

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 21x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f361-c-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F360/1/2/3/4/5/6/7/8/9

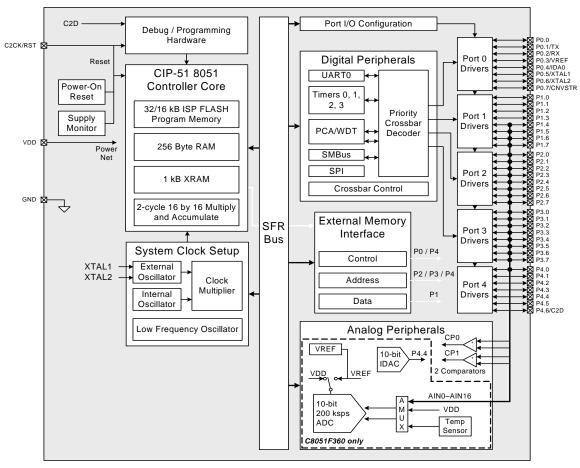


Figure 1.1. C8051F360/3 Block Diagram

1.1.3. Additional Features

The C8051F36x SoC family includes several key enhancements to the CIP-51 core and peripherals to improve performance and ease of use in end applications.

The extended interrupt handler provides 16 interrupt sources into the CIP-51 (as opposed to 7 for the standard 8051), allowing numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.

Eight reset sources are available: power-on reset circuitry (POR), an on-chip V_{DD} Monitor (forces reset when power supply voltage drops below V_{RST} as given in Table 12.1 on page 134), a Watchdog Timer, a Missing Clock Detector, a voltage level detection from Comparator0, a forced software reset, an external reset pin, and an illegal Flash access protection circuit. Each reset source except for the POR, Reset Input Pin, or Flash error may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.

The internal oscillator factory calibrated to 24.5 MHz ±2%. This internal oscillator period may be user programmed in ~0.5% increments. An additional low-frequency oscillator is also available which facilitates low-power operation. An external oscillator drive circuit is included, allowing an external crystal, ceramic resonator, capacitor, RC, or CMOS clock source to generate the system clock. If desired, the system clock source may be switched on-the-fly between both internal and external oscillator circuits. An external oscillator can also be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) source, while periodically switching to the fast (up to 25 MHz) internal oscillator as needed. Additionally, an on-chip PLL is provided to achieve higher system clock speeds for increased throughput.

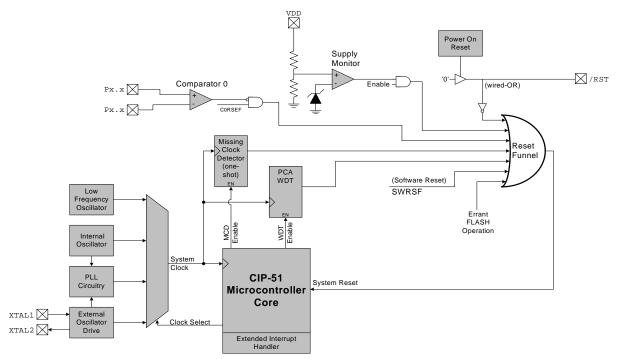


Figure 1.5. On-Chip Clock and Reset

5. 10-Bit ADC (ADC0, C8051F360/1/2/6/7/8/9)

The ADC0 subsystem for the C8051F360/1/2/6/7/8/9 consists of two analog multiplexers (referred to collectively as AMUX0) with 23 total input selections, and a 200 ksps, 10-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 operates in both Single-ended and Differential modes, and may be configured to measure P1.0-P3.4 (where available), the Temperature Sensor output, or V_{DD} with respect to P1.0-P3.4, VREF, or GND. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic '1'. The ADC0 subsystem is in low power shutdown when this bit is logic '0'.

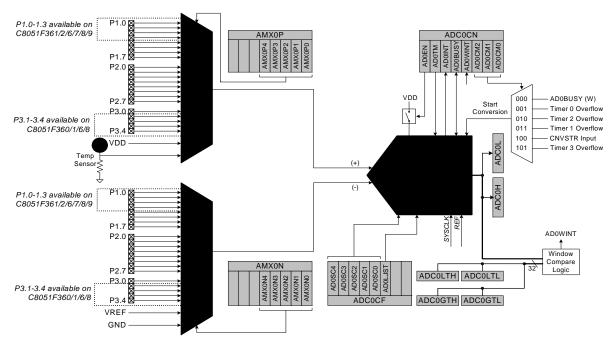


Figure 5.1. ADC0 Functional Block Diagram

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Valu		
-	-	-	AMX0N4	AMX0N3	AMX0N2	AMX0N1	AMX0N0	0000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
∘s7_5·I	INUSED R	ead – 000	b; Write = do	n't care						
			legative Inpu							
			s selected as	-	•	•	-			
r	node. For al	l other Ne	gative Input	selections,	ADC0 opera	ates in Diffe	erential mod	e.		
Г		AMX0N4	L-0			ative Input				
-		00000 ⁽¹			-	.0 ⁽¹⁾				
-		000001 ⁽¹				.1 ⁽¹⁾				
-		00001				.2 ⁽¹⁾				
ŀ		00010				.2 ⁽¹⁾				
ŀ		00011				-				
-		00100			P1.4 P1.5					
-		00110				1.6				
_		00111			P	1.7				
		01000				2.0				
_		01001				2.1				
-		01010			P2.2 P2.3					
-		01011 01100			P2.4					
		01100				2.4				
-		01110				2.6				
		01111			P2	2.7				
		10000				3.0				
		10001 ⁽²	2)		P3.	.1 ⁽²⁾				
		10010 ⁽²			P3.	2 ⁽²⁾				
		10011 ⁽²	2)		P3.	.3 ⁽²⁾				
F		10100 ⁽²	2)		P3.	4 ⁽²⁾				
F		10101–11				RVED				
		11110				REF				
		11111			GI	ND				
	RESE 2. Only a	RVED on C applies to C	8051F361/2/6 28051F360 (4 8051F360/1/6 /9 (28-pin) dev	8-pin) device 5/8 (48-pin ar			ERVED			

C8051F360/1/2/3/4/5/6/7/8/9

complete Port I/O configuration details. The TEMPE bit in register REF0CN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

R	R	R	R	R/W	R/W	R/W	R/W	Reset Value					
-	-	-	-	REFSL	TEMPE	BIASE	REFBE	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_					
Bits 7–4: UNUSED. Read = 0000b; Write = don't care.													
Bit 3:	REFSL: Voltage Reference Select.												
	This bit selects the source for the internal voltage reference.												
	0: VREF pin used as voltage reference.												
	1: V _{DD} used as voltage reference.												
Bit 2:	TEMPE: Ten	nperature S	Sensor Enab	ole Bit.									
	0: Internal Te	emperature	Sensor off.										
	1: Internal Te	emperature	Sensor on.										
Bit 1:	BIASE: Inter	nal Analog	Bias Gener	ator Enable	e Bit.								
	0: Internal Bi	as Genera	tor off.										
	1: Internal Bi	as Genera	tor on.										
Bit 0:	REFBE: Inte	rnal Refere	ence Buffer	Enable Bit.									
	0: Internal R	eference B	uffer disable	ed.									
0: Internal Reference Buffer disabled. 1: Internal Reference Buffer enabled. Internal voltage reference driven on the VREF pin.													

C8051F360/1/2/3/4/5/6/7/8/9

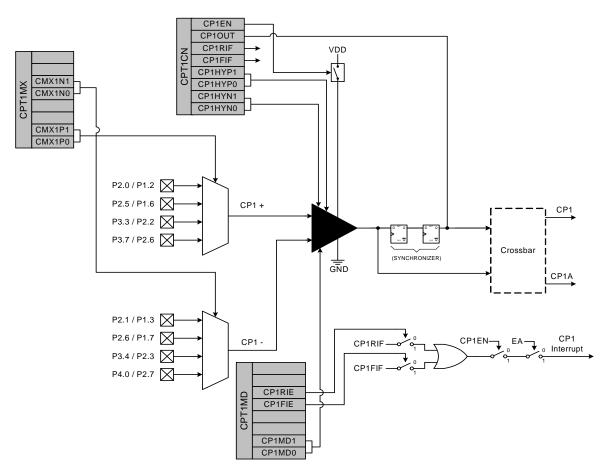


Figure 8.2. Comparator1 Functional Block Diagram

A Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator outputs are available asynchronous or synchronous to the system clock; the asynchronous outputs are available even in STOP mode (with no system clock active). When disabled, the Comparator outputs (if assigned to a Port I/O pin via the Crossbar) default to the logic low state, and their supply current falls to less than 100 nA. See Section "17.1. Priority Crossbar Decoder" on page 184 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 8.1.

The Comparator response time may be configured in software via the CPT0MD and CPT1MD registers (see SFR Definition 8.3 and SFR Definition 8.6). Selecting a longer response time reduces the Comparator supply current. See Table 8.1 for complete timing and power consumption specifications.

SFR Definition 9.1. SFR0CN: SFR Page Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu			
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SFRPGEN	0000001			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	·			
 Bit 0: SFRPGEN: SFR Automatic Page Control Enable. Upon interrupt, the C8051 Core will vector to the specified interrupt service routine and aut matically switch to SFR page 0. This bit is used to control this autopaging function. 0: SFR Automatic Paging disabled. C8051 core will not automatically change to SFR page 0. 1: SFR Automatic Paging enabled. Upon interrupt, the C8051 will automatically switch to SFR page 0. 											

SFR Definition 9.2. SFRPAGE: SFR Page

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	ifying SFR's. Write: Sets th Read: Byte is When enable switch to SFR (unless SFR SFRPAGE is caused by in	he SFR Pa s the SFR p ed in the SF R Page 0x0 Stack was the top by	FR Page Cc 00 and retur altered befo te of the SF	ontrol Regis in to the pre ore a return iR Page Sta	ter (SFR0C vious SFR ing from the ick, and pus	page upon e interrupt). sh/pop ever	return fror	n interrupt

Table 9.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
EMI0CF	0xC7	F	EMIF Configuration	page 155 ²
EMI0CN	0xAA	All Pages	EMIF Control	page 154 ²
EMI0TC	0xF7	F	EMIF Timing Control	page 160 ²
FLKEY	0xB7	0	Flash Lock and Key	page 142
FLSCL	0xB6	0	Flash Scale	page 143
FLSTAT	0xAC	F	Flash Status	page 152
IDA0CN	0xB9	All Pages	IDAC0 Control	page 65 ¹
IDA0H	0x97	All Pages	IDAC0 High Byte	page 65 ¹
IDA0L	0x96	All Pages	IDAC0 Low Byte	page 66 ¹
IE	0xA8	All Pages	Interrupt Enable	page 110
IP	0xB8	All Pages	Interrupt Priority	page 111
IT01CF	0xE4	All Pages	INT0/INT1 Configuration	page 116
MAC0ACC0	0xD2	0	MAC0 Accumulator Byte 0 (LSB)	page 126
MAC0ACC1	0xD3	0	MAC0 Accumulator Byte 1	page 125
MAC0ACC2	0xD4	0	MAC0 Accumulator Byte 2	page 125
MAC0ACC3	0xD5	0	MAC0 Accumulator Byte 3 (MSB)	page 125
MAC0AH	0xA5	0	MAC0 A Register High Byte	page 123
MAC0AL	0xA4	0	MAC0 A Register Low Byte	page 124
MAC0BH	0xF2	0	MAC0 B Register High Byte	page 124
MAC0BL	0xF1	0	MAC0 B Register Low Byte	page 124
MAC0CF	0xD7	0	MAC0 Configuration	page 122
MAC0OVR	0xD6	0	MAC0 Accumulator Overflow	page 126
MACORNDH	0xAF	0	MAC0 Rounding Register High Byte	page 126
MACORNDL	0xAE	0	MAC0 Rounding Register Low Byte	page 127
MACOSTA	0xCF	0	MAC0 Status Register	page 123
OSCICL	0xBF	F	Internal Oscillator Calibration	page 169
OSCICN	0xB7	F	Internal Oscillator Control	page 170
OSCLCN	0xAD	F	Internal L-F Oscillator Control	page 171
OSCXCN	0xB6	F	External Oscillator Control	page 174
P0	0x80	All Pages	Port 0 Latch	page 189
POMASK	0xF4	0	Port 0 Mask	page 191

2. Refers to a register in the C8051F360/3 only.

11.2. Integer and Fractional Math

MAC0 is capable of interpreting the 16-bit inputs stored in MAC0A and MAC0B as signed integers or as signed fractional numbers. When the MAC0FM bit (MAC0CF.1) is cleared to '0', the inputs are treated as 16-bit, 2's complement, integer values. After the operation, the accumulator will contain a 40-bit, 2's complement, integer value. Figure 11.2 shows how integers are stored in the SFRs.

MAC0A and MAC0B Bit Weighting

	High Byte						Low Byte							
-(2 ¹⁵) 2 ¹⁴	2 ¹³	2 ¹²	211	210	2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

MAC0 Accumulator Bit Weighting	
--------------------------------	--

MACOOVR	MAC0ACC3 : MAC0ACC2 : MAC0ACC1 : MAC0ACC0
-(2 ³⁹) 2 ³⁸ 2 ³³ 2 ³²	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Figure 11.2. Integer Mode Data Representation

When the MACOFM bit is set to '1', the inputs are treated at 16-bit, 2's complement, fractional values. The decimal point is located between bits 15 and 14 of the data word. After the operation, the accumulator will contain a 40-bit, 2's complement, fractional value, with the decimal point located between bits 31 and 30. Figure 11.3 shows how fractional numbers are stored in the SFRs.

MAC0A, and MAC0B Bit Weighting

High Byte										Low	Byte					
-1	2-1	2-2	2 ⁻³	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	

MAC0 Accumulator Bit Weighting

MAC0OVR		MAC0ACC3 : MAC0ACC2 : MAC0ACC1 : MAC0ACC0									
-(2 ⁸) 2 ⁷ 2 ²	21	20	2-1	2 ⁻²	2 ⁻³	22	2 ⁻²⁷	2 ⁻²⁸	2-29	2 ⁻³⁰	2 ⁻³¹

MACORND Bit Weighting

High Byte						Low Byte										
* -2	1	2-1	2-2	2 ⁻³	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2 ⁻¹²	2 ⁻¹³	2-14	2-15

* The MACORND register contains the 16 LSBs of a two's complement number. The MACON Flag can be used to determine the sign of the MACORND register.

Figure 11.3. Fractional Mode Data Representation

11.3. Operating in Multiply and Accumulate Mode

MAC0 operates in Multiply and Accumulate (MAC) mode when the MACOMS bit (MAC0CF.0) is cleared to '0'. When operating in MAC mode, MAC0 performs a 16-by-16 bit multiply on the contents of the MAC0A and MAC0B registers, and adds the result to the contents of the 40-bit MAC0 accumulator. Figure 11.4 shows the MAC0 pipeline. There are three stages in the pipeline, each of which takes exactly one SYSCLK cycle to complete. The MAC operation is initiated with a write to the MAC0BL register. After the MAC0BL register is written, MAC0A and MAC0B are multiplied on the first SYSCLK cycle. During the second stage of the MAC0 pipeline, the results of the multiplication are added to the current accumulator contents, and the result of the addition is stored in the MAC0 accumulator. The status flags in the MAC0STA register are set after the end of the second pipeline stage. During the second stage of the pipeline, the next multiplication are determined by writing to the MAC0BL register, if it is desired. The rounded (and optionally, saturated) result is available in the MAC0RNDH and MAC0RNDL registers at the end of the third pipeline stage. If the MAC0CA bit (MAC0CF.3) is set to '1' when the MAC operation is initiated, the accumulator and all MAC0STA flags will be cleared during the next cycle of the controller's clock (SYSCLK). The MAC0CA bit will clear itself to '0' when the clear operation is complete.

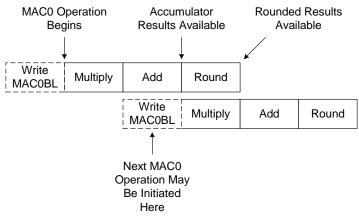
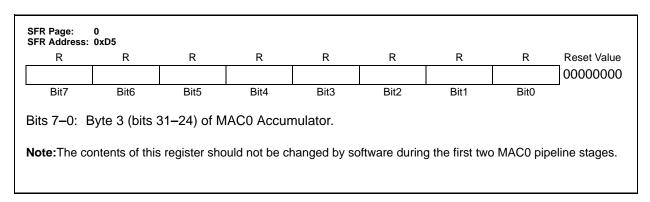
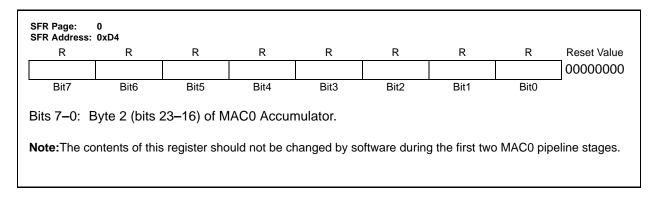


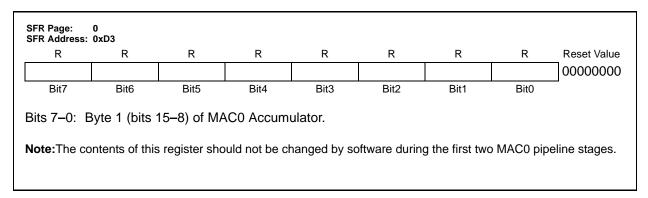
Figure 11.4. MAC0 Pipeline

11.4. Operating in Multiply Only Mode


MAC0 operates in Multiply Only mode when the MAC0MS bit (MAC0CF.0) is set to '1'. Multiply Only mode is identical to Multiply and Accumulate mode, except that the multiplication result is added with a value of zero before being stored in the MAC0 accumulator (i.e. it overwrites the current accumulator contents). The result of the multiplication is available in the MAC0 accumulator registers at the end of the second MAC0 pipeline stage (two SYSCLKs after writing to MAC0BL). As in MAC mode, the rounded result is available in the MAC0 Rounding Registers after the third pipeline stage. Note that in Multiply Only mode, the MAC0HO flag is not affected.

11.5. Accumulator Shift Operations


MAC0 contains a 1-bit arithmetic shift function which can be used to shift the contents of the 40-bit accumulator left or right by one bit. The accumulator shift is initiated by writing a '1' to the MAC0SC bit (MAC0CF.5), and takes one SYSCLK cycle (the rounded result is available in the MAC0 Rounding Registers after a second SYSCLK cycle, and MAC0SC is cleared to '0'). The direction of the arithmetic shift is controlled by the MAC0SD bit (MAC0CF.4). When this bit is cleared to '0', the MAC0 accumulator will shift left. When the MAC0SD bit is set to '1', the MAC0 accumulator will shift right. Right-shift operations are sign-extended with the current value of bit 39. Note that the status flags in the MAC0STA register are not affected by shift operations.


SFR Definition 11.7. MAC0ACC3: MAC0 Accumulator Byte 3

SFR Definition 11.8. MAC0ACC2: MAC0 Accumulator Byte 2

SFR Definition 11.9. MAC0ACC1: MAC0 Accumulator Byte 1

15.2. Configuring the External Memory Interface

Configuring the External Memory Interface consists of five steps:

- 1. Configure the Output Modes of the associated port pins as either push-pull or open-drain (push-pull is most common), and skip the associated pins in the crossbar.
- 2. Configure Port latches to "park" the EMIF pins in a dormant state (usually by setting them to logic '1').
- 3. Select Multiplexed mode or Non-multiplexed mode.
- 4. Select the memory mode (on-chip only, split mode without bank select, split mode with bank select, or off-chip only).
- 5. Set up timing to interface with off-chip memory or peripherals.

Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition 15.2.

15.3. Port Configuration

The External Memory Interface appears on Ports 1, 2 (non-multiplexed mode only), 3, and 4 when it is used for off-chip memory access. When the EMIF is used in multiplexed mode, the Crossbar should be configured to skip over the ALE control line (P0.0) using the POSKIP register. The other control lines, /RD (P4.4) and /WR (P4.5), are not available on the Crossbar and do not need to be skipped. For more information about configuring the Crossbar, see Section "17.3. General Purpose Port I/O" on page 189. The EMIF pinout is shown in Table 15.1 on page 154.

The External Memory Interface claims the associated Port pins for memory operations ONLY during the execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port pins reverts to the Port latches or to the Crossbar settings for those pins. See Section "17. Port Input/Output" on page 182 for more information about the Crossbar and Port operation and configuration. **The Port latches should be explicitly configured to 'park' the External Memory Interface pins in a dormant state, most commonly by setting them to a logic '1'**.

During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the drivers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases, the output modes of all EMIF pins should be configured for push-pull mode.

15.4.2. Non-multiplexed Configuration

In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Non-multiplexed Configuration is shown in Figure 15.2. See Section "15.6.1. Non-multiplexed Mode" on page 161 for more information about Non-multiplexed operation.

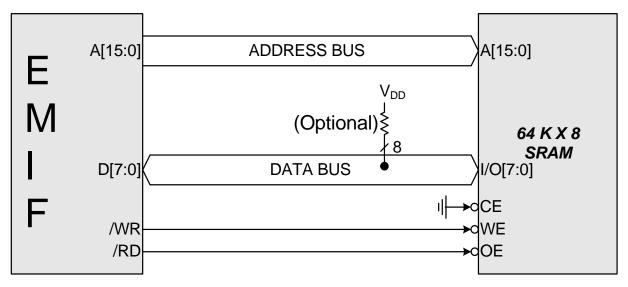


Figure 15.2. Non-multiplexed Configuration Example

15.6.1.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = '110'.

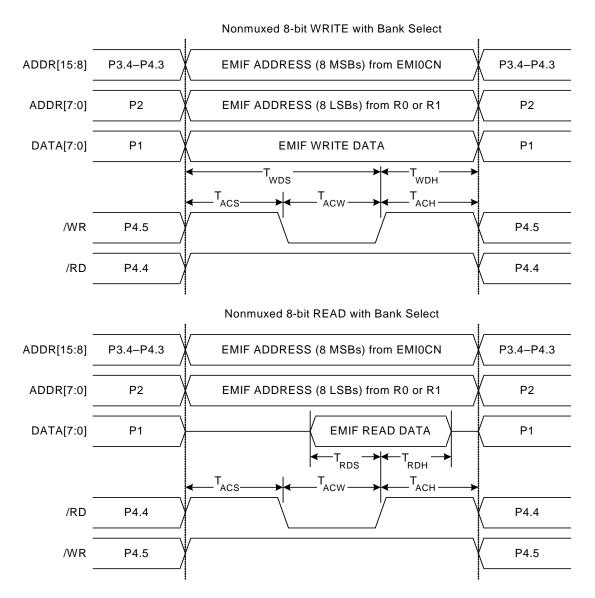
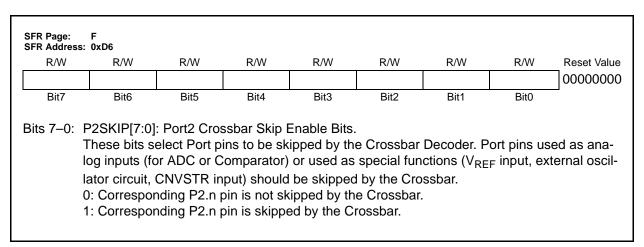
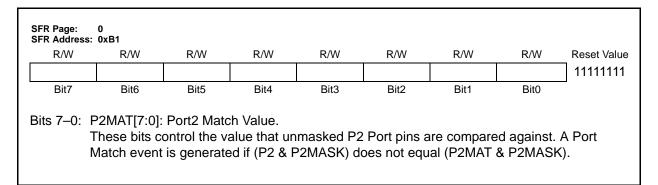
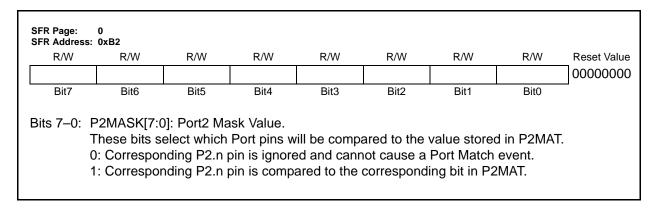


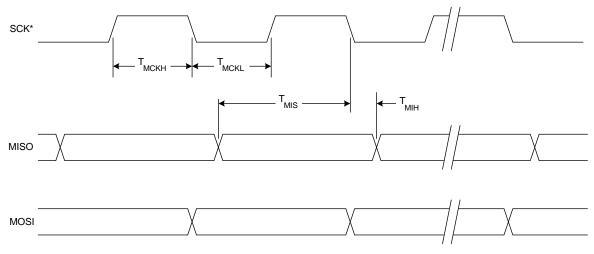
Figure 15.6. Non-multiplexed 8-bit MOVX with Bank Select Timing



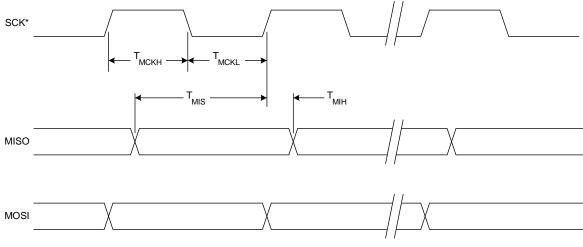
R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value
XTLVLD	XOSCME	02 XOSCMD1	XOSCMD0	Reserved	XFCN2	XFCN1	XFCN0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	XTLVLD: C	Crystal Oscilla	tor Valid Fla	g.				
	(Valid only	when XOS	CMD = 11x.)	-				
	•	Oscillator is u		•				
		Oscillator is ru						
Bits 6–4:		2–0: External		ode Bits.				
		nal Oscillator						
		nal CMOS Clo		مرط مانينام م	O ata sa			
		nal CMOS Clo scillator Mode		th divide by	z stage.			
		citor Oscillato						
	•	al Oscillator N						
	•	al Oscillator N		vide by 2 sta	ae			
Bit 3:		D. Read = $0b$			90.			
		External Osc			ol Bits.			
		ee table belov		,				
Γ	XFCN	Crystal (XO	SCMD = 11x	() RC (XO	SCMD = 10	00) C (X	OSCMD =	101)
	000	f ≤ 3	2 kHz	f ≤	25 kHz	KI	actor = 0.8	37
	001	32 kHz <	f ≤ 84 kHz	25 kHz	< f ≤ 50 kH	lz K	Factor = 2.	6
	010	84 kHz < f	≤ 225 kHz	50 kHz	< f ≤ 100 kl	Hz K	Factor = 7.	7
	011	225 kHz <	f ≤ 590 kHz	100 kHz	$< f \le 200 \text{ k}$	Hz K	Factor = 22	2
	100	590 kHz <	f ≤ 1.5 MHz	200 kHz	$< f \le 400 \text{ k}$	Hz K	Factor = 6	5
	101	1.5 MHz <	∶f≤4 MHz	400 kHz	< f ≤ 800 k	Hz K	Factor = 18	30
	110	4 MHz < f	⁻ ≤10 MHz	800 kHz	< f ≤ 1.6 M	IHz K	Factor = 66	64
	111	10 MHz <	f ≤ 30 MHz	1.6 MHz	$< f \le 3.2 \text{ M}$	IHz K F	actor = 15	90
CDVCTA		irouit from Fic		ntion 1, VOC		y)		
CRISIA		ircuit from Fig FCN value to				X)		
		om Figure 16						
		CN value to			10/1			
		0 ³)/(R * C), wh		eneg renger				
	•	icy of oscillati						
		tor value in p						
		resistor value						
C MODE	(Circuit fror	n Figure 16.1	, Option 3; X	(OSCMD = ²	10x)			
		Factor (KF) for	or the oscilla	tion frequen	cy desired:			
	f = KF/(C *	^r V _{DD}), where						
	f = frequen	cy of oscillati	on in MHz					
		tor value on X			-			
		er Supply on	MOLL in Male	1-				


SFR Definition 16.5. OSCXCN: External Oscillator Control


SFR Definition 17.18. P2SKIP: Port2 Skip


SFR Definition 17.19. P2MAT: Port2 Match

SFR Definition 17.20. P2MASK: Port2 Mask



* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 20.9. SPI Master Timing (CKPHA = 1)

22. Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. PCA0 consists of a dedicated 16-bit counter/timer and six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "17.3. General Purpose Port I/O" on page 189). The counter/timer is driven by a programmable timebase that can select between six inputs as its source: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an external clock signal on the ECI line. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each is described in Section 22.2). The PCA is configured and controlled through the system controller's Special Function Registers. The basic PCA block diagram is shown in Figure 22.1.

Important Note: The PCA Module 5 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 22.3 for details.

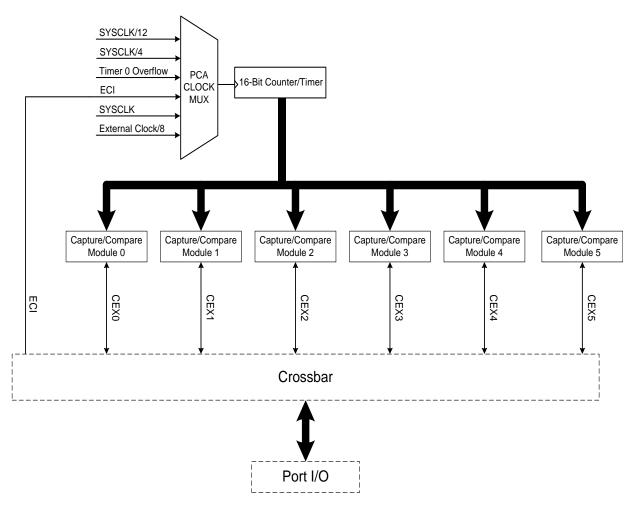


Figure 22.1. PCA Block Diagram

22.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA0 counter/timer is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic '1' and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

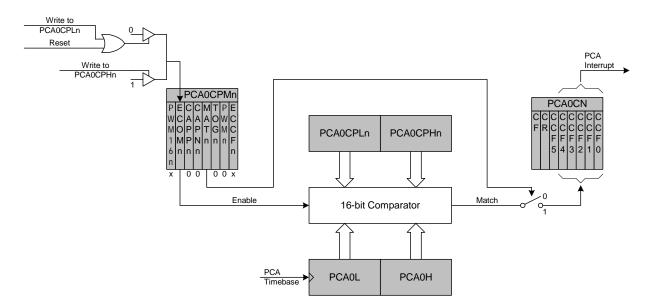


Figure 22.5. PCA Software Timer Mode Diagram

System Clock (Hz)	PCA0CPL5	Timeout Interval (ms)
24,500,000	255	32.1
24,500,000	128	16.2
24,500,000	32	4.1
18,432,000	255	42.7
18,432,000	128	21.5
18,432,000	32	5.5
11,059,200	255	71.1
11,059,200	128	35.8
11,059,200	32	9.2
3,062,500 ²	255	257
3,062,500 ²	128	129.5
3,062,500 ²	32	33.1
191,406	255	4109
191,406	128	2070
191,406	32	530
32,000	255	24576
32,000	128	12384
32,000	32	3168
 Iotes: 1. Assumes SYSCLK/ of 0x00 at the updat 2. Internal oscillator re 	e time.	source, and a PCA0L value

Table 22.3. Watchdog Timer Timeout Intervals¹

