NA	_	_
HIGH	515.6	2 —	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	4 <u> </u>	255	1.53	_	255	1.221	_	255	0.977	_	255
I	F	Fosc = 10 MHz			Fosc	= 7.159 MH	7		FOSC = 5	.068 MHz		
BAU RAT	ID			SPBRG VALUE		- 1.100 1011		SPBRG VALUE	1 000 - 0			SPBRG VALUE
(K))	KBAUD	%ERROR	(DECIMA	L) KE	BAUD %	ERROR	(DECIMAL) KBAU	D %I	ERROR	(DECIMAL)
0.3	3	NA	—	_		NA	_	—	0.31		+3.13	255
1.2	2	1.202	+0.16	129	1	.203	_0.23	92	1.2		0	65
2.4	Ļ	2.404	+0.16	64	2	.380	-0.83	46	2.4		0	32
9.6	6	9.766	+1.73	15	9	.322	-2.90	11	9.9		-3.13	7
19.3	2	19.53	+1.73	7	1	8.64	-2.90	5	19.8		+3.13	3
76.	8	78.13	+1.73	1		NA	—		79.2		+3.13	0
96	;	NA	—	—		NA	—		NA		—	—
300	C	NA	—	_		NA	_	—	NA		_	_
500		NA	—	_		NA	_	—	NA		_	_
HIG		156.3	—	0		11.9	_	0	79.2		_	0
LO	N	0.610	—	255	0	.437	—	255	0.309)	—	2 55
	F	- - - - - - - - - - - - - - - - - - -	Hz		Fosc	= 1 MHz			Fosc = 3	2.768 kHz		
BAU RAT	ID			SPBRG VALUE	i			SPBRG VALUE				SPBRG VALUE
(K)		KBAUD	%ERROR	(DECIMA	L) KE	AUD %	ERROR	(DECIMAL) KBAU	D %I	ERROR	(DECIMAL)
0.3	3	0.301	+0.23	185	0	.300	+0.16	51	0.256	; -	14.67	1
1.2	2	1.190	-0.83	46	1	.202	+0.16	12	NA		_	_
2.4	Ļ	2.432	+1.32	22	2	.232	-6.99	6	NA		_	_
9.6	6	9.322	-2.90	5		NA	_	_	NA		_	_
19.3	2	18.64	-2.90	2		NA	_	_	NA		_	_
76.	8	NA	_	_		NA	_	_	NA		_	_
96	;	NA	_	_		NA	_	_	NA		_	_
300	C	NA	_	_		NA	_	_	NA		_	_
500	D	NA	_	_		NA	_	_	NA		_	_
HIG	н	55.93	_	0	1	5.63	_	0	0.512	2	_	0
LOV	N	0.218	_	255	0	.061	_	255	0.002	2	_	255

15.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit PEN (SSPCON2<2>). At the end of a receive/ transmit the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to '0'. When the baud rate generator times out, the SCL pin will be brought high and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-31).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

15.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

18.0 INSTRUCTION SET SUMMARY

The PIC17CXXX instruction set consists of 58 instructions. Each instruction is a 16-bit word divided into an OPCODE and one or more operands. The opcode specifies the instruction type, while the operand(s) further specify the operation of the instruction. The PIC17CXXX instruction set can be grouped into three types:

- byte-oriented
- bit-oriented
- · literal and control operations

These formats are shown in Figure 18-1.

Table 18-1 shows the field descriptions for the opcodes. These descriptions are useful for understanding the opcodes in Table 18-2 and in each specific instruction descriptions.

For **byte-oriented instructions**, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' = '0', the result is placed in the WREG register. If 'd' = '1', the result is placed in the file register specified by the instruction.

For **bit-oriented instructions**, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control operations**, 'k' represents an 8or 13-bit constant or literal value.

The instruction set is highly orthogonal and is grouped into:

- byte-oriented operations
- bit-oriented operations
- · literal and control operations

All instructions are executed within one single instruction cycle, unless:

- a conditional test is true
- the program counter is changed as a result of an instruction
- a table read or a table write instruction is executed (in this case, the execution takes two instruction cycles with the second cycle executed as a NOP)

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 25 MHz, the normal instruction execution time is 160 ns. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 320 ns.

TABLE 18-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (00h to FFh)
р	Peripheral register file address (00h to 1Fh)
i	Table pointer control i = '0' (do not change) i = '1' (increment after instruction execution)
t	Table byte select t = '0' (perform operation on lower byte) t = '1' (perform operation on upper byte literal field, constant data)
WREG	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= '0' or '1') The assembler will generate code with $x = '0'$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select 0 = store result in WREG 1 = store result in file register f Default is d = '1'
u	Unused, encoded as '0'
s	Destination select 0 = store result in file register f and in the WREG 1 = store result in file register f Default is s = '1'
label	Label name
C,DC, Z,OV	ALU status bits Carry, Digit Carry, Zero, Overflow
GLINTD	Global Interrupt Disable bit (CPUSTA<4>)
TBLPTR	Table Pointer (16-bit)
TBLAT	Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)
TBLATL	Table Latch low byte
TBLATH	Table Latch high byte
TOS	Top-of-Stack
PC	Program Counter
BSR	Bank Select Register
WDT	Watchdog Timer Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the WREG register or the speci- fied register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)
L	

TABLE 20-12: I ² C	BUS START/STOP	BITS REQUIREMENTS
-------------------------------	-----------------------	-------------------

Param. No.	Sym	Charac	teristic	Min	Ту р	Max	Units	Conditions
90	Tsu:sta	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	_	ns	Only relevant for
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	—		Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	—		
91	Thd:sta	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	—	ns	After this period, the first
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)		—		clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		—		
92	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	—	ns	
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)		—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		—		
93	Thd:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	_	—	ns	
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	_	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	—		

Note 1: Maximum pin capacitance = 10 pF for all I²C pins.

FIGURE 20-21: USART ASYNCHRONOUS MODE START BIT DETECT

TABLE 20-16: USART ASYNCHRONOUS MODE START BIT DETECT REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур	Max	Unit s	Conditions
120A	TdtL2ckH	Time to ensure that the RX pin is sar	mpled low		_	TCY	ns	
121A	TdtRF	Data rise time and fall time	Receive	_	—	(Note 1)	ns	
			Transmit	_	_	40	ns	
123A	TckH2bckL	Time from RX pin sampled low to firs of x16 clock	t rising edge	_	_	Тсү	ns	

Note 1: Schmitt trigger will determine logic level.

FIGURE 20-22: USART ASYNCHRONOUS RECEIVE SAMPLING WAVEFORM

TABLE 20-17: USART ASYNCHRONOUS RECEIVE SAMPLING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур	Max	Unit s	Conditions
125A	TdtL2ckH	Setup time of RX pin to first data sampled	TCY	—		ns	
126A	TdtL2ckH	Hold time of RX pin from last data sam- pled	Тсү			ns	

FIGURE 21-13: TYPICAL AND MAXIMUM △IPD vs. VDD (SLEEP MODE, WDT ENABLED, -40°C to +125°C)

FIGURE 21-14: TYPICAL AND MAXIMUM △IRBPU vs. VDD (MEASURED PER INPUT PIN, -40°C TO +125°C)

FIGURE 21-15: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. Vdd (-40°C TO +125°C)

FIGURE 21-21: TYPICAL, MAXIMUM AND MINIMUM VIN vs. VDD (TTL INPUT, -40°C to 125°C)

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes, both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: Microcontroller, Protected Microcontroller, Extended Microcontroller, and Microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions are no longer supported.
- Four new instructions (TLRD, TLWT, TABLRD, TABLWT) for transferring data between data memory and program memory. They can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replace function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing interrupts.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake-up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt-on-change feature works on all eight port pins.
- 16. TMR0 is 16-bit, plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Control bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit).
- 19. Peripheral modules operate slightly differently.
- 20. A/D has both VREF+ and VREF- inputs.
- 21. USARTs do not implement BRGH feature.
- 22. Oscillator modes slightly redefined.
- 23. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 24. In-circuit serial programming is implemented differently.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXXX to PIC17CXXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the Interrupt Service Routine into its four vectors.
- Replace: MOVF REG1, W with:
- MOVFP REG1, WREG 4. Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or MOVFP REG1, REG2 ; Addr(REG2)<20h

Note:	If REG1 a	and REG	2 are b	oth at addres	sses
	greater t	hen 20h	n, two	instructions	are
	required.				
	MOVFP	REG1,	WREG	;	
	MOVPF	WREG,	REG2	;	

- 5. Ensure that all bit names and register names are updated to new data memory map locations.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on RESET.
- 10. WDT time-outs always reset the device (in run or SLEEP mode).

B.1 Upgrading from PIC17C42 Devices

To convert code from the PIC17C42 to all the other PIC17CXXX devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced, so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1998-2013} Microchip Technology Inc.

CALL	
CLRF	
CLRWDT	
COMF	
CPFSEQ	
CPFSGT	
CPFSLT	
DAW	
DECFSNZ	
DECFSZ GOTO	
INCF	
INCFSNZ	
INCFSZ	
IORLW	
IORWF	
LCALL	
MOVFP	
MOVLB	
MOVLR	
MOVLW	
MOVPF	
MOVWF	
MULLW	219
MULWF	219
NEGW	
NOP	
RETFIE	
RETLW	
RETURN	
RLCF	
RLNCF	
RRCF RRNCF	
	201
CETE	
SETF	
SLEEP	
SLEEP SUBLW	224 225 225
SLEEP	
SLEEP SUBLW SUBWF	
SLEEP SUBLW SUBWF SUBWFB	
SLEEP SUBLW SUBWF SUBWFB SWAPF	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD.	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLRT	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORLW	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORLW XORWF	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORLW XORWF Instruction Set Summary	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORLW XORWF Instruction Set Summary Instructions	224 225 225 226 226 227 227, 228 228, 229 228, 229 229 230 230 231 231 231
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORLW XORWF Instruction Set Summary Instructions TABLRD	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORLW XORWF Instruction Set Summary Instructions TABLRD TLRD TLRD	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT STFSZ XORUW XORWF Instruction Set Summary Instructions TABLRD TLRD INT Pin	
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORUW XORWF Instruction Set Summary Instructions TABLRD TLRD INT Pin	
SLEEP	224 225 225 226 226 227 227, 228 229 229 229 230 230 230 231 231 231 231 231 231 231 231 231 231
SLEEP SUBLW SUBWF SUBWFB SWAPF TABLRD TABLWT TLRD TLRD TLWT TSTFSZ XORUW XORWF Instruction Set Summary Instructions TABLRD TLRD INT Pin INTE INTEDG Inter-Integrated Circuit (I ² C)	224 225 225 226 226 227 227, 228 229 228, 229 229 230 230 230 231 231 231 197
SLEEP	224 225 225 226 226 227 227, 228 228, 229 228, 229 230 230 230 231 231 231 197
SLEEP	224 225 225 226 226 227 227, 228 229 228, 229 230 230 230 231 231 231 197
SLEEP	224 225 225 226 226 227 227, 228 229 228, 229 230 230 230 231 231 231 197
SLEEP	

Capture4 Interrupt 38
Context Saving 39
Flag bits
TMR1IE
TMR1IF
TMR2IE
TMR2IF
TMR3IE
TMR3IF
Global Interrupt Disable 39
Interrupts
Logic
Operation
Peripheral Interrupt Enable
Peripheral Interrupt Request
PIE2 Register
PIR1 Register
PIR2 Register
PORTB Interrupt on Change
PWM108
RA0/INT
Status Register
Synchronous Serial Port Interrupt
TOCKI Interrupt
Timing
5
TMR1 Overflow Interrupt
TMR2 Overflow Interrupt 37
TMR3 Overflow Interrupt 37
USART1 Receive Interrupt 37
USART1 Transmit Interrupt 37
USART2 Receive Interrupt
Vectors
Peripheral Interrupt
Brogrom Momony Logations 42
Program Memory Locations
RA0/INT Interrupt 39
RA0/INT Interrupt
RA0/INT Interrupt39T0CKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORLW214
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L LCALL 54, 215 M M
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L 54, 215 M Maps
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K LCALL 54, 215 Maps Register File Map. 47
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K ICALL 54, 215 M Maps Register File Map 47 Memory 47
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K LCALL 54, 215 M Maps Register File Map 47 Memory External Interface External Interface 45
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L L LCALL 54, 215 M Maps Register File Map 47 Memory External Interface External Memory Waveforms 45
RA0/INT Interrupt 39 T0CKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K LCALL 54, 215 M Maps Register File Map 47 Memory External Interface External Interface 45
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L L LCALL 54, 215 M Maps Register File Map 47 Memory External Interface External Memory Waveforms 45 Memory Map (Different Modes) 44
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L L LCALL 54, 215 M Maps Register File Map 47 Memory External Interface External Memory Waveforms 45
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L L LCALL 54, 215 M Maps Register File Map 47 Memory External Interface External Memory Waveforms 45 Memory Map (Different Modes) 44 Mode Memory Access 44 Organization 43
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU VS. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L L LCALL 54, 215 M Maps Register File Map. 47 Memory External Interface External Memory Waveforms 45 Memory Map (Different Modes) 44 Mode Memory Access 44 Organization 43 Program Memory 43
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORLW214IORWF215IRBPU vs. VDD274KKeeLoq Evaluation and Programming Tools236LLCALL54, 215MMapsRegister File Map47MemoryExternal Interface45External Memory Waveforms45Memory Map (Different Modes)44Mode Memory Access44Organization43Program Memory Map43
RA0/INT Interrupt 39 TOCKI Interrupt 39 Vectors/Priorities 39 Wake-up from SLEEP 194 INTF 34 INTSTA Register 34 IORLW 214 IORWF 215 IRBPU vs. VDD 274 K K KeeLoq Evaluation and Programming Tools 236 L L LCALL 54, 215 M Maps Register File Map 47 Memory External Interface External Memory Waveforms 45 Memory Map (Different Modes) 44 Mode Memory Access 44 Organization 43 Program Memory Map 43 Microcontroller 43
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORLW214IORWF215IRBPU vs. VDD274KKeeLoq Evaluation and Programming Tools236LLCALL54, 215MMapsRegister File Map47MemoryExternal Interface45External Memory Waveforms44Mode Memory Access44Organization43Program Memory43Program Memory Map43Microcontroller43
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORLW214IORWF215IRBPU vs. VDD274KKeeLoq Evaluation and Programming Tools236LLCALL54, 215MMapsRegister File Map47MemoryExternal Interface45External Memory Waveforms44Mode Memory Access44Organization43Program Memory Map43Microcontroller43Microprocessor43Minimizing Current Consumption195
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORUW214IORWF215IRBPU VS. VDD274KKKKMapsRegister File MapRegister File Map47MemoryExternal InterfaceExternal Memory Waveforms45External Memory Ap (Different Modes)44Mode Memory Access44Organization43Program Memory Map43Microprocessor43Microprocessor43Minimizing Current Consumption195MOVFP46, 216
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORLW214IORWF215IRBPU VS. VDD274KKKKMaps8Register File Map47Memory45External Interface45External Memory Waveforms45Mode Memory Access44Organization43Program Memory Map43Microprocessor43Microprocessor43Microprocessor43MoVFP46, 216Moving Data Between Data and Program Memories46
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORUW214IORWF215IRBPU VS. VDD274KKKKMapsRegister File MapRegister File Map47MemoryExternal InterfaceExternal Memory Waveforms45External Memory Vaveforms44Organization43Program Memory43Program Memory Map43Microprocessor43Minimizing Current Consumption195MOVFP46, 216
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORLW214IORWF215IRBPU VS. VDD274KKKKMaps8Register File Map47Memory45External Interface45External Memory Waveforms45Mode Memory Access44Organization43Program Memory Map43Microprocessor43Microprocessor43Microprocessor43MoVFP46, 216Moving Data Between Data and Program Memories46
RA0/INT Interrupt39TOCKI Interrupt39Vectors/Priorities39Wake-up from SLEEP194INTF34INTSTA Register34IORLW214IORWF215IRBPU VS. VDD274KKKKMaps8Register File Map47Memory45External Interface45External Memory Waveforms45Mode Memory Access44Organization43Program Memory Map43Microprocessor43Microprocessor43Microprocessor43MoVFP46, 216MOVLB46, 216