

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc756at-08i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	7
2.0	Device Varieties	9
3.0	Architectural Overview	11
4.0	On-chip Oscillator Circuit	17
5.0	Reset	23
6.0	Interrupts	33
7.0	Memory Organization	43
8.0	Table Reads and Table Writes	59
9.0	Hardware Multiplier	67
10.0	I/O Ports	71
11.0	Overview of Timer Resources	95
12.0	Timer0	97
13.0	Timer1, Timer2, Timer3, PWMs and Captures 1	01
14.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Modules1	17
15.0	Master Synchronous Serial Port (MSSP) Module	33
16.0	Analog-to-Digital Converter (A/D) Module 1	79
17.0	Special Features of the CPU1	91
18.0	Instruction Set Summary1	97
19.0	Development Support	233
20.0	PIC17C7XX Electrical Characteristics	239
21.0	PIC17C7XX DC and AC Characteristics	267
22.0	Packaging Information	281
Appendix /	A: Modifications	287
Appendix	B: Compatibility2	287
Appendix	C: What's New	288
Appendix	D: What's Changed2	288
Index		289
On-Line S	upport2	299
Reader Re	esponse	300
Product Id	entification System	301

NOTES:

5.1.5 BROWN-OUT RESET (BOR)

PIC17C7XX devices have on-chip Brown-out Reset circuitry. This circuitry places the device into a RESET when the device voltage falls below a trip point (BVDD). This ensures that the device does not continue program execution outside the valid operation range of the device. Brown-out Resets are typically used in AC line applications, or large battery applications, where large loads may be switched in (such as automotive).

Note:	Before	using	the on-ch	ip Brown-c	out fo	r a
	voltage	sup	pervisory	function,	plea	ise
	specificat	ions	to			
	ensure	that th	hey meet y	our require	ment	s.

The BODEN configuration bit can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below BVDD (typically 4.0 V, paramter #D005 in electrical specification section), for greater than parameter #35, the Brown-out situation will reset the chip. A RESET is not guaranteed to occur if VDD falls below BVDD for less than paramter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer and Oscillator Startup Timer will then be invoked. This will keep the chip in RESET the greater of 96 ms and 1024 Tosc. If VDD drops below BVDD while the Power-up Timer/Oscillator Start-up Timer is running, the chip will go back into a Brown-out Reset. The Power-up Timer/Oscillator Startup Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer/Oscillator Start-up Timer will start their time delays. Figure 5-10 shows typical Brown-out situations.

In some applications, the Brown-out Reset trip point of the device may not be at the desired level. Figure 5-8 and Figure 5-9 are two examples of external circuitry that may be implemented. Each needs to be evaluated to determine if they match the requirements of the application.

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 5-9:

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

© 1998-2013 Microchip Technology Inc.

6.4 Interrupt Operation

Global Interrupt Disable bit, GLINTD (CPUSTA<4>), enables all unmasked interrupts (if clear), or disables all interrupts (if set). Individual interrupts can be disabled through their corresponding enable bits in the INTSTA register. Peripheral interrupts need either the global peripheral enable PEIE bit disabled, or the specific peripheral enable bit disabled. Disabling the peripherals via the global peripheral enable bit, disables all peripheral interrupts. GLINTD is set on RESET (interrupts disabled).

The RETFIE instruction clears the GLINTD bit while forcing the Program Counter (PC) to the value loaded at the Top-of-Stack.

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with the interrupt vector. There are four interrupt vectors which help reduce interrupt latency.

The peripheral interrupt vector has multiple interrupt sources. Once in the peripheral Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The peripheral interrupt flag bit(s) must be cleared in software before reenabling interrupts to avoid continuous interrupts.

The PIC17C7XX devices have four interrupt vectors. These vectors and their hardware priority are shown in Table 6-1. If two enabled interrupts occur "at the same time", the interrupt of the highest priority will be serviced first. This means that the vector address of that interrupt will be loaded into the program counter (PC).

TABLE 6-1: INTERRUPT VECTORS/ PRIORITIES

Address	Vector	Priority
0008h	External Interrupt on RA0/ INT pin (INTF)	1 (Highest)
0010h	TMR0 Overflow Interrupt (T0IF)	2
0018h	External Interrupt on T0CKI (T0CKIF)	3
0020h	Peripherals (PEIF)	4 (Lowest)

- Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GLINTD bit.
 - 2: Before disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

6.5 RA0/INT Interrupt

The external interrupt on the RA0/INT pin is edge triggered. Either the rising edge if the INTEDG bit (T0STA<7>) is set, or the falling edge if the INTEDG bit is clear. When a valid edge appears on the RA0/INT pin, the INTF bit (INTSTA<4>) is set. This interrupt can be disabled by clearing the INTE control bit (INTSTA<0>). The INT interrupt can wake the processor from SLEEP. See Section 17.4 for details on SLEEP operation.

6.6 T0CKI Interrupt

The external interrupt on the RA1/T0CKI pin is edge triggered. Either the rising edge if the T0SE bit (T0STA<6>) is set, or the falling edge if the T0SE bit is clear. When a valid edge appears on the RA1/T0CKI pin, the T0CKIF bit (INTSTA<6>) is set. This interrupt can be disabled by clearing the T0CKIE control bit (INTSTA<2>). The T0CKI interrupt can wake up the processor from SLEEP. See Section 17.4 for details on SLEEP operation.

6.7 Peripheral Interrupt

The peripheral interrupt flag indicates that at least one of the peripheral interrupts occurred (PEIF is set). The PEIF bit is a read only bit and is a bit wise OR of all the flag bits in the PIR registers AND'd with the corresponding enable bits in the PIE registers. Some of the peripheral interrupts can wake the processor from SLEEP. See Section 17.4 for details on SLEEP operation.

6.8 Context Saving During Interrupts

During an interrupt, only the returned PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt; e.g. WREG, ALUSTA and the BSR registers. This requires implementation in software.

Example 6-2 shows the saving and restoring of information for an Interrupt Service Routine. This is for a simple interrupt scheme, where only one interrupt may occur at a time (no interrupt nesting). The SFRs are stored in the non-banked GPR area.

Example 6-2 shows the saving and restoring of information for a more complex Interrupt Service Routine. This is useful where nesting of interrupts is required. A maximum of 6 levels can be done by this example. The BSR is stored in the non-banked GPR area, while the other registers would be stored in a particular bank. Therefore, 6 saves may be done with this routine (since there are 6 non-banked GPR registers). These routines require a dedicated indirect addressing register, FSR0, to be selected for this.

The PUSH and POP code segments could either be in each Interrupt Service Routine, or could be subroutines that were called. Depending on the application, other registers may also need to be saved.

7.2 Data Memory Organization

Data memory is partitioned into two areas. The first is the General Purpose Registers (GPR) area, and the second is the Special Function Registers (SFR) area. The SFRs control and provide status of device operation.

Portions of data memory are banked, this occurs in both areas. The GPR area is banked to allow greater than 232 bytes of general purpose RAM.

Banking requires the use of control bits for bank selection. These control bits are located in the Bank Select Register (BSR). If an access is made to the unbanked region, the BSR bits are ignored. Figure 7-5 shows the data memory map organization.

Instructions MOVPF and MOVFP provide the means to move values from the peripheral area ("P") to any location in the register file ("F"), and vice-versa. The definition of the "P" range is from 0h to 1Fh, while the "F" range is 0h to FFh. The "P" range has six more locations than peripheral registers, which can be used as General Purpose Registers. This can be useful in some applications where variables need to be copied to other locations in the general purpose RAM (such as saving status information during an interrupt).

The entire data memory can be accessed either directly, or indirectly (through file select registers FSR0 and FSR1) (see Section 7.4). Indirect addressing uses the appropriate control bits of the BSR for access into the banked areas of data memory. The BSR is explained in greater detail in Section 7.8.

7.2.1 GENERAL PURPOSE REGISTER (GPR)

All devices have some amount of GPR area. The GPRs are 8-bits wide. When the GPR area is greater than 232, it must be banked to allow access to the additional memory space.

All the PIC17C7XX devices have banked memory in the GPR area. To facilitate switching between these banks, the MOVLR bank instruction has been added to the instruction set. GPRs are not initialized by a Poweron Reset and are unchanged on all other RESETS.

7.2.2 SPECIAL FUNCTION REGISTERS (SFR)

The SFRs are used by the CPU and peripheral functions to control the operation of the device (Figure 7-5). These registers are static RAM.

The SFRs can be classified into two sets, those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described here, while those related to a peripheral feature are described in the section for each peripheral feature.

The peripheral registers are in the banked portion of memory, while the core registers are in the unbanked region. To facilitate switching between the peripheral banks, the MOVLB bank instruction has been provided.

10.7 PORTG and DDRG Registers

PORTG is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRG. A '1' in DDRG configures the corresponding port pin as an input. A '0' in the DDRG register configures the corresponding port pin as an output. Reading PORTG reads the status of the pins, whereas writing to PORTG will write to the port latch.

The lower four bits of PORTG are multiplexed with four channels of the 10-bit A/D converter.

The remaining bits of PORTG are multiplexed with peripheral output and inputs. RG4 is multiplexed with the CAP3 input, RG5 is multiplexed with the PWM3 output, RG6 and RG7 are multiplexed with the USART2 functions.

Upon RESET, RG3:RG0 is automatically configured as analog inputs and must be configured in software to be a digital I/O.

Example 10-7 shows the instruction sequence to initialize PORTG. The Bank Select Register (BSR) must be selected to Bank 5 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-7: INITIALIZING PORTG

MOVLB	5	; Select Bank 5
MOVLW	0x0E	; Configure PORTG as
MOVPF	WREG, ADCON1	; digital
CLRF	PORTG, F	; Initialize PORTG data
		; latches before
		; the data direction
		; register
MOVLW	0x03	; Value used to init
		; data direction
MOVWF	DDRG	; Set RG<1:0> as inputs
		; RG<7:2> as outputs

FIGURE 10-14: BLOCK DIAGRAM OF RG3:RG0

12.0 TIMER0

The Timer0 module consists of a 16-bit timer/counter, TMR0. The high byte is register TMR0H and the low byte is register TMR0L. A software programmable 8-bit prescaler makes Timer0 an effective 24-bit overflow timer. The clock source is software programmable as either the internal instruction clock, or an external clock on the RA1/T0CKI pin. The control bits for this module are in register T0STA (Figure 12-1).

REGISTER 12-1: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
	INTEDG	TOSE	TOCS	T0PS3	T0PS2	T0PS1	T0PS0	—				
	bit 7			·				bit 0				
bit 7	INTEDG: RA	10/INT Pin I	nterrupt Edg	ge Select bit	tia dataataa	1						
	1 = Risina e	dae of RA0	/INT pin aer	n the interrup herates interr	nt is delected	l.						
	0 = Falling e	dge of RA0	/INT pin ger	nerates interr	upt							
bit 6	T0SE: Timer	r0 Clock Inp	out Edge Sel	lect bit								
	This bit seled	This bit selects the edge upon which TMR0 will increment.										
	When TOCS	= 0 (Extern	nal Clock):	· -			· · ·					
	1 = Rising ed	1 = Rising edge of RA1/T0CKI pin increments TMR0 and/or sets the T0CKIF bit										
	When TOCS	= 1 (lntern)				3613 116 1000						
	Don't care		<u>al Ciuck).</u>									
bit 5	TOCS: Timer	r0 Clock So	urce Select	bit								
	This bit selec	cts the cloc	k source for	TMR0.								
	1 = Internal 1 0 = External	clock input	on the TOC	ICY) KI pin								
bit 4-1	T0PS3:T0PS	50 : Timer0	Prescale Se	election bits								
	These bits select the prescale value for TMR0.											
	T0PS3:T0P	'S0 Presc	ale Value									
	0000	1:	1									
	0001	1:	2									
	0011	1:	4 8									
	0100	1:	16									
	0101	1:	32									
	0110	1:	64									
	0111	1:	128									
	1xxx		256									
bit 0	Unimpleme	nted : Read	as '0'									
	Legend:											
	R = Readabl	e bit	W = W	/ritable bit	U = Unim	plemented bit.	, read as '0'					

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR Reset

x = Bit is unknown

13.1 Timer1 and Timer2

13.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock (TcY), or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1, or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin and the counters will increment on every falling edge of the RB4/TCLK12 pin.

The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled/ disabled by setting/clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be set (PEIE = '1') and global interrupt must be enabled (GLINTD = '0').

The timers can be turned on and off under software control. When the timer on control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

13.1.1.1 External Clock Input for Timer1 and Timer2

When TMRxCS is set, the clock source is the RB4/ TCLK12 pin, and the counter will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

TABLE 14-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG1	Serial Por	Transmit	Register (L	JSART1)					xxxx xxxx	uuuu uuuu
15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG1	Baud Rate	e Generato	r Register	(USART1)					0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 4	TXREG2	Serial Port	Serial Port Transmit Register (USART2)							xxxx xxxx	uuuu uuuu
15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 4	SPBRG2	Baud Rate	aud Rate Generator Register (USART2)							0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as a '0'. Shaded cells are not used for asynchronous transmission.

14.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e., transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

14.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 14-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit. TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 14-9). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RX/DT and TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the RX/ DT pin reverts to a hi-impedance state (for a reception). The TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hiimpedance Receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN), allows transmission to start sooner than doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is reenabled.

15.2.1.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register on the falling edge of the 8th SCL pulse.
- b) The buffer full bit, BF, is set on the falling edge of the 8th SCL pulse.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR2<7>), is set (interrupt is generated if enabled) - on the falling edge of the 9th SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF and UA are set).

- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Note: Following the Repeated Start condition (step 7) in 10-bit mode, the user only needs to match the first 7-bit address. The user does not update the SSPADD for the second half of the address.

15.2.1.2 Slave Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR2<7>) must be cleared in software. The SSPSTAT register is used to determine the status of the received byte.

Note: The SSPBUF will be loaded if the SSPOV bit is set and the BF flag is cleared. If a read of the SSPBUF was performed, but the user did not clear the state of the SSPOV bit before the next receive occurred, the ACK is not sent and the SSP-BUF is updated.

Status B Transfer i	its as Data is Received	$SSPSR \to SSPBUF$	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV			if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	Yes	No	Yes		

TABLE 15-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

15.2.5 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 15-17: SSP BLOCK DIAGRAM (I²C MASTER MODE)

REGISTER 16-2: ADCON1 REGISTER (ADDRESS 15h, BANK 5)

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS1	ADCS0	ADFM	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits

- 00 = Fosc/8
- 01 = Fosc/32
- 10 = Fosc/64
- 11 = FRC (clock derived from an internal RC oscillator)
- bit 5 **ADFM**: A/D Result Format Select 1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'. 0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.
- bit 4 Unimplemented: Read as '0'
- bit 3-1 PCFG3:PCFG1: A/D Port Configuration Control bits
- bit 0 PCFG0: A/D Voltage Reference Select bit
 - 1 = A/D reference is the VREF+ and VREF- pins
 - 0 = A/D reference is AVDD and AVSS

Note: When this bit is set, ensure that the A/D voltage reference specifications are met.

PCFG3:PCFG0	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0
000x	Α	Α	А	Α	А	Α	А	Α	Α	Α	А	А	Α	Α	А	Α
001x	D	Α	А	А	А	А	А	А	D	А	А	А	А	А	А	А
010x	D	D	Α	Α	Α	Α	А	А	D	D	А	А	А	А	А	Α
011x	D	D	D	А	А	А	А	А	D	D	D	А	А	А	А	А
100x	D	D	D	D	А	А	А	А	D	D	D	D	А	А	А	А
101x	D	D	D	D	D	А	А	А	D	D	D	D	D	А	А	А
110x	D	D	D	D	D	D	А	А	D	D	D	D	D	D	А	A
111x	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input D = Digital I/O

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

16.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 16-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 16-3. The maximum recommended impedance for analog sources is 10 k Ω . As the impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 16-1 shows the calculation of the minimum required acquisition time (TACQ). This is based on the following application system assumptions.

CHOLD	=	120 pF
Rs	=	10 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
		(see graph in Figure 16-3)
Temperature	=	50°C (system max.)
Vhold	=	0V @ time = 0

EQUATION 16-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 16-2: A/D MINIMUM CHARGING TIME

VHOLD = $(V_{REF} - (V_{REF}/2048)) \cdot (1 - e^{(-T_c/C_{HOLD}(R_{IC} + R_{SS} + R_S))})$ or TC = $-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 16-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ =	TAMP + TC + TCOFF
Temperatu	re coefficient is only required for temperatures > 25° C.
TACQ =	$2 \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$
Tc =	-CHOLD (RIC + RSS + RS) $\ln(1/2047)$ -120 pF (1 k Ω + 7 k Ω + 10 k Ω) $\ln(0.0004885)$ -120 pF (18 k Ω) $\ln(0.0004885)$ -2.16 μ s (-7.6241) 16.47 μ s
TACQ =	2 μs + 16.47 μs + [(50×C - 25°C)(0.05 μs/°C)] 18.447 μs + 1.25 μs 19.72 μs

Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

© 1998-2013 Microchip Technology Inc.

Table 18-2 lists the instructions recognized by the MPASM assembler.

Note 1: Any unused opcode is Reserved. Use of any reserved opcode may cause unexpected operation.

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 18-1: GENERAL FORMAT FOR INSTRUCTIONS

18.1 Special Function Registers as Source/Destination

The PIC17C7XX's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

18.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA and then set the Z bit leaving 0000 0100b in the register.

18.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCH \to PCLATH; PCL \to dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	PCL \rightarrow ALU operand PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

18.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write (R-M-W)). The user should keep this in mind when operating on some special function registers, such as ports.

Note:	Status bits that are manipulated by the
	device (including the interrupt flag bits) are
	set or cleared in the Q1 cycle. So, there is
	no issue on doing R-M-W instructions on
	registers which contain these bits

18.2 Q Cycle Activity

Each instruction cycle (TcY) is comprised of four Q cycles (Q1-Q4). The Q cycle is the same as the device oscillator cycle (Tosc). The Q cycles provide the timing/ designation for the Decode, Read, Process Data, Write, etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The four Q cycles that make up an instruction cycle (TCY) can be generalized as:

- Q1: Instruction Decode Cycle or forced No operation
- Q2: Instruction Read Cycle or No operation
- Q3: Process the Data
- Q4: Instruction Write Cycle or No operation

Each instruction will show the detailed Q cycle operation for the instruction.

NEG	W	Negate W	1				
Synt	ax:	[<i>label</i>] N	IEGW	f,s			
Operands:		$0 \le f \le 25s$ s $\in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ s \in [0,1] \end{array}$				
Operation:		WREG + WREG +	$\frac{\overline{WREG}}{WREG} + 1 \to (f);$ WREG + 1 \to s				
Statu	us Affected:	OV, C, D0	OV, C, DC, Z				
Enco	oding:	0010	110s	ffff	ffff		
Description:		WREG is n ment. If 's' WREG and 's' is 1, the memory loo	WREG is negated using two's comple- ment. If 's' is 0, the result is placed in WREG and data memory location 'f'. If 's' is 1, the result is placed only in data memory location 'f'.				
Wor	ds:	1					
Cycl	es:	1					
QC	cle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	Read register 'f'	Proce Dat	ess a re ar sp r	Write gister 'f' nd other pecified egister		
			•				
<u>Exar</u>	<u>nple</u> :	NEGW F	REG,0				
Before Instruction WREG = 0011 1010 [0x3A],							

NOP		No Opera	No Operation					
Syntax:		[label]	NOP					
Operands:		None	None					
Operation:		No opera	No operation					
Status Affected:		None	None					
Enco	oding:	0000	0000	000	0	0000		
Desc	cription:	No operati	No operation.					
Words:		1	1					
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	Q3	3		Q4		
	Decode	No operation	No opera	No operation		No operation		

Example:

None.

WREG REG	= =	0011 1010	1010 [0x3A] , 1011 [0xAB]
After Instruct	ion		
WREG	=	1100	0110 [0xC6]
REG	=	1100	0110 [0xC6]

MOVPF 46, 218
MOVWF
MPLAB Integrated Development Environment Software 233
MILLIW 010
MULLW
Multi-Master Communication 170
Multi-Master Mode 152
Multinly Examples
16 x 16 Routine
16 x 16 Signed Routine69
8 x 8 Boutine 67
9 x 9 Signed Bouting
MULWF
Ν
NEGW 220
NEGW
NOP
0
Oncode Field Descriptions 197
Opcode l'iela Descriptions
Opcodes
Oscillator
Configuration 17, 192
Crystol 17
External Clock19
External Crystal Circuit19
External Parallel Resonant Crystal Circuit 19
External Carico Deconant Crystal Circuit
External Series Resonant Crystal Circuit
RC20
RC Frequencies
Oscillator Start-up Time (Figure) 24
Oscillator Clart up Time (right)
Oscillator Start-up Timer (OST)
OST24
OV
Overflow (OV) 11
Ρ
P
P
P
P 134 Packaging Information 281 PC (Program Counter) 56
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180
P .134 Packaging Information .281 PC (Program Counter) .56 PCFG0 bit .180 PCFG2 bit .180
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG2 bit 180 PCFG2 bit 56 PCH 56
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCFG2 bit 56 PCH 56 PCL 56, 198
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56 PCL 56 PCL 56 PCL 56 PCL 56
P
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG2 bit 180 PCFG2 bit 56 PCL 56 PCLATH 56 PD 52, 194
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56 PCL 56 PCL 56 PCL 56 PD 52 PD 52 PEIE 34
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34
P
P
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Interrupt Request (PIR1) 37
P
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM11 Cont PUCming Dama Pagerd 235
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICmicro Demo Board 235
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56 PCL 56 PD 52 PEIE 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICmicro Demo Board 235 PICDEM-2 Low-Cost PIC16CXX Demo Board 235
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCFG2 bit 180 PCFG2 bit 56 PCL 56 PCL 56 PD 52 PEIE 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Banks 57 Peripheral Banks 46 PICDEM-1 Low-Cost PICmicro Demo Board 235 PICDEM-1 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 235
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICnicro Demo Board 235 PICDEM-2 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 236
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 236 PICSTART" Plus Entry Level Development System 235
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Banks 57 Peripheral Banks 46 PICDEM-1 Low-Cost PICmicro Demo Board 235 PICDEM-1 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE 126, 130, 132
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56 PCL 56 PD 52 PEIE 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Banks 57 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICnicro Demo Board 235 PICDEM-2 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 236 PICSTART* Plus Entry Level Development System 235 PIE 126, 130, 132 PIE1 28, 48
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICnicro Demo Board 235 PICDEM-2 Low-Cost PIC16CXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE1 28, 48 PIE2 28, 36, 49
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICIficOXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXXX Demo Board 236 PICSTART* Plus Entry Level Development System 235 PIE1 28, 36, 49 PIE2 28, 36, 49 PIE2 28, 36, 49 PIE3 126, 130, 132
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICnicro Demo Board 235 PICDEM-2 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE 126, 130, 132 PIE1 28, 48 PIE2 28, 36, 49 PIR 126, 130, 132
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56 PCL 56 PD 52 PEIE 34 Peripheral Bank 57 Peripheral Banks 46 PICDEM-1 Low-Cost PICmicro Demo Board 235 PICDEM-1 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE 126, 130, 132 PIE1 28, 48 PIE2 28, 36, 49 PIR 126, 130, 132
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Banks 57 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICnicro Demo Board 235 PICDEM-1 Low-Cost PIC16CXX Demo Board 236 PICDEM-3 Low-Cost PIC16CXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE1 28, 48 PIE2 28, 36, 49 PIR 126, 130, 132 PIR1 28, 48 PIR2 28, 48
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICI6CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 236 PICSTART** Plus Entry Level Development System 235 PIE1 28, 48 PIE2 28, 36, 49 PIR 126, 130, 132 PIR1 28, 44 PIR2 28, 49 PM0 191 195
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICI6CXX Demo Board 235 PICDEM-2 Low-Cost PIC16CXXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE 126, 130, 132 PIE1 28, 48 PIE2 28, 36, 49 PIR 28, 48 PIR2 28, 48 PIR2 28, 48 PIR2 28, 49 PM0 191, 192
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Banks 57 Peripheral Banks 46 PICDEM-1 Low-Cost PICMicro Demo Board 235 PICDEM-1 Low-Cost PIC16CXXX Demo Board 236 PICDEM-3 Low-Cost PIC16CXXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE 126, 130, 132 PIE1 28, 48 PIE2 28, 36, 49 PIR 126, 130, 132 PIR1 28, 48 PIR2 28, 49 PM0 191, 195 PM1 191, 195
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICnicro Demo Board 235 PICDEM-1 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 235 PIE1 28, 48 PIE2 28, 36, 49 PIR 126, 130, 132 PIR1 28, 48 PIR2 28, 48 PIR2 28, 49 PM0 191, 195 PM1 191, 195 POP 39, 54
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Interrupt Request (PIR1) 37 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICI6CXX Demo Board 235 PICDEM-2 Low-Cost PIC16CXX Demo Board 236 PICDEM-3 Low-Cost PIC16CXXX Demo Board 236 PICDEM-3 Low-Cost PIC16CXX Demo Board 236 PICDEM-3 Low-Cost PIC16CXX Demo Board 236 PIE 126, 130, 132 PIE1 28, 48 PIE2 28, 36, 49 PIM0 191, 195 POP 39, 54 POP 39, 54
P 134 Packaging Information 281 PC (Program Counter) 56 PCFG0 bit 180 PCFG1 bit 180 PCFG2 bit 180 PCH 56 PCL 56, 198 PCLATH 56 PD 52, 194 PEIE 34, 111 PEIF 34 Peripheral Bank 57 Peripheral Banks 57 Peripheral Interrupt Enable 35 Peripheral Interrupt Request (PIR1) 37 Peripheral Register Banks 46 PICDEM-1 Low-Cost PICI6CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXX Demo Board 235 PICDEM-3 Low-Cost PIC16CXXX Demo Board 236 PICSTART" Plus Entry Level Development System 235 PIE1 28, 48 PIE2 28, 48 PIE2 28, 48 PIE2 28, 49 PIR 126, 130, 132 PIR1 28, 49 PIR2 28, 49 POP 39, 54 POP

PORTB	27,	48,	74 37
	28	<u>۸</u> ۵	78
	20,	40, 10	20
	20,	40, 40	00
PORTE	28,	48,	02
PORIF			49
PORIG			49
Power-down Mode		1	194
Power-on Reset (POR)			24
Power-up Timer (PWRT)			24
PR1		28,	49
PR2		28,	49
PR3/CA1H			28
PB3/CA1I			28
PB3H/CA1H			49
			10
Proceeder Assignments			00
			99
PRO MATE II Universal Programmer		2	235
PRODH		30,	50
PRODL		30,	50
Program Counter (PC)			56
Program Memory			
External Access Waveforms			45
External Connection Diagram			45
Мар			43
Modes			-
Extended Microcontroller			43
Microcontroller			43
Microprocessor			40
wicroprocessor			43
Drotostad Misrassatrallar			40
Protected Microcontroller			43
Protected Microcontroller Operation			43 43
Protected Microcontroller Operation Organization			43 43 43
Protected Microcontroller Operation Organization Protected Microcontroller			43 43 43 43
Protected Microcontroller Operation Organization Protected Microcontroller PS0		53,	43 43 43 43 97
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1		53, 53,	43 43 43 43 97 97
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2		53, 53, 53,	43 43 43 97 97 97
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3		53, 53, 53, 53,	43 43 43 97 97 97 97
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH		53, 53, 53, 53, 39,	43 43 43 97 97 97 97 54
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH		53, 53, 53, 53, 39, 28,	43 43 43 97 97 97 97 54 49
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL		 53, 53, 53, 53, 39, 28, 28,	43 43 43 97 97 97 97 54 49 49
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH		53, 53, 53, 53, 39, 28, 28, 28,	43 43 43 97 97 97 97 54 49 49
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCI		 53, 53, 53, 53, 28, 28, 28, 28, 28,	43 43 43 97 97 97 97 97 54 49 49
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCH PW2DCH		53, 53, 53, 53, 28, 28, 28, 28, 28, 28,	43 43 43 97 97 97 97 54 49 49 49 50
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW3DCH PW3DCL		53, 53, 53, 53, 28, 28, 28, 28, 28, 30, 30,	43 43 43 97 97 97 97 54 49 49 49 50
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2. PS3. PUSH. PW1DCH. PW1DCL PW1DCL PW2DCH. PW2DCL PW3DCL PW3DCL PW3DCL DWM		53, 53, 53, 53, 28, 28, 28, 28, 30, 30,	43 43 43 97 97 97 97 54 49 49 49 50 50
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2. PS3. PUSH PW1DCH PW1DCL PW1DCL PW2DCH PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL		53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 30,	43 43 43 97 97 97 97 54 49 49 49 50 50
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW1DCL PW2DCH PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle	10	53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 30, 1, 1	43 43 43 97 97 97 97 54 49 49 49 50 50 107
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW1DCL PW2DCH PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source			43 43 43 97 97 97 54 49 49 49 50 50 107
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution	10	53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 1, 1 1	43 43 43 97 97 97 54 49 49 49 49 50 50 07 108 109
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts		53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 1, 1	43 43 43 97 97 97 54 49 49 50 50 07 108 109 108
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock	10 Inpu	53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 01, 1 1 1 1 1	43 43 43 97 97 97 54 49 49 49 50 50 07 108 109 108
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCH PW1DCL PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output		53, 53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 1, 1 1 1 1 1 1	43 43 97 97 97 97 54 49 49 49 50 50 107 108 109 107
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output Periods		53, 53, 53, 53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 1, 1 1 1 1 1	43 43 97 97 97 97 54 49 49 49 50 50 107 108 109 107 108
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output Periods PWM1	10 Inpu	53, 53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	43 43 97 97 97 97 54 49 49 49 50 50 107 108 109 107 108 109
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCH PW2DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output Periods PWM1 PWM1	10 10 10 10	53, 53, 53, 53, 53, 53, 53, 28, 28, 28, 28, 30, 30, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	43 43 43 97 97 97 97 97 97 54 49 49 49 50 50 107 108 109 108 109 107 108
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2. PS3. PUSH. PW1DCH. PW1DCL PW2DCH. PW2DCH. PW2DCL PW3DCH. PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output. Periods PWM1. PWM1ON. PWM2	10 10 10 10 10 10		43 43 43 97 97 97 54 49 49 49 50 50 107 108 109 108 109 108 107 108
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2. PS3. PUSH. PW1DCL PW1DCL PW1DCL PW2DCL PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output Periods PWM1 PWM2 PWM2 PWM2	10 10 10 10 10 10		43 43 43 97 97 54 49 49 49 50 50 107 108 109 108 109 108 107 108 107 103 107
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output Periods PWM1 PWM2ON PWM20N	10 10 10 10 10 10	53, 53, 53, 53, 53, 28, 28, 28, 28, 28, 30, 30, 1, 1 	43 43 43 97 97 97 97 97 54 49 49 49 50 50 107 108 107 108 107 103
Protected Microcontroller Operation Organization Protected Microcontroller PS0 PS1 PS2 PS3 PUSH PW1DCH PW1DCL PW2DCH PW2DCL PW3DCL PW3DCL PW3DCL PW3DCL PWM Duty Cycle External Clock Source Frequency vs. Resolution Interrupts Max Resolution/Frequency for External Clock Output Periods PWM1 PWM1ON PWM2ON PWM3ON PWM3ON PWM3ON PWM3ON PWM3ON		53, 53, 53, 53, 53, 28, 28, 28, 28, 28, 30, 30, 1, 1	43 43 43 97 97 97 97 97 54 49 49 50 50 107 108 107 108 107 103 107 103

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769317

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.