

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	66
Program Memory Size	32KB (16K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	902 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc766t-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 DEVICE VARIETIES

Each device has a variety of frequency ranges and packaging options. Depending on application and production requirements, the proper device option can be selected using the information in the PIC17C7XX Product Selection System section at the end of this data sheet. When placing orders, please use the "PIC17C7XX Product Identification System" at the back of this data sheet to specify the correct part number. When discussing the functionality of the device, memory technology and voltage range does not matter.

There are two memory type options. These are specified in the middle characters of the part number.

- 1. **C**, as in PIC17**C**756A. These devices have EPROM type memory.
- 2. **CR**, as in PIC17**CR**756A. These devices have ROM type memory.

All these devices operate over the standard voltage range. Devices are also offered which operate over an extended voltage range (and reduced frequency range). Table 2-1 shows all possible memory types and voltage range designators for a particular device. These designators are in **bold** typeface.

TABLE 2-1:	DEVICE MEMORY	VARIETIES
------------	----------------------	-----------

Memory Type		Voltage Range					
		Standard	Extended				
EPROM		PIC17CXXX	PIC17LCXXX				
ROM		PIC17CRXXX	PIC17LCRXXX				
Note:	Not all	lot all memory technologies are available					
for a particular device.							

2.1 UV Erasable Devices

The UV erasable version, offered in CERQUAD package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Third party programmers also are available; refer to the *Third Party Guide* for a list of sources.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround Production (SQTPsm) Devices

Microchip offers a unique programming service, where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

ROM devices do not allow serialization information in the program memory space.

For information on submitting ROM code, please contact your regional sales office.

Note: Presently, NO ROM versions of the PIC17C7XX devices are available.

6.2 Peripheral Interrupt Enable Register1 (PIE1) and Register2 (PIE2)

These registers contains the individual enable bits for the peripheral interrupts.

REGISTER 6-2: PIE1 REGISTER (ADDRESS: 17h, BANK 1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	
	bit 7						<u> </u>	bit 0	
54 7			t an Chango	Frabla bit					
Dit 7	1 = Enable 0 = Disabl	e PORTB inte	<pre>>rrupt-on-characteristics</pre>	ange					
bit 6	TMR3IE: TMR3 Interrupt Enable bit 1 = Enable TMR3 interrupt 0 = Disable TMR3 interrupt								
bit 5	TMR2IE : T 1 = Enable 0 = Disabl	FMR2 Interrup e TMR2 interr e TMR2 inter	pt Enable bit rupt rupt						
bit 4	TMR1IE : T 1 = Enabl∉ 0 = Disabl	「MR1 Interrup e TMR1 interr e TMR1 inter	pt Enable bit rupt rupt						
bit 3	CA2IE : Ca 1 = Enabl∉ 0 = Disabl	apture2 Interr e Capture2 in e Capture2 ir	upt Enable b iterrupt nterrupt	vit					
bit 2	CA1IE : Ca 1 = Enable 0 = Disable	apture1 Interr e Capture1 in e Capture1 ir	upt Enable b terrupt nterrupt	vit					
bit 1	TX1IE : US 1 = Enabl∉ 0 = Disabl	SART1 Transr e USART1 Tr e USART1 T	mit Interrupt ansmit buffe ransmit buffe	Enable bit r empty inter er empty inte	rupt rrupt				
bit 0	RC1IE: USART1 Receive Interrupt Enable bit 1 = Enable USART1 Receive buffer full interrupt 0 = Disable USART1 Receive buffer full interrupt								
	Legend:								
	R = Reada	able bit	W = W	/ritable bit	U = Unir	nplemented bit	, read as '0'	,	
	- n = Value	at POR Res	et '1' = B	it is set	'0' = Bit i	s cleared	x = Bit is un	Iknown	

8.0 TABLE READS AND TABLE WRITES

The PIC17C7XX has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t, f and TABLWT t, i, f instructions are used to write data from the data memory space to the program memory space. The TLRD t, f and TABLRD t, i, f instructions are used to write data from the program memory space to the data memory space.

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in Microprocessor or Extended Microcontroller mode.

Figure 8-1 through Figure 8-4 show the operation of these four instructions. The steps show the sequence of operation.

FIGURE 8-1: TLWT INSTRUCTION OPERATION

FIGURE 8-2: TABLWT INSTRUCTION OPERATION

10.6 PORTF and DDRF Registers

PORTF is an 8-bit wide bi-directional port. The corresponding data direction register is DDRF. A '1' in DDRF configures the corresponding port pin as an input. A '0' in the DDRF register configures the corresponding port pin as an output. Reading PORTF reads the status of the pins, whereas writing to PORTF will write to the respective port latch.

All eight bits of PORTF are multiplexed with 8 channels of the 10-bit A/D converter.

Upon RESET, the entire Port is automatically configured as analog inputs and must be configured in software to be a digital I/O. Example 10-6 shows an instruction sequence to initialize PORTF. The Bank Select Register (BSR) must be selected to Bank 5 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-6: INITIALIZING PORTF

MOVLB	5		;	Select Bank 5
MOVWF	0x0E		;	Configure PORTF as
MOVWF	ADCON1		;	Digital
CLRF	PORTF,	F	;	Initialize PORTF data
			;	latches before
			;	the data direction
			;	register
MOVLW	0x03		;	Value used to init
			;	data direction
MOVWF	DDRF		;	Set RF<1:0> as inputs
			;	RF<7:2> as outputs

FIGURE 10-13: BLOCK DIAGRAM OF RF7:RF0

13.1.3.3 External Clock Source

The PWMs will operate, regardless of the clock source of the timer. The use of an external clock has ramifications that must be understood. Because the external TCLK12 input is synchronized internally (sampled once per instruction cycle), the time TCLK12 changes to the time the timer increments, will vary by as much as 1TcY (one instruction cycle). This will cause jitter in the duty cycle as well as the period of the PWM output.

This jitter will be \pm 1TCY, unless the external clock is synchronized with the processor clock. Use of one of the PWM outputs as the clock source to the TCLK12 input, will supply a synchronized clock.

In general, when using an external clock source for PWM, its frequency should be much less than the device frequency (Fosc).

13.1.3.4 Maximum Resolution/Frequency for External Clock Input

The use of an external clock for the PWM time base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 13-4 (Standard Resolution mode).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
16h, Bank 7	TCON3		CA4OVF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
10h, Bank 2	TMR1	Timer1's F	Register				•		•	XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2's F	Register							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
14h, Bank 2	PR1	Timer1 Pe	eriod Registe	r						xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 Pe	eriod Registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0						—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	—	—	—	—	—	xx0	uu0
10h, Bank 7	PW3DCL	DC1	DC0	TM2PW3	_	—	—	—	—	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
11h, Bank 7	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 13-5: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on conditions.

Shaded cells are not used by PWM Module.

14.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock x64 of the bit shift rate. Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

The Asynchronous mode is selected by clearing the SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the following components:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

14.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 14-1. The heart of the transmitter is the transmit shift register (TSR). The shift register obtains its data from the read/write transmit buffer (TXREG). TXREG is loaded with data in software. The TSR is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cvcle), the TXREG is empty and an interrupt bit, TXIF, is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit. TXIF will be set, regardless of TXIE and cannot be reset in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of the TXREG, the TRMT (TXSTA<1>) bit shows the status of the TSR.

TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty.

Note:	The TSR is not mapped in data memory,
	so it is not available to the user.

Transmission is enabled bv settina the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 14-3). The transmission can also be started by first loading TXREG and then setting TXEN. Normally, when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 14-4). Clearing TXEN during a transmission will cause the transmission to be aborted. This will reset the transmitter and the TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit value should be written to TX9D (TXSTA<0>). The ninth bit value must be written before writing the 8-bit data to the TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty).

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 6. Load data to the TXREG register.
- 7. Enable the transmission by setting TXEN (starts transmission).

FIGURE 14-3: ASYNCHRONOUS MASTER TRANSMISSION

15.2.5 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 15-17: SSP BLOCK DIAGRAM (I²C MASTER MODE)

A typical transmit sequence would go as follows:

- a) The user generates a START Condition by setting the START enable bit (SEN) in SSPCON2.
- b) SSPIF is set. The module will wait the required START time before any other operation takes place.
- c) The user loads the SSPBUF with address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user loads the SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all 8 bits are transmitted.
- i) The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- Interrupt is generated once the STOP condition is complete.

15.2.8 BAUD RATE GENERATOR

In I²C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 15-18). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr), on the Q2 and Q4 clock.

In I²C Master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 15-19).

FIGURE 15-18: BAUD RATE GENERATOR BLOCK DIAGRAM

SDA DX DX-1 SCL allowed to transition high. SCL de-asserted but slave holds SCL low (clock arbitration). SCL BRG decrements (on Q2 and Q4 cycles). BRG 03h 02h 01h 00h (hold off) 02h 03h Value SCL is sampled high, reload takes place and BRG starts its count. BRG Reload

FIGURE 15-19: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

ADD	OWFC	ADD WRE	EG and C	Carry bit	to f
Synt	tax:	[<i>label</i>] A[DDWFC	f,d	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$	5		
Ope	ration:	(WREG) +	- (f) + C -	\rightarrow (dest)	
State	us Affected:	OV, C, DC	C, Z		
Enco	oding:	0001	000d	ffff	ffff
Des	cription:	Add WREG memory loc placed in W placed in da	6, the Carr cation 'f'. If /REG. If 'c ata memo	y Flag and 'd' is 0, th I' is 1, the ry location	l data e result is result is i 'f'.
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Proces Data	ss W des	rite to tination
<u>Exa</u>	<u>mple</u> :	ADDWFC	REG	0	
	Before Instru Carry bit REG WREG	iction = 1 = 0x02 = 0x4D			
	After Instruct	tion = 0			

AND	LW	And Liter	And Literal with WREG						
Synt	ax:	[label] A	[<i>label</i>] ANDLW k						
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$						
Ope	ration:	(WREG) .	AND. (k	$) \rightarrow ($	WR	EG)			
Statu	us Affected:	Z							
Enco	oding:	1011	0101	kkk	k	kkkk			
Deso	cription:	The conten the 8-bit lite WREG.	its of WR eral 'k'. Th	EG are ne rest	e AN ult is	D'ed with placed in			
Wor	ds:	1							
Cycl	es:	1							
QC	cle Activity:								
	Q1	Q2	Q3	3		Q4			
	Decode	Read literal 'k'	Proce Dat	ess a	V N	Vrite to VREG			
Exar	<u>nple</u> :	ANDLW	0x5F						
	Before Instruction								

WREG = 0xA3 After Instruction WREG = 0x03

Carry bit	=	0
REG	=	0x02
WREG	=	0x50

CLRW	/DT	Clear \	Na	tchdog	Time	r	
Syntax	K :	[label]	(CLRWD	Г		
Opera	nds:	None					
Opera	tion:	$00h \rightarrow W$ $0 \rightarrow W$ $1 \rightarrow TC$ $1 \rightarrow PC$		DT postsca	aler,		
Status	Affected:	TO, PD)				
Encod	ling:	0000		0000	000	0	0100
Descri	ption:	CLRWDI dog Tim of the W set.	' ins er. /DT	struction It also re . Status t	resets set <u>s</u> tt oits TC	the he p D an	Watch- os <u>tsc</u> aler d PD are
Words	:	1					
Cycles	6:	1					
Q Cyc	le Activity:						
	Q1	Q2		Q3	5		Q4
	Decode	No operatio	n	Process Data		op	No peration
<u>Exam</u> p B	<u>ole</u> : efore Instru						
0	WDT cou	inter	=	?			
At	fter Instruct WDT cou WDT Pos TO PD	ion inter stscaler	= = =	0x00 0 1 1			

CON	٨F	Complen	Complement f					
Synt	ax:	[label]	COMF	f,d				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in [0,1] \end{array}$	$0 \le f \le 255$ $d \in [0,1]$					
Ope	ration:	$(\overline{f}) \rightarrow (c$	dest)					
Statu	us Affected:	Z	Z					
Enco	oding:	0001	001d	ffff	ffff			
Des	cription:	mented. If WREG. If ' back in reg	I he contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.					
Wor	ds:	1						
Cycl	es:	1						
QC	vcle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Proce Dat	ess V a de	Vrite to stination			
_				·				

-

Example: COMF REG1, 0

Before Instr	uctio	n
REG1	=	0x13
After Instruc	tion	
REG1	=	0x13
WREG	=	0xEC

SWA	PF	Swap f					
Synt	ax:	[label]	SWAPF	f,d			
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in [0,1] \end{array}$	5				
Ope	ration:	$f<3:0> \rightarrow f<7:4> \rightarrow$	dest<7: dest<3:	4>; 0>			
Statu	us Affected:	None					
Enco	oding:	0001	110d	fff	f	ffff	
Desc	cription:	The upper and lower nibbles of regist 'f' are exchanged. If 'd' is 0, the result placed in WREG. If 'd' is 1, the result placed in register 'f'.				of register e result is e result is	
Wor	ds:	1					
Cycl	es:	1	1				
QC	cle Activity:						
	Q1	Q2	Q	3		Q4	
	Decode	Read register 'f'	Proce Dat	ess a	Write to destination		
<u>Exar</u>	<u>mple</u> : Before Instru REG After Instruct REG	SWAPF : iction = 0x53 :ion = 0x35	REG,	0			

ТАВ	LRD	Table Re	ad			
Synt	ax:	[label]	TABLRD t,	i,f		
Ope	rands:	0 ≤ f ≤ 25 i ∈ [0,1] t ∈ [0,1]	55			
Ope	ration:	If $t = 1$, TBLATH If $t = 0$, TBLATL Prog Mei If $i = 1$, TBLPTR If $i = 0$, TBLPTR	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR If i = 0, TBLPTR is unchanged			
Statu	us Affected	: None				
Enco	oding:	1010	1010 10ti ffff ffff			
Deso	cription:	1. A by is mo If t = If t =	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 1: the high byte is moved; If t = 0: the low byte is moved 			
		2. Then gram by (TBL 16-bi	 If t = 0: the low byte is moved. 2. Then, the contents of the program memory location pointed to by the 16-bit Table Pointer (TBLPTR) are loaded into the table table (TDL). 			
		3. If i = If i =	1: TBLPTR 0: TBLPTR incremen	is incremented; is not ted.		
Wor	ds:	1				
Cycl	es:	2 (3-cycle	e if f = PCL)		
QC	cle Activity	/:				
	Q1	Q2	Q3	Q4		
	Decode	Read register TBLATH or TBLATL	Process Data	Write register 'f'		

No

operation

No

operation

(Table Pointer on Address bus) No

operation

No operation (OE goes low)

TABLWT	Table W	rite	
Example1:	TABLWT	1, 1,	REG
Before Instruc	tion		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0xFFFF
After Instruction	on (table w	vrite cor	npletion)
REG		=	0x53
TBLATH		=	0x53
TBLATL		=	0x55
TBLPTR		=	0xA357
MEMORY(TBLPTR -	1) =	0x5355
Example 2:	TABLWT	0, 0,	REG
Before Instruc	tion		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0xFFFF
After Instruction	on (table w	vrite cor	npletion)
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x53
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0xAA53
Program			Det
, iogiani	15		0 Da

TLR	D	Table	Latc	h Read	ł		
Synt	ax:	[labe	/] TI	_RD t,f			
Ope	rands:	0 ≤ f ≤ t ∈ [0,	≦ 255 ,1]				
Ope	ration:	lf t = (TBLA lf t = ^ TBLA), TL → I, TH →	f; · f			
Statu	us Affected:	None					
Enco	oding:	101	0	00tx	fff	f	ffff
Des	cription:	Read (TBLA is unat	data fr T) into ffected	om 16-t file reg l.	oit tabl ister 'f	le lat '. Ta	ch ble Latch
		If $t = 1$ If $t = 0$; nign · low h	byte is r	ead		
		This in with T gram r	structi ABLRD	ion is us to trans ry to dat	sed in sfer da a mer	conj ata f nory	unction rom pro-
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2		Q3	5		Q4
	Decode	Read regist TBLATI TBLA	1 er H or TL	Proce Data	ess a	re	Write gister 'f'
<u>Exar</u>	<u>mple</u> :	TLRD	t	, RAM			
	Before Instru	uction					
	t DAM	= 0					
	TBLAT	= 9 = 0x)0AF	(TBLA (TBLA	TH = (0x00 0xAF)) ⁻)
	After Instruc	tion					
	RAM TBLAT	= 0x/ = 0x/	AF DOAF	(TBLA (TBLA	TH = (0x00 0xAF)) ⁻)
	Before Instru	uction					
	t	= 1					
	RAM TBLAT	= ? = 0x()0AF	(TBLA (TBLA	TH = (0x00 0xAF)) ⁻)
	After Instruc	tion					
	RAM TBLAT	= 0x0 = 0x0	00 00AF	(TBLA (TBLA	TH = TL = (0x00 0xAF))
	Program Memory		5 TBL	.PTR		M	Data emory
			5 8				
	16 bits		L TB			8	3 bits

© 1998-2013 Microchip Technology Inc.

20.2

PIC17C7XX-16 (Commercial, Industrial, Extended) **DC Characteristics:** PIC17C7XX-33 (Commercial, Industrial, Extended) PIC17LC7XX-08 (Commercial, Industrial)

			Standard Op	perating C	Conditions	(unles	s otherwise stated)
			Operating ter	mperature	4000	-	
DC CHAI	RACTER	ISTICS			-40°C	≤ IA ≤	+125°C for extended
					-40°C	$\leq IA \leq$	+85°C for industrial
					0°C	≥IA ≥ ∝direeele	+/0°C for commercial
			Operating vo	nage voo	range as o	Jescribe	a in Section 20.1
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer (Note 6)	Vss	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
			Vss	-	0.2Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$
D031		with Schmitt Trigger buffer					
		RA2, RA3	Vss	_	0.3Vdd	V	I ² C compliant
		All others	Vss	-	0.2Vdd	V	-
D032		MCLR, OSC1 (in EC and RC	Vss	-	0.2Vdd	V	(Note 1)
		mode)					
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	-	V	
		Input High Voltage					
	VIH	I/O ports					
D040		with TTL buffer (Note 6)	2.0	-	Vdd	V	$4.5V \leq VDD \leq 5.5V$
			1+0.2VDD	-	Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer					
		RA2, RA3	0.7Vdd	-	Vdd	V	I ² C compliant
		All others	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	-	Vdd	V	(Note 1)
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	-	V	
D050	VHYS	Hysteresis of	0.15Vdd	-	_	V	
		Schmitt Trigger Inputs					

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

t Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specifications (Literature number DS TBD).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

20.3 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase symbols (pp) and their meanings:		
рр			
ad	Address/Data	ost	Oscillator Start-Up Timer
al	ALE	pwrt	Power-Up Timer
СС	Capture1 and Capture2	rb	PORTB
ck	CLKOUT or clock	rd	RD
dt	Data in	rw	RD or WR
in	INT pin	tO	ТОСКІ
io	I/O port	t123	TCLK12 and TCLK3
mc	MCLR	wdt	Watchdog Timer
oe	OE	wr	WR
os	OSC1		
Upperca	ase symbols and their meanings:		
S			
D	Driven	L	Low
E	Edge	Р	Period
F	Fall	R	Rise
Н	High	V	Valid
I	Invalid (Hi-impedance)	Z	Hi-impedance

TABLE 20-13: I²C BUS DATA REQUIREMENTS

Param No.	Sym	Character	istic	Min	Max	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
101	Tlow	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	Tr	SDA and SCL rise time	100 kHz mode		1000	ns	Cb is specified to be from
			400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
103	Tf	SDA and SCL fall time	100 kHz mode		300	ns	Cb is specified to be from
			400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		10	ns	
90	Tsu:sta	START condition setup	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated
		time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
91	Thd:sta	START condition hold	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first
		time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	Thd:dat	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	0	_	ns	
107	Tsu:dat	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	100	_	ns	
92	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	-	ms	
109	Таа	Output valid from clock	100 kHz mode		3500	ns	
			400 kHz mode		1000	ns	
			1 MHz mode ⁽¹⁾		400	ns	

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode (400 KHz) I²C bus device can be used in a standard mode I²C bus system, but the parameter # 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. Parameter #102 + #107 = 1000 + 250 = 1250 ns (for 100 kHz mode) before the SCL line is released.

3: C_b is specified to be from 10-400pF. The minimum specifications are characterized with $C_b=10pF$. The rise time spec (t_r) is characterized with $R_p=R_p$ min. The minimum fall time specification (t_f) is characterized with $C_b=10pF$, and $R_p=R_p$ max. These are only valid for fast mode operation (VDD=4.5-5.5V) and where the SPM bit (SSPSTAT<7>) =1.)

4: Max specifications for these parameters are valid for falling edge only. Specs are characterized with R_p=R_p min and C_b=400pF for standard mode, 200pF for fast mode, and 10pF for 1MHz mode.

TABLE 20-20: MEMORY INTERFACE WRITE REQUIREMENTS

Param. No.	Sym	Characterist	ic	Min	Тур†	Max	Unit s	Conditions
150	TadV2alL	AD<15:0> (address) valid to	PIC17 C XXX	0.25Tcy - 10	—	_	ns	
		ALE↓ (address setup time)	PIC17LCXXX	0.25Tcy - 10	—			
151	TalL2adl	ALE \downarrow to address out invalid	PIC17 C XXX	0			ns	
		(address hold time)	PIC17LCXXX	0				
152	TadV2wrL	Data out valid to $\overline{WR}\downarrow$	PIC17 C XXX	0.25Tcy - 40	_	_	ns	
		(data setup time)	PIC17 LC XXX	0.25Tcy - 40	_	_		
153	TwrH2adI	WR↑ to data out invalid	PIC17 C XXX	—	0.25Tcy	_	ns	
		(data hold time)	PIC17 LC XXX	_	0.25Tcy			
154	TwrL	WR pulse width	PIC17 C XXX		0.25Tcy	_	ns	
			PIC17LCXXX	_	0.25Tcy	_		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

TABLE 21-2: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Ave Fosc @ 5	rage 5V, +25°C
22 pF	10k	3.33 MHz	± 12%
	100k	353 kHz	± 13%
100 pF	3.3k	3.54 MHz	± 10%
	5.1k	2.43 MHz	± 14%
	10k	1.30 MHz	± 17%
	100k	129 kHz	± 10%
300 pF	3.3k	1.54 MHz	± 14%
	5.1k	980 kHz	± 12%
	10k	564 kHz	± 16%
	160k	35 kHz	± 18%

FIGURE 21-11: TYPICAL AND MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED, -40°C to +125°C)

FIGURE 21-12: TYPICAL AND MAXIMUM IPD vs. VDD (SLEEP MODE, BOR ENABLED, -40°C to +125°C)

F

Family of Devices
FEBB 125
Flowcharts
Acknowledge
Master Receiver163
Master Transmit
RESTART Condition157
Start Condition 155
STOP Condition 168
FOSC0
FOSC1 191
FS0
FS1
FS2
FS3
FSR0
F5R1
GCE
General Call Address Sequence
Conorol Call Encode bit CCE
General Format for Instructions
General Purpose BAM
General Purpose RAM Bank 57
General Purpose Register (GPB) 46
GLINTD 39.52, 111, 194
Global Interrupt Disable bit, GLINTD
GOTO
GPR (General Purpose Register)46
GPR Banks
Graphs
RC Oscillator Frequency vs. VDD (CEXT = 100 pF) 268
RC Oscillator Frequency vs. VDD (CEXT = 22 pF) 268
RC Oscillator Frequency vs. VDD (CEXT = 300 pF)269
Transconductance of LF Oscillator vs.VDD
Transconductance of XT Oscillator vs. VDD
Typical RC Oscillator vs. Temperature
H
Hardware Multiplier67
I/O Ports
Bi-directional
I/U Ports
Read-Modify-Write Instructions
Successive Operations 94
143
I2C Input 279
I ² C Master Mode Receiver Flow Chart
I ² C Master Mode Reception162
I ² C Master Mode RESTART Condition
I ² C Mode Selection
I ² C Module
Acknowledge Flow Chart 166
Acknowledge Sequence Timing165
Addressing145
Baud Rate Generator153
Block Diagram 151
BRG Block Diagram
BRG Block Diagram 157 BRG Block Diagram 153 BRG Reset due to SDA Collision 172 BRO Timina
BRG Block Diagram

Bus Collision	170
Acknowledge	170
RESTART Condition	173
RESTART Condition Timing (Case1)	173
RESTART Condition Timing (Case2)	173
START Condition	171
START Condition Timing 171,	172
STOP Condition	174
STOP Condition Timing (Case1)	174
STOP Condition Timing (Case2)	174
Transmit Timing	170
Bus Collision Timing	170
Clock Arbitration	169
Clock Arbitration Timing (Master Transmit)	169
Conditions to not give ACK Pulse	144
General Call Address Support	149
Master Mode	151
Master Mode 7-bit Reception timing	164
Master Mode Operation	152
Master Mode Start Condition	154
Master Mode Transmission	159
Master Mode Transmit Sequence	152
Master Transmit Flowchart	160
Multi-Master Communication	170
Multi-master Mode	152
Operation	143
Repeat Start Condition timing	156
RESTART Condition Flowchart	157
Slave Mode	144
Slave Reception	145
Slave Transmission	146
SSPBUF	144
Start Condition Flowchart	155
Stop Condition Flowchart	168
Stop Condition Flowchart Stop Condition Receive or Transmit timing	168 167
Stop Condition Flowchart Stop Condition Receive or Transmit timing Stop Condition timing	168 167 167
Stop Condition Flowchart Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception	168 167 167 146
Stop Condition Flowchart Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception	168 167 167 146 146
Stop Condition Flowchart Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD	168 167 167 146 146 144
Stop Condition Flowchart Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode	168 167 167 146 146 144 144
Stop Condition Flowchart Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode	168 167 167 146 146 144 144 213
Stop Condition Flowchart Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF	168 167 167 146 146 144 144 213 214
Stop Condition Flowchart	168 167 146 146 144 144 213 214 213
Stop Condition Flowchart	168 167 146 146 144 144 213 214 213 196
Stop Condition Flowchart	168 167 167 146 146 144 213 214 213 214 213 196 . 54
Stop Condition Flowchart	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 54
Stop Condition Flowchart	168 167 167 146 146 144 144 213 214 213 214 213 196 . 54 . 54
Stop Condition Flowchart	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 54
Stop Condition Flowchart	168 167 167 146 146 144 213 214 213 214 213 214 213 196 . 54 . 55
Stop Condition Flowchart	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 54 . 55 . 54
Stop Condition Flowchart	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54
Stop Condition Flowchart	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 75 . 78
Stop Condition Flowchart	168 167 146 146 144 213 214 213 214 213 214 213 196 . 54 . 54 . 55 . 54 . 75 . 78 . 80
Stop Condition Flowchart	168 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 75 . 54 . 75 . 78 . 80 . 86
Stop Condition Flowchart	168 167 146 146 144 213 214 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 55 . 75 . 54 . 80 . 986 . 48
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ INCFSZ In-Circuit Serial Programming INDF0 INDF1 Indirect Addressing Indirect Addressing Indirect Addressing Indirect Addressing Indirect Addressing Indirect Addressing Initializing PORTB Initializing PORTB Initializing PORTE Initializing PORTE Initializing PORTE Initializing PORTE Initializing PORTE Initializing PORTE Initializing PORTE Initializing PORTE Initializing PORTE	168 167 146 146 144 144 213 214 213 214 213 196 . 54 . 54 . 55 . 55 . 75 . 55 . 75 . 80 . 86 . 21
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ INCFSZ In-Circuit Serial Programming INDF0 INDF1 Indirect Addressing Indirect Addressing Indirect Addressing Indirect Addressing Indirect Addressing Initializing PORTB Initializing PORTB Initializing PORTE Initializing PORTE	168 167 146 146 144 144 213 214 213 214 213 214 213 55 55 55 55 55 55 55 55 55 80 55 80 55 80 55 80 80 86 82 202
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ INCFSZ In-Circuit Serial Programming INDF0 INDF1 Indirect Addressing Indirect Addressing Operation Registers Initializing PORTB Initializing PORTB Initializing PORTE Initializing PORTE	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 55 . 78 . 80 . 48 . 21 202 202
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 55 . 78 . 80 . 48 . 21 202 202 202 202 202
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 55 . 55 . 78 . 80 . 98 . 21 202 202 203 203
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 55 . 78 . 80 . 98 . 21 202 203 204 203 204
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSNZ INCFSZ In-Circuit Serial Programming INDF1 Indirect Addressing Indirect Addressing Indirect Addressing Indirect Addressing Intitalizing PORTB Initializing PORTC Initializing PORTE Initializing PORTE Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF ADDWF BCF	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 55 . 54 . 55 . 78 80 . 80 . 88 . 21 202 203 203 203 204 204
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSNZ INCFSZ In-Circuit Serial Programming INDF0 INDF1 Indirect Addressing Indirect Addressing Operation Registers Initializing PORTB Initializing PORTB Initializing PORTC Initializing PORTE Initializing PORTE Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF BCF BSF	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 55 . 55 . 78 . 60 . 54 . 55 . 78 . 80 . 90 202 203 203 204 204 205
Stop Condition Flowchart Stop Condition Receive or Transmit timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSNZ INCFSZ In-Circuit Serial Programming INDF0 INDF1 Indirect Addressing Indirect Addressing Operation Registers Initializing PORTB Initializing PORTB Initializing PORTC Initializing PORTE Initializing PORTE Instruction Flow/Pipelining Instruction Set ADDLW ADDWF ADDWF BCF BSF BTFSC	168 167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 55 . 54 . 55 . 778 . 80 . 988 . 211 202 203 203 204 204 205 205