E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f360-c-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units	
Ambient temperature under bias		-55	—	125	°C	
Storage Temperature		-65	—	150	°C	
Voltage on any Port I/O Pin or RST with respect to GND		-0.3	_	5.8	V	
Voltage on V_{DD} with respect to GND		-0.3	_	4.2	V	
Maximum Total current through V _{DD} or GND		—	—	500	mA	
Maximum output current sunk by RST or any Port pin		—	—	100	mA	
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.						

This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

C8051F360/1/2/3/4/5/6/7/8/9

Figure 8.2. Comparator1 Functional Block Diagram

A Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator outputs are available asynchronous or synchronous to the system clock; the asynchronous outputs are available even in STOP mode (with no system clock active). When disabled, the Comparator outputs (if assigned to a Port I/O pin via the Crossbar) default to the logic low state, and their supply current falls to less than 100 nA. See Section "17.1. Priority Crossbar Decoder" on page 184 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 8.1.

The Comparator response time may be configured in software via the CPT0MD and CPT1MD registers (see SFR Definition 8.3 and SFR Definition 8.6). Selecting a longer response time reduces the Comparator supply current. See Table 8.1 for complete timing and power consumption specifications.

Table 9.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
POMAT	0xF3	0	Port 0 Match	page 191
P0MDIN	0xF1	F	Port 0 Input Mode	page 190
POMDOUT	0xA4	F	Port 0 Output Mode Configuration	page 190
P0SKIP	0xD4	F	Port 0 Skip	page 191
P1	0x90	All Pages	Port 1 Latch	page 192
P1MASK	0xE2	0	Port 1 Mask	page 194
P1MAT	0xE1	0	Port 1 Match	page 193
P1MDIN	0xF2	F	Port 1 Input Mode	page 192
P1MDOUT	0xA5	F	Port 1 Output Mode Configuration	page 193
P1SKIP	0xD5	F	Port 1 Skip	page 193
P2	0xA0	All Pages	Port 2 Latch	page 194
P2MASK	0xB2	0	Port 2 Mask	page 196
P2MAT	0xB1	0	Port 2 Match	page 196
P2MDIN	0xF3	F	Port 2 Input Mode	page 195
P2MDOUT	0xA6	F	Port 2 Output Mode Configuration	page 195
P2SKIP	0xD6	F	Port 2 Skip	page 196
P3	0xB0	All Pages	Port 3 Latch	page 197
P3MDIN	0xF4	F	Port 3 Input Mode	page 197
P3MDOUT	0xAF	F	Port 3 Output Mode Configuration	page 198
P3SKIP	0xD7	F	Port 3 Skip	page 198
P4	0xB5	All Pages	Port 4 Latch	page 199
P4MDOUT	0xAE	F	Port 4 Output Mode Configuration	page 199
PCA0CN	0xD8	All Pages	PCA Control	page 274
PCA0CPH0	0xFC	All Pages	PCA Module 0 Capture/Compare High Byte	page 278
PCA0CPH1	0xEA	All Pages	PCA Module 1 Capture/Compare High Byte	page 278
PCA0CPH2	0xEC	All Pages	PCA Module 2 Capture/Compare High Byte	page 278
PCA0CPH3	0xEE	All Pages	PCA Module 3 Capture/Compare High Byte	page 278
PCA0CPH4	0xFE	All Pages	PCA Module 4 Capture/Compare High Byte	page 278
PCA0CPH5	0xF6	All Pages	PCA Module 5 Capture/Compare High Byte	page 278
PCA0CPL0	0xFB	All Pages	PCA Module 0 Capture/Compare Low Byte	page 277
PCA0CPL1	0xE9	All Pages	PCA Module 1 Capture/Compare Low Byte	page 277
Notes:		the C905152		

1. Refers to a register in the C8051F360/1/2/6/7/8/9 only.

2. Refers to a register in the C8051F360/3 only.

C8051F360/1/2/3/4/5/6/7/8/9

SFR Definition 10.5. EIE2: Extended Interrupt Enable 2

SFR Definition 10.6. EIP2: Extended Interrupt Priority 2

SFR Page: SFR Address:	F 0xCF							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	_	_	-	_	PMAT	_	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–2: U Bit 1: I Bit 0: U	UNUSED. Ro PMAT: Port M This bit sets D: Port Match 1: Port Match UNUSED. Ro	ead = 0000 Match Interr the priority n interrupt s n interrupt s ead = 0b. V	00b. Write : upt Priority of the Port set to low pr set to high p Vrite = don't	= don't care Control. Match intern riority level. priority level. t care.	upt.			

11.2. Integer and Fractional Math

MAC0 is capable of interpreting the 16-bit inputs stored in MAC0A and MAC0B as signed integers or as signed fractional numbers. When the MAC0FM bit (MAC0CF.1) is cleared to '0', the inputs are treated as 16-bit, 2's complement, integer values. After the operation, the accumulator will contain a 40-bit, 2's complement, integer value. Figure 11.2 shows how integers are stored in the SFRs.

MAC0A and MAC0B Bit Weighting

High Byte										Low	Byte				
-(215)	214	2 ¹³	2 ¹²	211	210	2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

MAC0 Accumulator Bit Weighting	
--------------------------------	--

MAC0OVR	MAC0ACC3 : MAC0ACC2 : MAC0ACC1 : MAC0ACC0							
-(2 ³⁹) 2 ³⁸ 2 ³³ 2 ³²	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							

Figure 11.2. Integer Mode Data Representation

When the MACOFM bit is set to '1', the inputs are treated at 16-bit, 2's complement, fractional values. The decimal point is located between bits 15 and 14 of the data word. After the operation, the accumulator will contain a 40-bit, 2's complement, fractional value, with the decimal point located between bits 31 and 30. Figure 11.3 shows how fractional numbers are stored in the SFRs.

MAC0A, and MAC0B Bit Weighting

High Byte										Low	Byte				
-1	-1 2 ⁻¹ 2 ⁻² 2 ⁻³ 2 ⁻⁴ 2 ⁻⁵ 2 ⁻⁶ 2 ⁻⁷							2-8	2-9	2-10	2-11	2-12	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵

MAC0 Accumulator Bit Weighting

	MAC0OVR				MA	AC0AC	CC3 :	MACO	ACC2 : I	MAC0	ACC1	: MA	C0AC	C0
-(28)	27	2^7 2^2 2^2 2^1				2-1	2 ⁻²	2 ⁻³	22	2 ⁻²⁷	2 ⁻²⁸	2 ⁻²⁹	2 ⁻³⁰	2 ⁻³¹

MACORND Bit Weighting

	High Byte										Low	Byte				
* -2	* -2 1 2 ⁻¹ 2 ⁻² 2 ⁻³ 2 ⁻⁴ 2 ⁻⁵ 2 ⁻⁶ 2 ⁻⁷						2-6	2-7	2-8	2-9	2-10	2-11	2 ⁻¹²	2 ⁻¹³	2-14	2 ⁻¹⁵

* The MACORND register contains the 16 LSBs of a two's complement number. The MACON Flag can be used to determine the sign of the MACORND register.

Figure 11.3. Fractional Mode Data Representation

11.6. Rounding and Saturation

A Rounding Engine is included, which can be used to provide a rounded result when operating on fractional numbers. MAC0 uses an unbiased rounding algorithm to round the data stored in bits 31–16 of the accumulator, as shown in Table 11.1. Rounding occurs during the third stage of the MAC0 pipeline, after any shift operation, or on a write to the LSB of the accumulator. The rounded results are stored in the rounding registers: MAC0RNDH (SFR Definition 11.12) and MAC0RNDL (SFR Definition 11.13). The accumulator registers are not affected by the rounding engine. Although rounding is primarily used for fractional data, the data in the rounding registers is updated in the same way when operating in integer mode.

Accumulator Bits 15–0 (MAC0ACC1:MAC0ACC0)	Accumulator Bits 31–16 (MAC0ACC3:MAC0ACC2)	Rounding Direction	Rounded Results (MAC0RNDH:MAC0RNDL)
Greater Than 0x8000	Anything	Up	(MAC0ACC3:MAC0ACC2) + 1
Less Than 0x8000	Anything	Down	(MAC0ACC3:MAC0ACC2)
Equal To 0x8000	Odd (LSB = 1)	Up	(MAC0ACC3:MAC0ACC2) + 1
Equal To 0x8000	Even (LSB = 0)	Down	(MAC0ACC3:MAC0ACC2)

Table 11.1. MAC0 Rounding (MAC0SAT = 0)

The rounding engine can also be used to saturate the results stored in the rounding registers. If the MAC0-SAT bit is set to '1' and the rounding register overflows, the rounding registers will saturate. When a positive overflow occurs, the rounding registers will show a value of 0x7FFF when saturated. For a negative overflow, the rounding registers will show a value of 0x8000 when saturated. If the MAC0SAT bit is cleared to '0', the rounding registers will not saturate.

11.7. Usage Examples

This section details some software examples for using MAC0. Section 11.7.1 shows a series of two MAC operations using fractional numbers. Section 11.7.2 shows a single operation in Multiply Only mode with integer numbers. The last example, shown in Section 11.7.3, demonstrates how the left-shift and right-shift operations can be used to modify the accumulator. All of the examples assume that all of the flags in the MAC0STA register are initially set to '0'.

11.7.1. Multiply and Accumulate Example

The example below implements the equation:

 $(0.5 \times 0.25) + (0.5 \times -0.25) \ = \ 0.125 - 0.125 \ = \ 0.0$

MOV	MACOCF,	#0Ah	;	Set to Clear Accumulator, Use fractional numbers
MOV	MACOAH,	#40h	;	Load MACOA register with 4000 hex = 0.5 decimal
MOV	MACOAL,	#00h		
MOV	MACOBH,	#20h	;	Load MACOB register with 2000 hex = 0.25 decimal
MOV	MACOBL,	#00h	;	This line initiates the first MAC operation
MOV	MACOBH,	#E0h	;	Load MACOB register with E000 hex = -0.25 decimal
MOV	MACOBL,	#00h	;	This line initiates the second MAC operation
NOP				
NOP			;	After this instruction, the Accumulator should be equal to 0,
			;	and the MACOSTA register should be 0x04, indicating a zero
NOP			;	After this instruction, the Rounding register is updated

C8051F360/1/2/3/4/5/6/7/8/9

SFR Definition 11.4. MAC0AL: MAC0 A Low Byte

SFR Definition 11.5. MAC0BH: MAC0 B High Byte

SFR Definition 11.6. MAC0BL: MAC0 B Low Byte

SFR Definition 11.13. MACORNDL: MAC0 Rounding Register Low Byte

16.3. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/ resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 16.1. A 10 M Ω resistor also must be wired across the XTAL1 and XTAL2 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 16.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 16.5).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.5 and P0.6 (C8051F360/3) or P0.2 and P0.3 (C8051F361/2/4/5/6/7/8/9) are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.6 (C8051F360/3) or P0.3 (C8051F361/2/4/5/6/7/8/9) is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see Section "17.1. Priority Crossbar Decoder" on page 184 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See Section "17.2. Port I/O Initialization" on page 186 for details on Port input mode selection.

16.4. System Clock Selection

The internal oscillator requires little start-up time, and may be enabled and selected as the system clock in the same write to OSCICN. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no startup time. The PLL also requires time to lock onto the desired frequency, and the PLL Lock Flag (PLLLCK in register PLLOCN) is set to '1' by hardware once the PLL is locked on the correct frequency.

The CLKSL1-0 bits in register CLKSEL select which oscillator source generates the system clock. CLK-SL1-0 must be set to '01' for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals, such as the timers and PCA, when the internal oscillator or the PLL is selected as the system clock. The system clock may be switched on-the-fly between the internal and external oscillators or the PLL, so long as the selected oscillator source is enabled and settled.

16.6. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 16.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

 $f = 1.23(10^3)/RC = 1.23 (10^3)/[246 \times 50] = 0.1 MHz = 100 kHz$

Referring to the table in SFR Definition 16.5, the required XFCN setting is 010b. Programming XFCN to a higher setting in RC mode will improve frequency accuracy at a slightly increased external oscillator supply current.

16.7. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 16.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume $V_{DD} = 3.0$ V and f = 75 kHz:

f = KF / (C x V_{DD}) 0.075 MHz = KF / (C x 3.0)

Since the frequency of roughly 75 kHz is desired, select the K Factor from the table in SFR Definition 16.5 as KF = 7.7:

 $0.075 \text{ MHz} = 7.7 / (C \times 3.0)$

C x 3.0 = 7.7 / 0.075 MHz

C = 102.6 / 3.0 pF = 34.2 pF

Therefore, the XFCN value to use in this example is 010b.

Table 16.3. PLL Frequency Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units		
Input Frequency (Divided Reference Frequency)		5		30	MHz		
PLL Output Frequency		25		100*	MHz		
*Note: The maximum operating frequency of the C8051F366/7/8/9 is 50 MHz.							

Table 16.4. PLL Lock Timing Characteristics

-40 to +85 °C unless otherwise specified

Input	Multiplier	PII0flt	Output	Min	Тур	Max	Units
Frequency	(Pll0mul)	Setting	Frequency				
	20	0x0F	100 MHz		202		μs
	13	0x0F	65 MHz		115		μs
	16	0x1F	80 MHz		241		μs
5 M니-7	9	0x1F	45 MHz		116		μs
5 1011 12	12	0x2F	60 MHz		258		μs
	6	0x2F	30 MHz		112		μs
	10	0x3F	50 MHz		263		μs
	5	0x3F	25 MHz		113		μs
	4	0x01	100 MHz		42		μs
	2	0x01	50 MHz		33		μs
	3	0x11	75 MHz		48		μs
25 MHz	2	0x11	50 MHz		17		μs
23 10112	2	0x21	50 MHz		42		μs
	1	0x21	25 MHz		33		μs
	2	0x31	50 MHz		60		μs
	1	0x31	25 MHz		25		μs

SFR Page:	F s: 0xF2									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
WEAKP	UD XBARE	T1E	T0E	ECIE		PCA0ME		00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Bit 7:	WEAKPUD: F 0: Weak Pullu	Port I/O We	ak Pullup [I (except fo	Disable. or Ports who	se I/O are	configured a	s analog	input).		
Bit 6:	XBARE: Cros 0: Crossbar d 1: Crossbar e	ips disable sbar Enabl lisabled. nabled	а. е.							
Bit 5:	1. Crossbar enabled. T1E: T1 Enable 0: T1 unavailable at Port pin.									
Bit 4:	TOE: TO Enable 0: TO unavailable at Port pin.									
Bit 3:	1: 10 routed to Port pin. ECIE: PCA0 External Counter Input Enable 0: ECI unavailable at Port pin.									
Bits 2–0:	1: ECI routed to Port pin. Bits 2–0: PCA0ME: PCA Module I/O Enable Bits. 000: All PCA I/O unavailable at Port pins. 001: CEX0 routed to Port pin. 010: CEX0, CEX1 routed to Port pins. 011: CEX0, CEX1, CEX2 routed to Port pins. 100: CEX0, CEX1, CEX2, CEX3 routed to Port pins. 101: CEX0, CEX1, CEX2, CEX3, CEX4 routed to Port pins. 110: CEX0, CEX1, CEX2, CEX3, CEX4, CEX5 routed to Port pins. 111: Reserved.									

SFR Definition 17.2. XBR1: Port I/O Crossbar Register 1

SFR Definition 17.18. P2SKIP: Port2 Skip

SFR Definition 17.19. P2MAT: Port2 Match

SFR Definition 17.20. P2MASK: Port2 Mask

SFR Definition 17.24. P3SKIP: Port3 Skip

SFR Definition 19.2. SBUF0: Serial (UART0) Port Data Buffer

SFR Page: SFR Address:	all pages 0x99								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
								00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Bits 7–0: SBUF0[7:0]: Serial Data Buffer Bits 7–0 (MSB–LSB) This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmis- sion. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the con- tents of the receive latch.									

	Frequency: 25.0 MHz									
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)			
\mathbf{x}	230400	-0.47%	108	SYSCLK	XX 2	1	0xCA			
Cloc	115200	0.45%	218	SYSCLK	XX	1	0x93			
er C	57600	-0.01%	434	SYSCLK	XX	1	0x27			
Dsc Osc	28800	0.45%	872	SYSCLK/4	01	0	0x93			
ind.	14400	-0.01%	1736	SYSCLK/4	01	0	0x27			
-K a xter	9600	0.15%	2608	EXTCLK/8	11	0	0x5D			
Э С Г	2400	0.45%	10464	SYSCLK/48	10	0	0x93			
SY: fror	1200	-0.01%	20832	SYSCLK/48	10	0	0x27			
)sc., al Osc.	57600	-0.47%	432	EXTCLK/8	11	0	0xE5			
SYSCLK from Internal O Timer Clock from Extern	28800	-0.47%	864	EXTCLK/8	11	0	0xCA			
	14400	0.45%	1744	EXTCLK/8	√/8 11		0x93			
	9600	0.15%	2608	EXTCLK/8	11	0	0x5D			
Notes:										

Table 19.2. Timer Settings for Standard Baud Rates Using an External 25.0 MHz Oscillator

SCA1–SCA0 and T1M bit definitions can be found in Section 21.1.

2. X = Don't care.

Figure 21.1. T0 Mode 0 Block Diagram

21.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

21.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic '0' or when the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see Section "10.5. External Interrupts" on page 115 for details on the external input signals /INT0 and /INT1).

21.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

Figure 21.3. T0 Mode 3 Block Diagram

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

- Updated specification tables with most recently available characterization data.
- Fixed an error with the SYSCLK specification in Table 3.1, "Global Electrical Characteristics," on page 33.
- Corrected the name of the PMAT bit in SFR Definition 10.2. IP: Interrupt Priority.
- Corrected the reset value for SFR Definition 22.2. PCA0MD: PCA0 Mode.

Revision 0.2 to Revision 1.0

- Updated specification tables with characterization data.
- Fixed Table 1.1, "Product Selection Guide," on page 19 to reflect the correct number of Port I/O pins for the C8051F361/2/4/5.
- Updated Section "10. Interrupt Handler" on page 107.
- Added note describing EA change behavior when followed by single cycle instruction.
- Updated SFR Definition 11.1
 - Changed the MAC0SC (MAC0CF.5) bit description to correctly refer to the MAC0SD bit.
- Updated SFR Definition 15.2.
 - Changed the EMI0CF description to properly describe the 1k XRAM boundaries.
- Added Table 16.2, "Internal Low Frequency Oscillator Electrical Characteristics," on page 171.
- Updated SFR Definition 16.9:
 - Specified that the undefined states for PLLLP3–0 are RESERVED.
- Added Table 19.7 and Table 19.8 on page 231 for UART Baud Rates when using the PLL.
- Updated Table 22.1, "PCA Timebase Input Options," on page 263:
 Specified that the undefined states of CPS2–0 are RESERVED.
- Added Revision B to "Revision Specific Behavior" on page 279.

Revision 1.0 to Revision 1.1

- Updated ordering table with Revision C part numbers.
- Updated Figure 17.2. 'Port I/O Cell Block Diagram' on page 183 to refer to VDD instead of VIO.
- Added Revision C to "Revision Specific Behavior" on page 279.
- Added Revision C to the REVID C2 register in C2 Register Definition 24.3.
- Updated "Digital Supply Current (Stop Mode, shutdown)" typical value in Table 3.1, "Global Electrical Characteristics," on page 33.
- Updated "Missing Clock Detector Timeout" typical value in Table 12.1, "Reset Electrical Characteristics," on page 134.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com