

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc756at-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams cont.'d

NOTES:

6.0 INTERRUPTS

PIC17C7XX devices have 18 sources of interrupt:

- External interrupt from the RA0/INT pin
- Change on RB7:RB0 pins
- TMR0 Overflow
- TMR1 Overflow
- TMR2 Overflow
- TMR3 Overflow
- USART1 Transmit buffer empty
- USART1 Receive buffer full
- USART2 Transmit buffer empty
- USART2 Receive buffer full
- SSP Interrupt
- SSP I²C bus collision interrupt
- A/D conversion complete
- Capture1
- Capture2
- Capture3
- Capture4
- T0CKI edge occurred

There are six registers used in the control and status of interrupts. These are:

- CPUSTA
- INTSTA
- PIE1
- PIR1
- PIE2
- PIR2

The CPUSTA register contains the GLINTD bit. This is the Global Interrupt Disable bit. When this bit is set, all interrupts are disabled. This bit is part of the controller core functionality and is described in the Section 6.4.

FIGURE 6-1: INTERRUPT LOGIC

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with the interrupt vector address. There are four interrupt vectors. Each vector address is for a specific interrupt source (except the peripheral interrupts, which all vector to the same address). These sources are:

- External interrupt from the RA0/INT pin
- TMR0 Overflow
- T0CKI edge occurred
- Any peripheral interrupt

When program execution vectors to one of these interrupt vector addresses (except for the peripheral interrupts), the interrupt flag bit is automatically cleared. Vectoring to the peripheral interrupt vector address does not automatically clear the source of the interrupt. In the peripheral Interrupt Service Routine, the source(s) of the interrupt can be determined by testing the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

When an interrupt condition is met, that individual interrupt flag bit will be set, regardless of the status of its corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt latency. For two-cycle instructions, the latency could be one instruction cycle longer.

The "return from interrupt" instruction, RETFIE, can be used to mark the end of the Interrupt Service Routine. When this instruction is executed, the stack is "POPed" and the GLINTD bit is cleared (to re-enable interrupts).

8.0 TABLE READS AND TABLE WRITES

The PIC17C7XX has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t, f and TABLWT t, i, f instructions are used to write data from the data memory space to the program memory space. The TLRD t, f and TABLRD t, i, f instructions are used to write data from the program memory space to the data memory space.

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in Microprocessor or Extended Microcontroller mode.

Figure 8-1 through Figure 8-4 show the operation of these four instructions. The steps show the sequence of operation.

FIGURE 8-1: TLWT INSTRUCTION OPERATION

FIGURE 8-2: TABLWT INSTRUCTION OPERATION

8.2 Table Writes to External Memory

Table writes to external memory are always two-cycle instructions. The second cycle writes the data to the external memory location. The sequence of events for an external memory write are the same for an internal write.

8.2.1 TABLE WRITE CODE

The "i" operand of the TABLWT instruction can specify that the value in the 16-bit TBLPTR register is automatically incremented (for the next write). In Example 8-1, the TBLPTR register is not automatically incremented.

EXAMPLE 8-1: TABLE WRITE

CLRWDT		;	Clear WDT
MOVLW	HIGH (TBL_ADDR)	;	Load the Table
MOVWF	TBLPTRH	;	address
MOVLW	LOW (TBL_ADDR)	;	
MOVWF	TBLPTRL	;	
MOVLW	HIGH (DATA)	;	Load HI byte
TLWT	1, WREG	;	in TABLATH
MOVLW	LOW (DATA)	;	Load LO byte
TABLWT	0,0,WREG	;	in TABLATL
		;	and write to
		;	program memory
		;	(Ext. SRAM)

FIGURE 8-5: TABLWT WRITE TIMING (EXTERNAL MEMORY)

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers, RES3:RES0.

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

-			
RES3:RES0	=	ARG1H:ARG1L • ARG2H:AF	RG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16})$	+
		$(ARG1H \bullet ARG2L \bullet 2^8)$	+
		$(ARG1L \bullet ARG2H \bullet 2^8)$	+
		$(ARG1L \bullet ARG2L)$	

EXAMPLE 9-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH: PRODL
	MOVPF	PRODH, RES1	;	
	MOVPF	PRODL, RESO	;	
;				
	MOVFP	ARG1H, WREG		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH: PRODL
	MOVPF	PRODH, RES3	;	
	MOVPF	PRODL, RES2	;	
;				
	MOVFP	-		
	MULWF	ARG2H		ARG1L * ARG2H ->
				PRODH:PRODL
	MOVFP	PRODL, WREG		
	ADDWF	,		
		PRODH, WREG	;	products
	ADDWFC		;	
		WREG, F		
	ADDWFC	RES3, F	;	
;				
	MOVFP	•		
	MULWF	ARG2L		ARG1H * ARG2L ->
				PRODH: PRODL
	MOVFP	PRODL, WREG		
	ADDWF			
		PRODH, WREG		products
		RES2, F		
		WREG, F		
	ADDWFC	RES3, F	;	

10.6 PORTF and DDRF Registers

PORTF is an 8-bit wide bi-directional port. The corresponding data direction register is DDRF. A '1' in DDRF configures the corresponding port pin as an input. A '0' in the DDRF register configures the corresponding port pin as an output. Reading PORTF reads the status of the pins, whereas writing to PORTF will write to the respective port latch.

All eight bits of PORTF are multiplexed with 8 channels of the 10-bit A/D converter.

Upon RESET, the entire Port is automatically configured as analog inputs and must be configured in software to be a digital I/O. Example 10-6 shows an instruction sequence to initialize PORTF. The Bank Select Register (BSR) must be selected to Bank 5 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-6: INITIALIZING PORTF

MOVLB	5		;	Select Bank 5
MOVWF	0x0E		;	Configure PORTF as
MOVWF	ADCON1		;	Digital
CLRF	PORTF,	F	;	Initialize PORTF data
			;	latches before
			;	the data direction
			;	register
MOVLW	0x03		;	Value used to init
			;	data direction
MOVWF	DDRF		;	Set RF<1:0> as inputs
			;	RF<7:2> as outputs

FIGURE 10-13: BLOCK DIAGRAM OF RF7:RF0

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address and if this will be a read or write data transfer.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON1<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

15.2.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs. The MSSP module will override the input state with the output data when required (slavetransmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the MSSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON1<6>) was set before the transfer was received.

If the BF bit is set, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF and SSPOV are set. Table 15-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101 of the Electrical Specifications.

15.2.1.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register on the falling edge of the 8th SCL pulse.
- b) The buffer full bit, BF, is set on the falling edge of the 8th SCL pulse.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR2<7>), is set (interrupt is generated if enabled) - on the falling edge of the 9th SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF and UA are set).

- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Note: Following the Repeated Start condition (step 7) in 10-bit mode, the user only needs to match the first 7-bit address. The user does not update the SSPADD for the second half of the address.

15.2.1.2 Slave Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR2<7>) must be cleared in software. The SSPSTAT register is used to determine the status of the received byte.

Note: The SSPBUF will be loaded if the SSPOV bit is set and the BF flag is cleared. If a read of the SSPBUF was performed, but the user did not clear the state of the SSPOV bit before the next receive occurred, the ACK is not sent and the SSP-BUF is updated.

	ts as Data s Received	SSPSR $ ightarrow$ SSPBUF	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs
BF	SSPOV		Fuise	if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	Yes	No	Yes

TABLE 15-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

15.2.9 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the START condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the baud rate generator is suspended, leaving the SDA line held low and the START condition is complete.

Note: If at the beginning of START condition, the SDA and SCL pins are already sampled low, or if during the START condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs. The Bus Collision Interrupt Flag (BCLIF) is set, the START condition is aborted and the I²C module is reset into its IDLE state.

FIGURE 15-20: FIRST START BIT TIMING

If the user writes the SSPBUF when a START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

MO\	/PF	Move p t	o f		
Synt	ax:	[<i>label</i>] N	<i>I</i> OVPF	p,f	
Ope	rands:	$0 \le f \le 25$ $0 \le p \le 31$	-		
Ope	ration:	$(p) \to (f)$			
Statu	us Affected:	Z			
Enco	oding:	010p	pppp	ffff	ffff
Des	cription:	Move data 'p' to data n 'f' can be a space (00h to 1Fh. Either 'p' o special situ MOVPF is p ring a perip or an I/O p tion. Both ' addressed	memory lo nywhere i n to FFh), r 'f' can bo uation). particularly oheral reg ort) to a c f' and 'p' o	pocation 'f', in the 256 while 'p' c e WREG y useful fo jister (e.g lata mem	Location byte data an be 00h (a useful, or transfer- the timer ory loca-
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q3	3	Q4
	Decode	Read register 'p'	Proce Dat		Write egister 'f'

Example:	MOVPF	REG1,	REG2
Before Instruc	tion		
REG1	=	0x11	
REG2	=	0x33	
After Instruction	on		

=

=

0x11

0x11

REG1

REG2

MOVWF	Move WR	EG to f		
Syntax:	[label]	MOVWF	f	
Operands:	$0 \le f \le 255$	5		
Operation:	(WREG) -	→ (f)		
Status Affected:	None			
Encoding:	0000	0001	ffff	ffff
Description:	Move data Location 'f' byte data s	can be an	0	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proces Data		Write gister 'f'
Example:	MOVWF	REG	·	

Before Instr	uctio	n
WREG	=	0x4F
REG	=	0xFF
After Instruc	tion	

	lion	
WREG	=	0x4F
REG	=	0x4F

TLWT Tak	Table Latch Write				
Syntax: [la	bel] TLWT t,f	:			
•	$\begin{array}{l} 0 \leq f \leq 255 \\ t \in [0,1] \end{array}$				
f → If t	If t = 0, f \rightarrow TBLATL; If t = 1, f \rightarrow TBLATH				
Status Affected: No	ne				
Encoding: 1	.010 01tx	ffff	ffff		
the If t If t This with	Data from file register 'f' is written into the 16-bit table latch (TBLAT). If t = 1; high byte is written If t = 0; low byte is written This instruction is used in conjunction with TABLWT to transfer data from data memory to program memory.				
Words: 1					
Cycles: 1					
Q Cycle Activity:					
Q1 (Q2 Q3	3	Q4		
	ead Proce ster 'f' Dat	a ı TE	Write register BLATH or FBLATL		
Example: TLV Before Instruction	- ,	·			
RAM =	· ·	.TH = 0x00 .TL = 0x00	,		
After Instruction					

Before Instruction

	t	=	1	
	RAM	=	0xB7	
	TBLAT	=	0x0000	(TBLATH = 0x00)
				(TBLATL = 0x00)
After	r Instruc	tion		
	r Instruc RAM	tion =	0xB7	
			0xB7 0xB700	(TBLATH = 0xB7)
	RAM	=	••••	(TBLATH = 0xB7) (TBLATL = 0x00)

тѕт	FS7	Test f, sk	in if O				
Synt		[label]	-				
Operands:			0 < f < 255				
Operation:		skip if f =					
Status Affected:		None	•				
Encoding:							
	•						
Description:		during the o	If 'f' = 0, the next instruction, fetched during the current instruction execution, is discarded and a NOP is executed, making this a two-cycle instruction.				
Wor	ds:	1					
Cycl	es:	1 (2)					
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	No operation			
lf sk	ip:						
	Q1	Q2	Q3	Q4			
	No operation	No operation	No operation	No operation			
<u>Exar</u>	<u>mple</u> : Refere Instru	NZERO ZERO	ISTFSZ CNT : :				
	Before Instru PC = Ado	iction dress (HERE)					
	After Instruct If CNT PC If CNT PC	= 0x = Ac ½ 0x	00, Idress (zero) 00, Idress (nzero))			

NOTES:

19.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

19.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC MCU devices. It can also set code protection in this mode.

19.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

19.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

19.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

TABLE 20-11:	SPI MODE REQUIREMENTS (SLAVE MODE, CKE = 1)
--------------	---

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30		—	ns	
71A		(Slave mode)	Single Byte	40		—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30		—	ns	
72A		(Slave mode)	Single Byte	40	—	_	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the of Byte2	1st clock edge	1.5Tcy + 40	—	_	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	SCK edge	100	—	_	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
77	TssH2doZ	SS [↑] to SDO output hi-impedan	се	10		50	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge			—	50	ns	
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

Timer0	97
Timer1	
16-bit Mode 10)5
Clock Source Select10)1
On bit)3
Section)4
Timer2	
16-bit Mode)5
Clock Source Select10	
On bit	
Section	
Timer3	
Clock Source Select	11
On bit	
Section	
Timers	U
	5
TCON3	13
Timing Diagrams	
A/D Conversion	
Acknowledge Sequence Timing16	
Asynchronous Master Transmission	
Asynchronous Reception12	
Back to Back Asynchronous Master Transmission 12	
Baud Rate Generator with Clock Arbitration 15	53
BRG Reset Due to SDA Collision17	'2
Bus Collision	
START Condition Timing17	′1
Bus Collision During a RESTART Condition	
(Case 1)	' 3
Bus Collision During a RESTART Condition	-
(Case 2)	73
Bus Collision During a START Condition	Ů
(SCL = 0)	20
Bus Collision During a	2
STOP Condition17	7 /
Bus Collision for Transmit and Acknowledge	
External Parallel Resonant Crystal Oscillator Circuit 1	
External Program Memory Access4	
I ² C Bus Data	
I ² C Bus START/STOP bits	
I ² C Master Mode First START bit Timing	
I ² C Master Mode Reception Timing16	
I ² C Master Mode Transmission Timing16	
Interrupt (INT, TMR0 Pins)4	
Master Mode Transmit Clock Arbitration	60
Oscillator Start-up Time2	24
PIC17C752/756 Capture Timing25	53
PIC17C752/756 CLKOUT and I/O25	
PIC17C752/756 External Clock24	9
PIC17C752/756 Memory Interface Read26	6
PIC17C752/756 Memory Interface Write	55
PIC17C752/756 PWM Timing	
PIC17C752/756 Reset, Watchdog Timer, Oscillator	-
Start-up Timer and Power-up Timer	51
PIC17C752/756 Timer0 Clock	
PIC17C752/756 Timer1, Timer2 and Timer3 Clock25	
PIC17C752/756 USART Module Synchronous	~
Receive	
	51
PIC17C752/756 USART Module	
PIC17C752/756 USART Module Synchronous Transmission26	60
PIC17C752/756 USART Module Synchronous Transmission26 Repeat START Condition	60 56
PIC17C752/756 USART Module Synchronous Transmission	50 56
PIC17C752/756 USART Module Synchronous Transmission	60 56 40 57
PIC17C752/756 USART Module Synchronous Transmission	50 56 10 57 29
PIC17C752/756 USART Module Synchronous Transmission	50 56 40 57 29 28

	98, 99
TMR0 Read/Write in Timer Mode	
TMR1, TMR2, and TMR3 in Timer Mode	
Wake-Up from SLEEP	
TLRD	
TLWT	230
TMR0	
16-bit Read	99
16-bit Write	
Module	
Operation	
Overview	
Prescaler Assignments	
Read/Write Considerations	
Read/Write in Timer Mode	
Timing	98, 99
TMR0 Status/Control Register (T0STA)	
TMR1	
8-bit Mode External Clock Input	
Overview	
Timer Mode	
Two 8-bit Timer/Counter Mode	
Using with PWM	
TMR1 Overflow Interrupt	
TMR1CS	
TMR1IE	
TMR1IF	
TMR1ON	102
TMR2	28, 49
8-bit Mode	104
External Clock Input	104
In Timer Mode	
Two 8-bit Timer/Counter Mode	
Using with PWM	107
TMR2 Overflow Interrupt	37
TMR2CS	
TMR2IE	35
TMR2IE TMR2IF	35 37
TMR2IE TMR2IF TMR2ON	35 37
TMR2IE TMR2IF TMR2ON TMR3	35 37 102
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From	35 37 102 114
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IF	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IF TMR3IF TMR3L	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3CS TMR3H TMR3IE TMR3IF TMR3IF TMR3L. TMR3ON	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode. Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode. Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register TSTFSZ TTL INPUT	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode. Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register	
TMR2IE TMR2IF TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF TMR3H TMR3IE TMR3IF TMR3IF TMR3ON TO 52, Transmit Status and Control Register TSTFSZ TTL INPUT Turning on 16-bit Timer	
TMR2IE TMR2ON TMR3 Example, Reading From Example, Writing To External Clock Input. In Timer Mode One Capture and One Period Register Mode Overview Reading/Writing TMR3 Interrupt Flag bit, TMR3IF. TMR3H TMR3IE TMR3IF. TMR3IF. TMR3ON TO 52, Transmit Status and Control Register. TSTFSZ TTL INPUT. Turning on 16-bit Timer TX1IE	
TMR2IE	
TMR2IE	
TMR2IE	