E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f360-c-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	18
	1.1. CIP-51 [™] Microcontroller Core	22
	1.1.1. Fully 8051 Compatible	22
	1.1.2. Improved Throughput	22
	1.1.3. Additional Features	22
	1.2. On-Chip Memory	23
	1.3. On-Chip Debug Circuitry	24
	1.4. Programmable Digital I/O and Crossbar	25
	1.5. Serial Ports	26
	1.6. Programmable Counter Array	26
	1.7. 10-Bit Analog to Digital Converter	27
	1.8. Comparators	28
	1.9. 10-bit Current Output DAC	30
2.	Absolute Maximum Ratings	32
3.	Global Electrical Characteristics	33
4.	Pinout and Package Definitions	36
5.	10-Bit ADC (ADC0, C8051F360/1/2/6/7/8/9)	47
	5.1. Analog Multiplexer	48
	5.2. Temperature Sensor	49
	5.3. Modes of Operation	51
	5.3.1. Starting a Conversion	51
	5.3.2. Tracking Modes	52
	5.3.3. Settling Time Requirements	53
	5.4. Programmable Window Detector	57
	5.4.1. Window Detector In Single-Ended Mode	60
	5.4.2. Window Detector In Differential Mode	61
6.	10-Bit Current Mode DAC (IDA0, C8051F360/1/2/6/7/8/9)	63
	6.1. IDA0 Output Scheduling	63
	6.1.1. Update Output On-Demand	63
	6.1.2. Update Output Based on Timer Overflow	64
	6.1.3. Update Output Based on CNVSTR Edge	64
	6.2. IDAC Output Mapping	64
7.	Voltage Reference (C8051F360/1/2/6/7/8/9)	67
8.	Comparators	70
9.	CIP-51 Microcontroller	80
	9.1. Performance	80
	9.2. Programming and Debugging Support	81
	9.3. Instruction Set	82
	9.3.1. Instruction and CPU Timing	82
	9.3.2. MOVX Instruction and Program Memory	82
	9.4. Memory Organization	86
	9.4.1. Program Memory	86
	9.4.2. Data Memory	87

DATA MEMORY

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 32/16 kB of Flash. This memory may be reprogrammed in-system in 1024 byte sectors, and requires no special off-chip programming voltage. See Figure 1.6 for the MCU system memory map.

PROGRAM MEMORY

Figure 1.6. On-Board Memory Map

1.3. On-Chip Debug Circuitry

The C8051F36x devices include on-chip Silicon Labs 2-Wire (C2) debug circuitry that provides non-intrusive, full speed, in-circuit debugging of the production part *installed in the end application*.

Silicon Labs' debugging system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, timers, or communications chan-

Figure 4.2. TQFP-48 Package Diagram

Dimension	Dimension Min Nom Max Dir		Dimension	Min	Nom	Max				
А	_	—	1.20		E		9.00 BSC.			
A1	0.05		0.15		E1		7.00 BSC.			
A2	0.95	1.00	1.05		L	0.45	0.60	0.75		
b	0.17	0.22	0.27		aaa		0.20			
С	0.09	—	0.20		bbb		0.20			
D		9.00 BSC.			CCC		0.08			
D1	7.00 BSC.				ddd	0.08				
е		0.50 BSC.		1	θ	0°	3.5°	7°		
Notes:				•						

Table 4.2. TQFP-48 Package Dimensions

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation ABC.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

SFR Definition 6.3. IDA0L: IDA0 Data Word LSB

Table 6.1. IDAC Electrical Characteristics

-40 to +85 °C, V_{DD} = 3.0 V Full-scale output current set to 2 mA unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
	Static Performance				
Resolution			10		bits
Integral Nonlinearity			±0.5	±2	LSB
Differential Nonlinearity	Guaranteed Monotonic		±0.5	±1	LSB
Output Compliance Range		_	_	V _{DD} – 1.2	V
Offset Error		_	0	—	LSB
Full Scale Error	2 mA Full Scale Output Current	-15	0	15	LSB
Full Scale Error Tempco		_	30	—	ppm/°C
V _{DD} Power Supply Rejection Ratio			6.5	—	µA/V
	Dynamic Performance				
Output Settling Time to 1/2 LSB	IDA0H:L = 0x3FF to 0x000	_	5	—	μs
Startup Time		_	5	—	μs
Gain Variation	1 mA Full Scale Output Current 0.5 mA Full Scale Output Current	_	±1 ±1	_	% %
	Power Consumption				
Power Supply Current (V _{DD} supplied to IDAC)	2 mA Full Scale Output Current 1 mA Full Scale Output Current 0.5 mA Full Scale Output Current		2140 1140 640		μΑ μΑ μΑ

SEP Pager								
SFR Fage.	s: 0x9B							
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0HYP1	CP0HYP0	CP0HYN1	CP0HYN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Dit 7.		oporator() E	nabla Rit					
DIL 7.	0: Comparat	or0 Disable						
	1: Comparat	or0 Enable	d.					
Bit 6.		mparator0	u. Outout Sta	te Flag				
Dit 0.	0. Voltage or	CP0 + < C		ite i lag.				
	1: Voltage or	CP0+>C	P0-					
Bit 5	CPORIE: Col	mparator0 I	r o . Risina-Eda	e Flag. Mus	t be cleared	by software	<u>م</u>	
DR 0.	0. No Comp	arator0 Risi	na Edae hi	as occurred	since this fla	ag was last	cleared	
	1: Comparat	or0 Risina I	Edge has c	ccurred.		.g .rae laet	0.00.00	
Bit 4:	CP0FIF: Cor	nparator0 F	alling-Edg	e Flag. Mus	t be cleared	by software	e.	
	0: No Compa	arator0 Fall	ing-Edge h	as occurred	since this fla	ag was last	t cleared.	
	1: Comparat	or0 Falling-	Edge has o	occurred.		0		
Bits 3–2:	CP0HYP1-0	: Compara	tor0 Positiv	e Hysteresi	s Control Bit	s.		
	00: Positive	Hysteresis	Disabled.					
	01: Positive	Hysteresis	= 5 mV.					
	10: Positive	Hysteresis	= 10 mV.					
	11: Positive I	Hysteresis :	= 20 mV.					
Bits 1–0:	CP0HYN1-C	: Compara	tor0 Negati	ve Hysteres	sis Control B	its.		
1	00: Negative	Hysteresis	Disabled.					
	01: Negative	Hysteresis	s = 5 mV.					
	10: Negative	Hysteresis	s = 10 mV.					
	11: Negative	Hysteresis	= 20 mV.					

SFR Definition 8.1. CPT0CN: Comparator0 Control

SFR Page: SFR Addres	all pages s: 0x9A									
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
CP1EN	CP10UT	CP1RIF	CP1FIF	CP1HYP1	CP1HYP0	CP1HYN1	CP1HYN0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Bit 7: CP1EN: Comparator1 Enable Bit. 0: Comparator1 Disabled. 1: Comparator1 Enabled.										
Bit 6:	t 6: CP1OUT: Comparator1 Output State Flag. 0: Voltage on CP1+ < CP1									
Bit 5:	Bit 5: CP1RIF: Comparator1 Rising-Edge Flag. Must be cleared by software. 0: No Comparator1 Rising Edge has occurred since this flag was last cleared.									
Bit 4:	CP1FIF: Cor 0: No Compa 1: Comparate	nparator1 F arator1 Falli or1 Falling-	alling-Edg ng-Edge h Edge has d	e Flag. Mus as occurred	t be cleared since this fla	by software ag was last	e. cleared.			
Bits 3–2:	 3-2: CP1HYP1-0: Comparator1 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 									
Bits 1–0:	CP1HYN1–0 00: Negative 01: Negative 10: Negative 11: Negative): Comparat Hysteresis Hysteresis Hysteresis Hysteresis	zor1 Negati Disabled. = 5 mV. = 10 mV. = 20 mV.	ve Hysteres	is Control Bi	ts.				

SFR Definition 8.4. CPT1CN: Comparator1 Control

Mnemonic	Description	Bytes	Clock Cvcles
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
	Boolean Manipulation	•	•
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3*
JNC rel	Jump if Carry is not set	2	2/3*
JB bit, rel	Jump if direct bit is set	3	3/4*
JNB bit, rel	Jump if direct bit is not set	3	3/4*
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4*
	Program Branching		
ACALL addr11	Absolute subroutine call	2	3*
LCALL addr16	Long subroutine call	3	4*
RET	Return from subroutine	1	5*
RETI	Return from interrupt	1	5*
AJMP addr11	Absolute jump	2	3*
LJMP addr16	Long jump	3	4*
SJMP rel	Short jump (relative address)	2	3*
JMP @A+DPTR	Jump indirect relative to DPTR	1	3*

Table 9.1. CIP-51 Instruction Set Summary (Continued)

SFR Definition 9.9. ACC: Accumulator

SFR Definition 9.10. B: B Register

9.5. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the system clock is stopped. Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. SFR Definition 9.11 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and put into low power mode. Digital peripherals, such as timers or serial buses, draw little power whenever they are not in use. Turning off the Flash memory saves power, similar to entering Idle mode. Turning off the oscillator saves even more power, but requires a reset to restart the MCU.

The C8051F36x devices feature an additional low-power SUSPEND mode, which stops the internal oscillator until an awakening event occurs. See Section "16.1.1. Internal Oscillator Suspend Mode" on page 169 for more information.

SFR Page: SFR Addres	F ss: 0xCE									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	_	PSMB0	00000000		
Bit7	Bit6	Bit5 Bit4 Bit3 Bit2 Bit1 Bit0								
Bit 7:	 7: PT3: Timer 3 Interrupt Priority Control. This bit sets the priority of the Timer 3 interrupt. 0: Timer 3 interrupts set to low priority level. 1: Timer 3 interrupts set to high priority level. 									
Bit 6:	PCP1: Comparator1 (CP1) Interrupt Priority level. This bit sets the priority of the CP1 interrupt. 0: CP1 interrupt set to low priority level. 1: CP1 interrupt set to high priority level.									
Bit 5:	PCP0: Comparator0 (CP0) Interrupt Priority Control. This bit sets the priority of the CP0 interrupt. 0: CP0 interrupt set to low priority level.									
Bit 4:	PPCA0: Prog This bit sets 0: PCA0 inte 1: PCA0 inte	grammable the priority errupt set to errupt set to	Counter Ar of the PCA low priority high priorit	ray (PCA0) 0 interrupt. 1 level. y level.	Interrupt Pr	iority Contr	ol.			
Bit 3:	PADC0: ADC This bit sets 0: ADC0 Cor 1: ADC0 Cor	C0 Convers the priority nversion Co nversion Co	ion Comple of the ADC omplete inte omplete inte	ete Interrupt 0 Conversio errupt set to errupt set to	Priority Cor on Complete low priority high priority	ntrol. e interrupt. level. v level.				
Bit 2:	PWADC0: ADC0 Window Comparison Interrupt Priority Control. This bit sets the priority of the ADC0 Window Comparison interrupt. 0: ADC0 Window Comparison interrupt set to low priority level. 1: ADC0 Window Comparison interrupt set to high priority level.									
Bit 1: Bit 0:	UNUSED. R PSMB0: SM This bit sets 0: SMB0 inte 1: SMB0 inte	ead = 0b. V Bus (SMB0 the priority errupt set to errupt set to	Vrite = don') Interrupt F of the SMB low priority high priorit	t care. Priority Con 0 interrupt. 7 level. 9 level.	trol.					

SFR Definition 10.4. EIP1: Extended Interrupt Priority 1

SFR Definition 10.5. EIE2: Extended Interrupt Enable 2

SFR Definition 10.6. EIP2: Extended Interrupt Priority 2

SFR Page: SFR Address:	F 0xCF							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	_	_	-	_	PMAT	_	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–2: U Bit 1: I Bit 0: U	UNUSED. Ro PMAT: Port M This bit sets D: Port Match 1: Port Match UNUSED. Ro	ead = 0000 Match Interr the priority n interrupt s n interrupt s ead = 0b. V	00b. Write : upt Priority of the Port set to low pr set to high p Vrite = don't	= don't care Control. Match intern riority level. priority level. t care.	upt.			

11.2. Integer and Fractional Math

MAC0 is capable of interpreting the 16-bit inputs stored in MAC0A and MAC0B as signed integers or as signed fractional numbers. When the MAC0FM bit (MAC0CF.1) is cleared to '0', the inputs are treated as 16-bit, 2's complement, integer values. After the operation, the accumulator will contain a 40-bit, 2's complement, integer value. Figure 11.2 shows how integers are stored in the SFRs.

MAC0A and MAC0B Bit Weighting

	High Byte									Low	Byte				
-(215)	214	2 ¹³	2 ¹²	211	210	2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

MAC0 Accumulator Bit Weighting	
--------------------------------	--

MAC0OVR	MAC0ACC3 : MAC0ACC2 : MAC0ACC1 : MAC0ACC0							
-(2 ³⁹) 2 ³⁸ 2 ³³ 2 ³²	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							

Figure 11.2. Integer Mode Data Representation

When the MACOFM bit is set to '1', the inputs are treated at 16-bit, 2's complement, fractional values. The decimal point is located between bits 15 and 14 of the data word. After the operation, the accumulator will contain a 40-bit, 2's complement, fractional value, with the decimal point located between bits 31 and 30. Figure 11.3 shows how fractional numbers are stored in the SFRs.

MAC0A, and MAC0B Bit Weighting

High Byte								Low Byte							
-1	2-1	2-2	2 ⁻³	2-4	2-5	2-6	2-7	2-8	2-9	2 ⁻¹⁰	2-11	2-12	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵

MAC0 Accumulator Bit Weighting

MAC00VR					MA	MAC0ACC3 : MAC0ACC2 : MAC0ACC1 : MAC0ACC0								
-(28)	27	22	2 ²	2 ¹	20	2-1	2 -2	2 ⁻³		2 ⁻²⁷	2-28	2-29	2 ⁻³⁰	2 ⁻³¹

MACORND Bit Weighting

	High Byte								Low Byte							
* -2	1	2-1	2 -2	2 ⁻³	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2 ⁻¹²	2 ⁻¹³	2-14	2 ⁻¹⁵

* The MACORND register contains the 16 LSBs of a two's complement number. The MACON Flag can be used to determine the sign of the MACORND register.

Figure 11.3. Fractional Mode Data Representation

Certain types of instruction data or certain blocks of code can also be excluded from caching. The destinations of RETI instructions are, by default, excluded from caching. To enable caching of RETI destinations, the CHRETI bit (CCH0CN.3) can be set to '1'. It is generally not beneficial to cache RETI destinations unless the same instruction is likely to be interrupted repeatedly (such as a code loop that is waiting for an interrupt to happen). Instructions that are part of an interrupt service routine (ISR) can also be excluded from caching. By default, ISR instructions are cached, but this can be disabled by clearing the CHISR bit (CCH0CN.2) to '0'. The other information that can be explicitly excluded from caching are the data returned by MOVC instructions. Clearing the CHMOV bit (CCH0CN.1) to '0' will disable caching of MOVC data. If MOVC caching is allowed, it can be restricted to only use slot 0 for the MOVC information (excluding cache push operations). The CHFIXM bit (CCH0TN.2) controls this behavior.

Further cache control can be implemented by disabling all cache writes. Cache writes can be disabled by clearing the CHWREN bit (CCH0CN.7) to '0'. Although normal cache writes (such as those after a cache miss) are disabled, data can still be written to the cache with a cache push operation. Disabling cache writes can be used to prevent a non-critical section of code from changing the cache contents. Note that regardless of the value of CHWREN, a Flash write or erase operation automatically removes the affected bytes from the cache. Cache reads and the prefetch engine can also be individually disabled. Disabling cache reads forces all instructions data to execute from Flash memory or from the prefetch engine. To disable cache reads, the CHRDEN bit (CCH0CN.6) can be cleared to '0'. Note that when cache reads are disabled, cache writes will still occur (if CHWREN is set to '1'). Disabling the prefetch engine is accomplished using the CHPFEN bit (CCH0CN.5). When this bit is cleared to '0', the prefetch engine will be disabled. If both CHPFEN and CHRDEN are '0', code will execute at a fixed rate, as instructions become available from the Flash memory.

Cache locations can also be pre-loaded and locked with time-critical branch destinations. For example, in a system with an ISR that must respond as fast as possible, the entry point for the ISR can be locked into a cache location to minimize the response latency of the ISR. Up to 30 locations can be locked into the cache at one time. Instructions are locked into cache by enabling cache push operations with the CHPUSH bit (CCH0LC.7). When CHPUSH is set to '1', a MOVC instruction will cause the four-byte segment containing the data byte to be written to the cache slot location indicated by CHSLOT (CCH0LC.4-0). CHSLOT is them decremented to point to the next lockable cache location. This process is called a cache push operation. Cache locations that are above CHSLOT are "locked", and cannot be changed by the processor core, as shown in Figure 14.3. Cache locations can be unlocked by using a cache pop operation. A cache pop is performed by writing a '1' to the CHPOP bit (CCH0LC.6). When a cache pop is initiated, the value of CHSLOT is incremented. This unlocks the most recently locked cache location, but does not remove the information from the cache. Note that a cache pop should not be initiated if CHSLOT is equal to 11110b. Doing so may have an adverse effect on cache performance. Important: Although locking cache location 1 is not explicitly disabled by hardware, the entire cache will be unlocked when CHSLOT is equal to 00000b. Therefore, cache locations 1 and 0 must remain unlocked at all times.

16.1.1. Internal Oscillator Suspend Mode

When software writes a logic '1' to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until one of the following events occur:

- Port 0 Match Event.
- Port 1 Match Event.
- Port 2 Match Event.
- Comparator 0 enabled and output is logic '0'.
- Comparator 1 enabled and output is logic '0'.

When one of the internal oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation, regardless of whether the event also causes an interrupt. The CPU resumes execution at the instruction following the write to SUSPEND.

Note: Before entering SUSPEND mode, SYSCLK should be switched to run off of the internal oscillator and not the PLL. When the CPU wakes due to the awakening event, the PLL must be reinitialized before switching back to it as the SYSCLK source.

SFR Definition 16.1. OSCICL: Internal Oscillator Calibration.

SFR Page:	F s: 0xF2							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
WEAKP	UD XBARE	T1E	T0E	ECIE		PCA0ME		00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	WEAKPUD: F 0: Weak Pullu	Port I/O We	ak Pullup [I (except fo	Disable. or Ports who	se I/O are	configured a	s analog	input).
Bit 6:	XBARE: Cros 0: Crossbar d 1: Crossbar e	ips disable sbar Enabl lisabled. nabled	а. е.					
Bit 5:	T1E: T1 Enat 0: T1 unavaila	ble able at Port	pin.					
Bit 4:	TOE: TO Enat 0: TO unavaila	ble able at Port	pin.					
Bit 3:	ECIE: PCA0 0: ECI unavai	External Co lable at Po to Port pin	ounter Inpu rt pin.	t Enable				
Bits 2–0:	PCA0ME: PC 000: All PCA 001: CEX0 ro 010: CEX0, C 011: CEX0, C 100: CEX0, C 101: CEX0, C 110: CEX0, C 111: Reserved	A Module I I/O unavail outed to Por EX1 routed EX1, CEX2 EX1, CEX2 EX1, CEX2 EX1, CEX2 d.	/O Enable able at Por t pin. d to Port pin 2 routed to 2, CEX3 ro 2, CEX3, C 2, CEX3, C	Bits. t pins. Port pins. uted to Port EX4 routed EX4, CEX5	pins. to Port pin routed to F	s. Port pins.		

SFR Definition 17.2. XBR1: Port I/O Crossbar Register 1

18.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I²C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification—Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification—Version 1.1, SBS Implementers Forum.

18.2. SMBus Configuration

Figure 18.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 18.2. Typical SMBus Configuration

18.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 18.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

ļ		······································	Freq	uency: 11.059	2 MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
ž	230400	0.00%	48	SYSCLK	XX ²	1	0xE8
Cloc	115200	0.00%	96	SYSCLK	XX	1	0xD0
er (57600	0.00%	192	SYSCLK	XX	1	0xA0
ы О С	28800	0.00%	384	SYSCLK	XX	1	0x40
and 'nal	14400	0.00%	768	SYSCLK/12	00	0	0xE0
LK a Xter	9600	0.00%	1152	SYSCLK/12	00	0	0xD0
ш СС	2400	0.00% 4608		SYSCLK/12	00	0	0x40
SY. froi	1200	0.00%	9216	SYSCLK/48	10	0	0xA0
Osc.	230400	0.00%	48	EXTCLK/8	11	0	0xFD
ıl Osc ernal	115200	0.00%	96	EXTCLK/8	11	0	0xFA
n Ext	57600	0.00%	192	EXTCLK/8	11	0	0xF4
om Ir k fror	28800	0.00%	384	EXTCLK/8	11	0	0xE8
CLK fr Cloc	14400	14400 0.00%		EXTCLK/8	11	0	0xD0
SYSC Timei	9600	0.00%	1152	EXTCLK/8	11	0	0xB8
Notes:							

Table 19.5. Timer Settings for Standard Baud RatesUsing an External 11.0592 MHz Oscillator

1. SCA1–SCA0 and T1M bit definitions can be found in Section 21.1.

2. X = Don't care.

SFR Page: SFR Address:	all pages 0xA2											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
Bit <i>f</i> Bit												
f	or 0 <= SPI	0CKR <= 2	55									
Example: If	SYSCLK =	2 MHz and	SPIOCKR	= 0x04,								
$f_{SCK} =$	$\frac{2000000}{2 \times (4+1)}$)										
$f_{SCK} = 2$	200 <i>kHz</i>											

SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate

SFR Definition 20.4. SPI0DAT: SPI0 Data

SFR Definition 21.14. TMR3RLL: Timer 3 Reload Register Low Byte

SFR Definition 21.15. TMR3RLH: Timer 3 Reload Register High Byte

SFR Definition 21.16. TMR3L: Timer 3 Low Byte

SFR Definition 21.17. TMR3H Timer 3 High Byte

22. Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. PCA0 consists of a dedicated 16-bit counter/timer and six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "17.3. General Purpose Port I/O" on page 189). The counter/timer is driven by a programmable timebase that can select between six inputs as its source: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an external clock signal on the ECI line. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each is described in Section 22.2). The PCA is configured and controlled through the system controller's Special Function Registers. The basic PCA block diagram is shown in Figure 22.1.

Important Note: The PCA Module 5 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 22.3 for details.

Figure 22.1. PCA Block Diagram

24.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming functions may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (/RST) and C2D (P4.6 on C8051F361/2/4/5/6/7/8/9 devices) pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 24.1.

Figure 24.1. Typical C2 Pin Sharing

The configuration in Figure 24.1 assumes the following:

- 1. The user input (b) cannot change state while the target device is halted.
- 2. The /RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

