

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc766-08-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.6 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 4-7 shows how the R/C combination is connected to the PIC17CXXX. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CExT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 21.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 21.0 for variation of oscillator frequency due to VDD for given REXT/CEXT values, as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes or to synchronize other logic (see Figure 4-8 for waveform).

FIGURE 4-7: RC OSCILLATOR MODE

4.1.6.1 RC Start-up

As the device voltage increases, the RC will immediately start its oscillations once the pin voltage levels meet the input threshold specifications (parameter #D032 and parameter #D042 in the electrical specification section). The time required for the RC to start oscillating depends on many factors. These include:

- Resistor value used
- · Capacitor value used
- Device VDD rise time
- System temperature

4.2 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1 and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-8.

4.3 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO), then two cycles are required to complete the instruction (Example 4-1).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-1: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	TCY2	TCY3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. CALL SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (F	Forced NOP)			Fetch 4	Flush	
5. Instruction @ addres	s SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetched instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

TABLE 5-4:	INITIALIZATIO	N CONDITIONS FOR SP	ECIAL FUNCTION REC	GISTERS
Register	Address	Power-on Reset MCLR Reset Brown-out Reset WDT Reset		Wake-up from SLEEP through Interrupt
Unbanked				
INDF0	00h	N/A	N/A	N/A
FSR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 (2)
PCLATH	03h	0000 0000	uuuu uuuu	uuuu uuuu
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu
TOSTA	05h	0000 000-	0000 000-	0000 000-
CPUSTA ⁽³⁾	06h	11 11qq	11 qquu	uu qquu
INTSTA	07h	0000 0000	0000 0000	սսսս սսսս(1)
INDF1	08h	N/A	N/A	N/A
FSR1	09h	XXXX XXXX	uuuu uuuu	uuuu uuuu
WREG	0Ah	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR0L	0Bh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR0H	0Ch	XXXX XXXX	uuuu uuuu	uuuu uuuu
TBLPTRL	0Dh	0000 0000	0000 0000	uuuu uuuu
TBLPTRH	0Eh	0000 0000	0000 0000	uuuu uuuu
BSR	0Fh	0000 0000	0000 0000	սսսս սսսս
Bank 0				
PORTA ^(4,6)	10h	0-xx 11xx	0-uu 11uu	u-uu uuuu
DDRB	11h	1111 1111	1111 1111	uuuu uuuu
PORTB ⁽⁴⁾	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
RCSTA1	13h	0000 -00x	0000 -00u	uuuu -uuu
RCREG1	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXSTA1	15h	00001x	00001u	uuuuuu
TXREG1	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu
SPBRG1	17h	0000 0000	0000 0000	uuuu uuuu
legend: 11 = un	changed $x = unknown$	own = unimplemented, rea	ad as '0' g = value depend	ds on condition

 TABLE 5-4:
 INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

- 3: See Table 5-3 for RESET value of specific condition.
- 4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

6.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) contains the flag and enable bits for non-peripheral interrupts.

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR registers (Figure 6-4 and Figure 6-5).

Note:	All interrupt flag bits get set by their speci-
	fied condition, even if the corresponding
	interrupt enable bit is clear (interrupt dis-
	abled), or the GLINTD bit is set (all inter-
	rupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the RESET address (0x00).

Prior to disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

REGISTER 6-1: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE		
	bit 7							bit 0		
bit 7	This bit is t The interro pending. 1 = A perip		peripheral in es program pt is pending	execution to		vith their corres 20h) when a p				
bit 6	TOCKIF : External Interrupt on TOCKI Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to address (18h). 1 = The software specified edge occurred on the RA1/T0CKI pin 0 = The software specified edge did not occur on the RA1/T0CKI pin									
bit 5	TOIF : TMR0 Overflow Interrupt Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to address (10h). 1 = TMR0 overflowed 0 = TMR0 did not overflow									
bit 4	This bit is o 1 = The so	ernal Interrupt leared by har oftware specif oftware specif	dware, when	the interrupt curred on the	e RA0/INT pi		tion to addre	ess (08h).		
bit 3	This bit ac enable bits 1 = Enable		al enable bit		pheral interr	upts that have	e their corre	esponding		
bit 2	1 = Enable	xternal Interr software sp e interrupt on	ecified edge	interrupt on		CKI pin				
bit 1	TOIE : TMR0 Overflow Interrupt Enable bit 1 = Enable TMR0 overflow interrupt 0 = Disable TMR0 overflow interrupt									
bit 0	1 = Enable	ernal Interrup e software sp e software sp	ecified edge	interrupt on	the RA0/INT					
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented bit	, read as '0	,		

'1' = Bit is set

- n = Value at POR Reset

x = Bit is unknown

'0' = Bit is cleared

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R-1	R-0				
	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF				
	bit 7 bit											
bit 7	1 = The S	 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit 1 = The SSP interrupt condition has occurred and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: 										
	<u>SPI:</u> A transmission/reception has taken place.											
		<u>ave/Master:</u> smission/rece	eption has ta	ken place.								
	The ini The ini The ini A STA	itiated STAR itiated STOP itiated Restan itiated Ackno RT condition	condition wa rt condition w wledge cond occurred wh	as completed as completed lition was con lile the SSP	I by the SSF d by the SS mpleted by t module was	o module.	ster system					
	0 = An SS	P interrupt co	ondition has	NOT occurre	ed							
bit 6	BCLIF : Bu 1 = A bus	s Collision In	nterrupt Flag occurred in t	bit		d for I ² C Maste	er mode					
bit 5	1 = An A/C	Module Inter conversion conversion	is complete									
bit 4	Unimplem	ented: Read	as '0'									
bit 3	1 = Captur	pture4 Interr e event occu e event did r	irred on RE3		vin							
bit 2	1 = Captur	pture3 Interr e event occu e event did r	irred on RG4		bin							
bit 1	TX2IF :US/ 1 = USAR		nit Interrupt F buffer is emp	lag bit (state		oy hardware)						
bit 0			ve Interrupt I ouffer is full	-lag bit (state	e controlled	by hardware)						

REGISTER 6-5: PIR2 REGISTER (ADDRESS: 10h, BANK 4)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 6-2: SAVING STATUS AND WREG IN RAM (NESTED)

; The addresses that are used to store the CPUSTA and WREG values must be in the data memory ; address range of 1Ah - 1Fh. Up to 6 locations can be saved and restored using the MOVFP ; instruction. This instruction neither affects the status bits, nor corrupts the WREG register. ; This routine uses the FRSO, so it controls the FS1 and FSO bits in the ALUSTA register. Nobank FSR EOU 0x40 Bank FSR EQU 0x41 ALU_Temp EQU 0x42 0x43 WREG TEMP EQU BSR S1 EQU 0x01A ; 1st location to save BSR 0x01B BSR S2 EQU ; 2nd location to save BSR (Label Not used in program) BSR S3 EQU 0x01C ; 3rd location to save BSR (Label Not used in program) BSR S4 EQU 0x01D ; 4th location to save BSR (Label Not used in program) 0x01E BSR_S5 EQU ; 5th location to save BSR (Label Not used in program) 0x01F ; 6th location to save BSR (Label Not used in program) BSR_S6 EOU INITIALIZATION CALL CLEAR RAM ; Must Clear all Data RAM INIT_POINTERS ; Must Initialize the pointers for POP and PUSH CLRF BSR, F ; Set All banks to 0 CLRF ALUSTA, F ; FSR0 post increment BSF ALUSTA, FS1 CLRF WREG, F ; Clear WREG MOVLW BSR S1 ; Load FSR0 with 1st address to save BSR MOVWF FSR0 MOVWF Nobank FSR MOVLW 0x20 MOVWF Bank_FSR : ; Your code : : ; At Interrupt Vector Address PUSH BSF ALUSTA, FSO ; FSR0 has auto-increment, does not affect status bits BCF ALUSTA, FS1 ; does not affect status bits MOVFP BSR, INDF0 ; No Status bits are affected CLRF BSR, F ; Peripheral and Data RAM Bank 0 No Status bits are affected MOVPF ALUSTA, ALU_Temp ; MOVPF FSR0, Nobank_FSR ; Save the FSR for BSR values WREG, WREG TEMP MOVPF ; ; Restore FSR value for other values MOVFP Bank_FSR, FSR0 MOVFP ALU_Temp, INDF0 ; Push ALUSTA value MOVFP WREG TEMP, INDFO ; Push WREG value MOVFP PCLATH, INDF0 ; Push PCLATH value MOVPF FSR0, Bank FSR ; Restore FSR value for other values MOVFP Nobank FSR, FSR0 ; ; ; Interrupt Service Routine (ISR) code : ; POP CLRF ALUSTA, F ; FSR0 has auto-decrement, does not affect status bits MOVFP Bank FSR, FSR0 ; Restore FSR value for other values FSR0, F DECF ; ; Pop PCLATH value MOVFP INDF0, PCLATH ; Pop WREG value MOVFP INDF0, WREG ; FSR0 does not change BSF ALUSTA, FS1 MOVPF INDF0, ALU Temp ; Pop ALUSTA value MOVPF FSR0, Bank FSR ; Restore FSR value for other values Nobank_FSR, F DECF ; MOVFP Nobank FSR, FSR0 ; Save the FSR for BSR values ALU Temp, ALUSTA MOVFP ; MOVFP INDF0, BSR ; No Status bits are affected RETFIE ; Return from interrupt (enable interrupts)

7.2.2.1 ALU Status Register (ALUSTA)

The ALUSTA register contains the status bits of the Arithmetic and Logic Unit and the mode control bits for the indirect addressing register.

As with all the other registers, the ALUSTA register can be the destination for any instruction. If the ALUSTA register is the destination for an instruction that affects the Z, DC, C, or OV bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the ALUSTA register as destination may be different than intended.

For example, the CLRF ALUSTA, F instruction will clear the upper four bits and set the Z bit. This leaves the ALUSTA register as 0000u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the ALUSTA register, because these instructions do not affect any status bits. To see how other instructions affect the status bits, see the "Instruction Set Summary."

Note 1: The C and DC bits operate as a borrow and
digit borrow bit, respectively, in subtraction.
See the SUBLW and SUBWF instructions for
examples.

2: The overflow bit will be set if the 2's complement result exceeds +127, or is less than -128.

The Arithmetic and Logic Unit (ALU) is capable of carrying out arithmetic or logical operations on two operands, or a single operand. All single operand instructions operate either on the WREG register, or the given file register. For two operand instructions, one of the operands is the WREG register and the other is either a file register, or an 8-bit immediate constant.

REGISTER 7-1: ALUSTA REGISTER (ADDRESS: 04h, UNBANKED)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-x	R/W-x	R/W-x	R/W-x			
	FS3	FS2	FS1	FS0	OV	Z	DC	С			
	bit 7							bit 0			
bit 7-6	FS3:FS2: FSR1 Mode Select bits 00 = Post auto-decrement FSR1 value 01 = Post auto-increment FSR1 value 1x = FSR1 value does not change										
bit 5-4	FS1:FS0 : FSR0 Mode Select bits 00 = Post auto-decrement FSR0 value 01 = Post auto-increment FSR0 value 1x = FSR0 value does not change										
bit 3	magnitude 1 = Overflo		es the sign b or signed ar	it (bit7) to ch	ange state.	licates an over	flow of the	7-bit			
bit 2	 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 										
bit 1	 DC: Digit carry/borrow bit For ADDWF and ADDLW instructions. 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result 										
	Note:	For borrow,	the polarity i	s reversed.							
bit 0	C: Carry/bo	orrow bit									
	complement For rotate (source reg 1 = A carry	nt of the seco (RRCF, RLCF)	ond operand) instructions e Most Signif	s, this bit is lo ficant bit of th	aded with e	s executed by ither the high c urred	U U				
	Note:	For borrow,	the polarity i	s reversed.							
	Legend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented bit	, read as '0	,			

'1' = Bit is set

- n = Value at POR Reset

x = Bit is unknown

'0' = Bit is cleared

8.2 Table Writes to External Memory

Table writes to external memory are always two-cycle instructions. The second cycle writes the data to the external memory location. The sequence of events for an external memory write are the same for an internal write.

8.2.1 TABLE WRITE CODE

The "i" operand of the TABLWT instruction can specify that the value in the 16-bit TBLPTR register is automatically incremented (for the next write). In Example 8-1, the TBLPTR register is not automatically incremented.

EXAMPLE 8-1: TABLE WRITE

CLRWDT		;	Clear WDT
MOVLW	HIGH (TBL_ADDR)	;	Load the Table
MOVWF	TBLPTRH	;	address
MOVLW	LOW (TBL_ADDR)	;	
MOVWF	TBLPTRL	;	
MOVLW	HIGH (DATA)	;	Load HI byte
TLWT	1, WREG	;	in TABLATH
MOVLW	LOW (DATA)	;	Load LO byte
TABLWT	0,0,WREG	;	in TABLATL
		;	and write to
		;	program memory
		;	(Ext. SRAM)

FIGURE 8-5: TABLWT WRITE TIMING (EXTERNAL MEMORY)

15.2 MSSP I²C Operation

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Refer to Application Note AN578, "Use of the SSP Module in the I^2C Multi-Master Environment."

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency.

FIGURE 15-11: I²C MASTER MODE BLOCK DIAGRAM

Two pins are used for data transfer. These are the SCL pin, which is the clock and the SDA pin, which is the data. The SDA and SCL pins are automatically configured when the I^2C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON1<5>).

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register1 (SSPCON1)
- SSP Control Register2 (SSPCON2)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode, clock = OSC/4 (SSPADD +1)

Before selecting any I^2C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate DDR bits. Selecting an I^2C mode, by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I^2C mode.

15.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a START bit detect, 8-bits are shifted into SSPSR and the address is compared against SSPADD and is also compared to the general call address, fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF flag is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific, or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set, while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the acknowledge (Figure 15-16).

FIGURE 15-16: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

15.2.10 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG while SCL is high. Following this, the RSEN bit in the SSPCON2 register will be automatically cleared and the baud rate generator is not reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If the RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

15.2.10.1 WCOL status flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 15-22: REPEAT START CONDITION WAVEFORM

EXAMPLE 15-2: INTERFACING TO A 24LC01B SERIAL EEPROM (USING MPLAB C17)

```
void ACKPoll(void)
{
                                             // Send start bit
         StartI2C();
        IdleI2C();
                                            // Wait for idle condition
        WriteI2C(CONTROL);
                                            // Send control byte
        IdleI2C();
                                            // Wait for idle condition
         // Poll the ACK bit coming from the 24LC01B
         // Loop as long as the 24LC01B NACKs \,
        while (SSPCON2bits.ACKSTAT)
         {
                                         // Send a restart bit
                 RestartI2C();
                 IdleI2C(); // Wait for idle condition
WriteI2C(CONTROL); // Send control byte
IdleI2C(); // Wait for idle condition
         }
         IdleI2C();
                                            // Wait for idle condition
                                            // Send stop bit
         StopI2C();
         IdleI2C();
                                            // Wait for idle condition
         return;
}
```

19.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

19.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

19.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

19.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

NOTES:

Bus Collision During a RESTART Condition
Bus Collision During a START Condition 171
Bus Collision During a STOP Condition 174
Bus Collision Interrupt Enable, BCLIE
Bus Collision Interrupt Flag bit, BCLIF
C
C 11, 51
CA1/PR3 102
CA1ED0 101
CA1ED1 101
CA1IE
CA1IF
CA1OVF 102
CA2ED0 101
CA2ED1 101
CA2H
CA2IE
CA2IF
CA2L
CA2OVF
CA3H
CA3IE
CA3IF
CA3L
CA4H
CA4IE
CA4IF
Calculating Baud Rate Error120
CALL
Capacitor Selection
Ceramic Resonators
Crystal Oscillator
Capture
Capture Sequence to Bead Example 113
Capture Sequence to Read Example113 Capture1
Capture1
Capture1 Mode101
Capture 1 Mode
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 101 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt 37
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 101 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt 37 Capture 3 Interrupt 36 Capture 3 Interrupt 36 Capture 3 Interrupt 38
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 101 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt 102, 103 Capture 3 Interrupt 102, 103 Capture 3 Interrupt 102, 103 Capture 3 Interrupt 103 Capture 3 Interrupt 103 Capture 4 Interrupt 103
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 101 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 37 Capture 2 Interrupt 37 Capture 3 Interrupt 37 Capture 3 Interrupt 37 Capture 3 Interrupt 36 Capture 3 Interrupt 38 Capture 4 Interrupt 36 Capture 4 Interrupt 37 Capture 4 Interrupt 38 Capture 4 Interrupt 38 Capture 4 Interrupt 12 Mathematic Additionary 4 38 Capture 4 10 Mathematic Additionary 4 10
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 37 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 37 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Enable, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clearing the Prescaler 193
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Enable, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clearing the Prescaler 193 Clock Polarity Select bit, CKP 135
Capture 1 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Enable, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clearing the Prescaler 193 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 102, 103 Mode 101 Overflow 102, 103 Capture 2 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Flag bit, CA4IF 36 Capture 4 Interrupt Flag bit, CA4IF 36 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clearing the Prescaler 193 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21
Capture 1 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 37 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Enable, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Enable, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clearing the Prescaler 193 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 CLRF 207
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 37 Capture 2 101 Overflow 102, 103 Capture 2 102, 103 Capture 2 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 104 Overflow 102, 103 Capture 2 Interrupt Capture 3 Interrupt Enable, CA3IE Capture 4 Interrupt Flag bit, CA3IF Capture 4 Interrupt Enable, CA4IE Capture 4 Interrupt Flag bit, CA4IF Capture 4 Interrupt Flag bit, CA4IF Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 Clocking Scheme/Instruction Cycle 21
Capture 1 101 Mode 102, 103 Capture 1 Interrupt 37 Capture 2 102, 103 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 1102, 103 Capture 2 1102, 103 Capture 3 Interrupt Enable, CA3IE Capture 3 Interrupt Enable, CA3IF Capture 4 Interrupt Enable, CA4IE Capture 4 Interrupt Flag bit, CA4IF Garry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock/Instruction Cycle (Figure) 21 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 ClarkWDT 208 Code Examples 207
Capture 1 Mode 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 101 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 1102, 103 Capture 3 Interrupt Enable, CA3IE Capture 3 Interrupt Enable, CA3IF Capture 4 Interrupt Flag bit, CA4IF Capture 4 Interrupt Flag bit, CA4IF Capture 4 Interrupt Flag bit, CA4IF Garry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 CLRF 207 CLRWDT 208 Code Examples 104 Indirect Addres
Capture 1 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 37 Capture 2 37 Capture 2 37 Capture 3 102, 103 Capture 4 37 Capture 3 Interrupt Enable, CA3IE Capture 4 Interrupt Flag bit, CA3IF Capture 4 Interrupt Flag bit, CA4IE Capture 4 Interrupt Flag bit, CA4IF Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 CLRWDT 208 Code Examples 104 Indirect Addressing 55 Loading the SSPBUF register 138
Capture 1 Mode 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 Mode 101 Overflow 102, 103 Capture 2 101 Overflow 102, 103 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Enable, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 CLRF 207 CLRWDT 208 Code Examples 104 Indirect Addressing 55 Loading the SSPBUF register 138 Saving Status and WREG in RAM 42
Capture 1 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 37 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 CLRF 207 CLRWDT 208 Code Examples 104 Indirect Addressing 55 Loading the SSPBUF register 138
Capture 1 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Enable, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock Polarity Select bit, CKP 135 Clocking Scheme/Instruction Cycle 21 Clocking Scheme/Instruction Cycle 21 Clark DT 208 Code Examples 103 Indirect Addressing 55 Loading the SSPBUF register 138 Saving Status and WREG in RAM 42 Table Read 64 Table Write 62
Capture 1 101 Overflow 102, 103 Capture 1 Interrupt 37 Capture 2 37 Mode 101 Overflow 102, 103 Capture 2 37 Capture 2 Interrupt 37 Capture 2 Interrupt 37 Capture 3 Interrupt Enable, CA3IE 36 Capture 3 Interrupt Flag bit, CA3IF 38 Capture 4 Interrupt Enable, CA4IE 36 Capture 4 Interrupt Flag bit, CA4IF 38 Carry (C) 11 Ceramic Resonators 17 Circular Buffer 54 CKE 134 CKP 135 Clock Polarity Select bit, CKP 135 Clock/Instruction Cycle (Figure) 21 Clock/Instruction Cycle (Figure) 21 Clocking Scheme/Instruction Cycle 21 CLRF 207 CLRWDT 208 Code Examples 104 Indirect Addressing 55 Loading the SSPBUF register 138

Configuration	
Bits	
Locations	192
Oscillator	17, 192
Word	191
CPFSEQ	209
CPFSGT	209
CPFSLT	
CPUSTA	
Crystal Operation, Overtone Crystals	
Crystal or Ceramic Resonator Operation	
Crystal Oscillator	
, ,	17
D	
D/Ā	134
Data Memory	
GPR	. 43, 46
Indirect Addressing	54
Organization	
SFR	
Data Memory Banking	
Data/Address bit, D/A	
DAW	
DC	, -
DDRB	, ,
DDRC	, ,
DDRD	
DDRE	, ,
DDRF	49
DDRG	49
DECF	211
DECFSNZ	212
DECFSZ	
Delay From External Clock Edge	
Digit Borrow	
Digit Carry (DC)	
Duty Cycle	107
E	
Electrical Characteristics	
PIC17C752/756	
Absolute Maximum Ratings	239
Capture Timing	253
CLKOUT and I/O Timing	250
DC Characteristics	242
External Clock Timing	
Memory Interface Read Timing	
Memory Interface Write Timing	
Parameter Measurement Information	
Reset, Watchdog Timer, Oscillator Start-up	
e 1	
Timer and Power-up Timer Timing	
Timer0 Clock Timing	
Timer1, Timer2 and Timer3 Clock Timing	
Timing Parameter Symbology	
USART Module Synchronous Receive Timi	
USART Module Synchronous Transmission	
Timing	
	1
EPROM Memory Access Time Order Suffix	260
	260 45
EPROM Memory Access Time Order Suffix	260 45 5
EPROM Memory Access Time Order Suffix Errata Extended Microcontroller	260 45 5 43
EPROM Memory Access Time Order Suffix Errata Extended Microcontroller Extended Microcontroller Mode	260 45 5 43 45
EPROM Memory Access Time Order Suffix Errata Extended Microcontroller	260 45 5 43 45 45

SEEVAL Evaluation and Programming System236
Serial Clock, SCK
Serial Clock, SCL
Serial Data Address, SDA
Serial Data In, SDI
Serial Data Out, SDO 137
SETF
SFR198
SFR (Special Function Registers)43
SFR As Source/Destination
Signed Math 11
Slave Select Synchronization
Slave Select, SS
SLEEP
SLEEP Mode, All Peripherals Disabled
SLEEP Mode, BOR Enabled
SMP
Software Simulator (MPLAB SIM)
SPBRG
SPBRG1
SPBRG2
SPE
Special Features of the CPU
Summary
SPI
Master Mode 139
Serial Clock
Serial Data In
Serial Data Out
Serial Peripheral Interface (SPI)
Slave Select
SPI clock
SPI Mode
SPI Clock Edge Select, CKE
SPI Data Input Sample Phase Select, SMP 134
SPI Master/Slave Connection
SPI Module
Master/Slave Connection
Slave Mode 140
Slave Select Synchronization140
Slave Synch Timing 140
<u>SS</u> 137
SSP133
Block Diagram (SPI Mode)137
SPI Mode 137
SSPADD 144, 145
SSPBUF
SSPCON1
SSPCON2
SSPSR
SSPSTAT
SSP I ² C
SSP I ² C Operation
SSP Module SPI Master Mode
SPI Master Mode
SPI Master/Slave Connection
SSPCON1 Register
SSP Overliow Detect bit, SSPOV
SSFADD
SSFB0F
SSPCON1
SSPEN

SSPIE	
SSPIF	. 38, 145
SSPM3:SSPM0	135
SSPOV 135,	144, 162
SSPSTAT	
ST Input	278
Stack	
Operation	
Pointer	
Stack	
START bit (S)	
START Condition Enabled bit, SAE	
STKAV	
STOP bit (P)	
STOP Condition Enable bit	136
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
Synchronous Master Mode	
Synchronous Master Reception	
Synchronous Master Transmission	107
Synchronous Serial Port	
Synchronous Serial Port Enable bit, SSPEN	
Synchronous Serial Port Interrupt	
Synchronous Serial Port Interrupt Enable, SSPIE	
Synchronous Serial Port Mode Select bits,	
SSPM3:SSPM0	
Synchronous Slave Mode	131
Т	
ТОСКІ	39
T0CKI Pin	40
T0CKIE	
TOCKIF	
TOCKIF	
	34 53, 97
TOCS	34 53, 97 34
TOCS TOIE	34 53, 97 34 34
T0CS	34 53, 97 34 34 53, 97
T0CS	
TOCS	34 53, 97 34 34 53, 97 53 101
TOCS	
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer	
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read	34 53, 97 34 53, 97 53 101 55 55
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example	34 53, 97 34 34 53, 97 53 101 55 55 64
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section	34 53, 97 34 53, 97 53 101 55 55 64 64
TOCS	34 53, 97 34 53, 97 53 101 55 55 64 64
TOCS	34
TOCS	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing	34 53, 97 34 53, 97 53 101 55 55 64 64 64 62 62
TOCS	34
TOCS	34
TOCS	34 53, 97 34 53, 97 53 101 55 55 64 64 64 64 62 62 62 227, 228 228, 229
TOCS	34 53, 97 34 53, 97 53 101 55 55 64 64 64 64 62 62 62 227, 228 228, 229 185
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL TBLPTRH	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLATL TBLPTRH TBLPTRL TCLK12	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TCLK12 TCLK3	34
TOCS TOIE TOIF TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TBLPTRH TCLK12 TCON1	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TAL TBLATH TBLATH TBLPTRH TCLK12 TCON1 TCON2	34
TOCS TOIE TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLRD TABLATL TBLATH TBLPTRH TCLK12 TCON1 TCON2 TCON2,TCON3	34
TOCS TOIE TOIF TOSE TOSTA Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLWT TAD TBLATH TBLATH TBLPTRH TBLPTRL TCLK12 TCON1 TCON2 TCON3	34
TOCS TOIE TOSE TOSTA T16 Table Latch Table Pointer Table Read Example Table Reads Section TLRD Table Write Code Timing To External Memory TABLRD TABLRD TABLATL TBLATH TBLPTRH TCLK12 TCON1 TCON2 TCON2,TCON3	34

 \odot 1998-2013 Microchip Technology Inc.

NOTES:

NOTES: