

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 21x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f361-c-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	18
	1.1. CIP-51 [™] Microcontroller Core	22
	1.1.1. Fully 8051 Compatible	22
	1.1.2. Improved Throughput	22
	1.1.3. Additional Features	22
	1.2. On-Chip Memory	23
	1.3. On-Chip Debug Circuitry	24
	1.4. Programmable Digital I/O and Crossbar	25
	1.5. Serial Ports	26
	1.6. Programmable Counter Array	26
	1.7. 10-Bit Analog to Digital Converter	27
	1.8. Comparators	28
	1.9. 10-bit Current Output DAC	30
2.	Absolute Maximum Ratings	32
3.	Global Electrical Characteristics	33
4.	Pinout and Package Definitions	36
5.	10-Bit ADC (ADC0, C8051F360/1/2/6/7/8/9)	47
	5.1. Analog Multiplexer	48
	5.2. Temperature Sensor	49
	5.3. Modes of Operation	51
	5.3.1. Starting a Conversion	51
	5.3.2. Tracking Modes	52
	5.3.3. Settling Time Requirements	53
	5.4. Programmable Window Detector	57
	5.4.1. Window Detector In Single-Ended Mode	60
	5.4.2. Window Detector In Differential Mode	61
6.	10-Bit Current Mode DAC (IDA0, C8051F360/1/2/6/7/8/9)	63
	6.1. IDA0 Output Scheduling	63
	6.1.1. Update Output On-Demand	63
	6.1.2. Update Output Based on Timer Overflow	64
	6.1.3. Update Output Based on CNVSTR Edge	64
	6.2. IDAC Output Mapping	64
7.	Voltage Reference (C8051F360/1/2/6/7/8/9)	67
8.	Comparators	70
9.	CIP-51 Microcontroller	80
	9.1. Performance	80
	9.2. Programming and Debugging Support	81
	9.3. Instruction Set	82
	9.3.1. Instruction and CPU Timing	82
	9.3.2. MOVX Instruction and Program Memory	82
	9.4. Memory Organization	86
	9.4.1. Program Memory	86
	9.4.2. Data Memory	87

Table 3.1. Global Electrical Characteristics (Continued)

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Current—CP	U Inactive (Idle Mode, not fetching instructi	ons fro	om Flas	sh)	
l _{DD} ²	V _{DD} = 3.6 V, F = 100 MHz		36	40	mA
	V _{DD} = 3.6 V, F = 25 MHz	-	9	12	mA
	V _{DD} = 3.0 V, F = 100 MHz	-	30	35	mA
	V _{DD} = 3.0 V, F = 25 MHz	-	7	9	mA
	V _{DD} = 3.0 V, F = 1 MHz	-	0.24	_	mA
	V _{DD} = 3.0 V, F = 80 kHz	-	19	_	μA
חח Supply Sensitivity ³	F = 25 MHz	—	44	—	%/V
	F = 1 MHz	'	43.7	_	%/V
I _{DD} Frequency Sensitivity ^{3,5}	V _{DD} = 3.0 V, F <= 1 MHz, T = 25 °C	—	0.24		mA/MHz
	V _{DD} = 3.0 V, F > 1 MHz, T = 25 °C	-	0.25	_	mA/MHz
	V _{DD} = 3.6 V, F <= 1 MHz, T = 25 °C	-	0.31	_	mA/MHz
	V _{DD} = 3.6 V, F > 1 MHz, T = 25 °C	-	0.32	_	mA/MHz
Digital Supply Current (Stop Mode, shutdown)	Oscillator not running, V _{DD} Monitor Disabled		0.5		μA

Notes:

1. SYSCLK must be at least 32 kHz to enable debugging.

- 2. SYSCLK is the internal device clock. For operational speeds in excess of 30 MHz, SYSCLK must be derived from the Phase-Locked Loop (PLL).
- **3.** Based on device characterization data; Not production tested.
- 4. IDD can be estimated for frequencies ≤ 20 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for >20 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 15.9 mA (25 MHz 20 MHz) * 0.38 mA/MHz = 14 mA.
- 5. Idle IDD can be estimated for frequencies ≤ 1 MHz by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for >1 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 7.2 mA (25 MHz 5 MHz) * 0.25 mA/MHz = 2.2 mA.

Other electrical characteristics tables are found in the data sheet section corresponding to the associated peripherals. For more information on electrical characteristics for a specific peripheral, refer to the page indicated in Table 3.2.

SFR Definition 5.6. ADC0CN: ADC0 Control

SFR Page: SFR Addres	all pages s: 0xE8	(bit addı	essable)					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0WINT	AD0CM2	AD0CM1	AD0CM0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	<u> </u>
Bit 7:	AD0EN: AD0	C0 Enable E	Bit.					
	0: ADC0 Dis	abled. ADC	0 is in low-po	ower shutdo	own.			
	1: ADC0 Ena	abled. ADC) is active an	d ready for	data conve	rsions.		
DIL D.	0. Normal Tr	ock Mode: N		is anablad	tracking is	continuous	unless a co	nversion is
	in progress			is enableu,	tracking is t	continuous		
	1: Low-powe	r Track Mo	de: Tracking	Defined by	AD0CM2-0	bits (see b	elow).	
Bit 5:	ADOINT: ADO	C0 Convers	ion Complet	e Interrupt	Flag.	,	,	
	0: ADC0 has	not comple	eted a data c	onversion s	since the las	t time AD0	INT was cle	ared.
	1: ADC0 has	completed	a data conve	ersion.				
Bit 4:	ADOBUSY: A	ADC0 Busy	Bit.					
		version is c	omplete or a	conversion	n is not curre	antly in proc		NT is set to
	logic '1' on	the falling	edge of AD0	BUSY.		sindy in prog		13 361 10
	1: ADC0 con	version is i	n progress.					
	Write:							
	0: No Effect.							
D '' 0	1: Initiates A	DC0 Conve	rsion if AD00	CM2-0 = 00	00b			
BIT 3:		DCU Windo	w Compare	Interrupt FI	ag. oot occurroo	t sinco this	flag was las	st cloared
	1. ADC0 Wir	ndow Comp	arison Data r	match has i	not occurred		llay was las	si cleareu.
Bits 2–0:	AD0CM2-0:	ADC0 Star	of Conversi	on Mode S	elect.			
	When AD0T	M = 0:						
	000: ADC0 c	onversion i	nitiated on ev	very write o	f '1' to AD0	BUSY.		
	001: ADC0 c	onversion i	nitiated on ov	verflow of T	ïmer 0.			
	010: ADC0 c	onversion i	nitiated on ov	verflow of I	imer 2.			
		onversion il	nitiated on ov	ing edge c	imer 1. If external C			
	101: ADC0 c	onversion i	nitiated on ov	verflow of T	imer 3.			
	11x: Reserve	ed.						
	When AD0T	M = 1:						
	000: Tracking	g initiated o	n write of '1'	to AD0BUS	SY and lasts	3 SAR clo	cks, followe	d by con-
	Versio	n. 				AD alaaka f	مالمين مالمي	
	001: Tracking	g initiated o	n overflow of	Timer 0 ar	10 lasts 3 SA	AR CIOCKS, I AR clocks f	followed by	conversion.
	011: Tracking	g initiated o	n overflow of	Timer 1 ar	nd lasts 3 SA	AR clocks, f	followed by	conversion.
	100: ADC0 ti	racks only v	/hen CNVST	R input is l	ogic low; co	nversion sta	arts on risin	g CNVSTR
l	101: Tracking	g initiated o	n overflow of	Timer 3 ar	nd lasts 3 SA	AR clocks, f	ollowed by	conversion.
	11x: Reserve	ed.						

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

5.4.1. Window Detector In Single-Ended Mode

Figure 5.6 shows two example window comparisons for right-justified, single-ended data, with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). In single-ended mode, the input voltage can range from '0' to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 5.7 shows an example using left-justified data with the same comparison values.

Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data

Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data

C8051F360/1/2/3/4/5/6/7/8/9

Figure 8.2. Comparator1 Functional Block Diagram

A Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator outputs are available asynchronous or synchronous to the system clock; the asynchronous outputs are available even in STOP mode (with no system clock active). When disabled, the Comparator outputs (if assigned to a Port I/O pin via the Crossbar) default to the logic low state, and their supply current falls to less than 100 nA. See Section "17.1. Priority Crossbar Decoder" on page 184 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 8.1.

The Comparator response time may be configured in software via the CPT0MD and CPT1MD registers (see SFR Definition 8.3 and SFR Definition 8.6). Selecting a longer response time reduces the Comparator supply current. See Table 8.1 for complete timing and power consumption specifications.

SFR Page: SFR Address	all pages :: 0x9C							
R	R	R/W	R/W	R	R	R/W	R/W	Reset Value
-	-	CP1RIE	CP1FIE	-	-	CP1MD1	CP1MD0	00000010
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–6: Bit 5: Bit 4:	UNUSED. R CP1RIE: Co 0: Comparat 1: Comparat CP1FIE: Col 0: Comparat 1: Comparat	ead = 00b, \ mparator1 R or1 Rising-e or1 Rising-e mparator1 F or1 Falling-e or1 Falling-e	Vrite = don tising-Edge dge interru dge interru alling-Edge edge interru edge interru	t care. Interrupt E ot disabled pt enabled. Interrupt E pt disabled pt enabled	nable. nable. I.			
Bits 1–0:	CP1MD1-C	P1MD0: Cor	nparator1 N	lode Selec	t			
2.10 . 01	These bits s	elect the res	ponse time	for Compa	rator1.			
			•	·				
	Mode	CP1MD1	CP1MD) CP1 Re	esponse Ti	me (TYP)		
	0	0	0		100 ns			
	1	0	1		175 ns			
	2	1	0		320 ns			
	3	1	1		1050 ns			

SFR Definition 8.6. CPT1MD: Comparator1 Mode Selection

9.4.2. Data Memory

The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFR's. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 9.2 illustrates the data memory organization of the CIP-51.

9.4.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 9.8). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

9.4.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination). The MCS-51[™] assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte.

For example, the instruction:

MOV C, 22.3h

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

9.4.5. Stack

A programmer's stack can be located anywhere in the 256 byte data memory. The stack area is designated using the Stack Pointer (SP, address 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07; therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

The MCUs also have built-in hardware for a stack record which is accessed by the debug logic. The stack record is a 32-bit shift register, where each PUSH or increment SP pushes one record bit onto the register,

10.5. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The IN0PL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "21.1. Timer 0 and Timer 1" on page 246) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	/INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IT1 IN1PL /INT1 Interrupt					
1	0	Active low, edge sensitive				
1	1	Active high, edge sensitive				
0	0	Active low, level sensitive				
0	1	Active high, level sensitive				

/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 10.7). Note that /INT0 and /INT0 Port pin assignments are independent of any Crossbar assignments. /INT0 and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INT0 and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see Section "17.1. Priority Crossbar Decoder" on page 184 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic '1' while the input is active as defined by the corresponding polarity bit (INOPL or IN1PL); the flag remains logic '0' while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

SFR Definition 11.7. MAC0ACC3: MAC0 Accumulator Byte 3

SFR Definition 11.8. MAC0ACC2: MAC0 Accumulator Byte 2

SFR Definition 11.9. MAC0ACC1: MAC0 Accumulator Byte 1

13. Flash Memory

All devices include either 32 kB (C8051F360/1/2/3/4/5/6/7) or 16 kB (C8051F368/9) of on-chip, reprogrammable Flash memory for program code or non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface, or by software using the MOVX write instructions. Once cleared to logic '0', a Flash bit must be erased to set it back to logic '1'. Bytes should be erased (set to 0xFF) before being reprogrammed. Flash write and erase operations are automatically timed by hardware for proper execution. During a Flash erase or write, the FLBUSY bit in the FLSTAT register is set to '1' (see SFR Definition 14.5). During this time, instructions that are located in the prefetch buffer or the branch target cache can be executed, but the processor will stall until the erase or write is completed if instruction data must be fetched from Flash memory. Interrupts that have been pre-loaded into the branch target cache can also be serviced at this time, if the current code is also executing from the prefetch engine or cache memory. Any interrupts that are not pre-loaded into cache, or that occur while the core is halted, will be held in a pending state during the Flash write/erase operation, and serviced in priority order once the Flash operation has completed. Refer to Table 13.2 for the electrical characteristics of the Flash memory.

13.1. Programming the Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "24. C2 Interface" on page 283. For detailed guidelines on writing or erasing Flash from firmware, please see Section "13.3. Flash Write and Erase Guidelines" on page 140.

The Flash memory can be programmed from software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic '1'. This directs the MOVX writes to Flash memory instead of to XRAM, which is the default target. The PSWE bit remains set until cleared by software. To avoid errant Flash writes, it is recommended that interrupts be disabled while the PSWE bit is logic '1'.

Flash memory is read using the MOVC instruction. MOVX reads are always directed to XRAM, regardless of the state of PSWE.

Note: To ensure the integrity of the Flash contents, the on-chip V_{DD} Monitor must be enabled in any system that includes code that writes and/or erases Flash memory from software. Furthermore, there should be no delay between enabling the V_{DD} Monitor and enabling the V_{DD} Monitor as a reset source. Any attempt to write or erase Flash memory while the V_{DD} Monitor disabled will cause a Flash Error device reset.

A write to Flash memory can clear bits but cannot set them; only an erase operation can set bits in Flash. A byte location to be programmed must be erased before a new value can be written.

Write/Erase timing is automatically controlled by hardware. Note that on the 32 k Flash devices, 1024 bytes beginning at location 0x7C00 are reserved. Flash writes and erases targeting the reserved area should be avoided.

13.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and

13.2. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to '1' before software can modify the Flash memory; both PSWE and PSEE must be set to '1' before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock *n* 1024-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x03FF), where *n* is the 1's complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are '1') and locked when any other Flash pages are locked (any bit of the Lock Byte is '0'). See the example below for an C8051F360.

Figure 13.1. Flash Program Memory Map

18.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. In the table below, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed but do not conform to the SMBus specification.

Insmitter Mode	Values Read			Values Written					
Mode	Values Read Current SMbus State sn by	Current SMbus State	Typical Response Options	STA	STo	ACK			
	1110	0	0	х	A master START was generated.	Load slave address + R/W into SMB0DAT.	0	0	Х
		0	0	0	A master data or address byte Set STA to restart transfer.				Х
Ŀ		Ŭ			was transmitted; NACK received.	0	1	Х	
nsmitte					Load next data byte into SMB0DAT.				Х
. Tra	1100					End transfer with STOP.	0	1	Х
Mastei	1100	0	0	1	A master data or address byte was transmitted: ACK received.	End transfer with STOP and start another transfer.	1	1	Х
						Send repeated START.	1	0	Х
				Switch to Master Receiver Mode (clear SI without writ- ing new data to SMB0DAT).	0	0	Х		

Table 18.4. SMBus Status Decoding

			Fre	equency: 25.0	MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
¥	230400	-0.47%	108	SYSCLK	XX 2	1	0xCA
Cloc	115200	0.45%	218	SYSCLK	XX	1	0x93
er (57600	-0.01%	434	SYSCLK	XX	1	0x27
Dsc Osc	28800	0.45%	872	SYSCLK/4	01	0	0x93
ind.	14400	-0.01%	1736	SYSCLK/4	01	0	0x27
-K a Xter	9600	0.15%	2608	EXTCLK/8	11	0	0x5D
ЭCL ЭСС	2400	0.45%	10464	SYSCLK/48	10	0	0x93
SY: fror	1200	-0.01%	20832	SYSCLK/48	10	0	0x27
sc., al Osc.	57600	-0.47%	432	EXTCLK/8	11	0	0xE5
n Extern	28800	-0.47%	864	EXTCLK/8	11	0	0xCA
K from Ir lock fror	14400	0.45%	1744	EXTCLK/8	11	0	0x93
SYSCLI Timer C	9600	0.15%	2608	EXTCLK/8	11	0	0x5D
Notes:	SCA1_SCA0 a	nd T1M bit dofin	itiona con ha	found in Spation	21.1		

Table 19.2. Timer Settings for Standard Baud Rates Using an External 25.0 MHz Oscillator

SCA1–SCA0 and T1M bit definitions can be found in Section 21.1.

2. X = Don't care.

Figure 21.1. T0 Mode 0 Block Diagram

21.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

21.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic '0' or when the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see Section "10.5. External Interrupts" on page 115 for details on the external input signals /INT0 and /INT1).

SFR Definition	21.2.	TMOD:	Timer	Mode
----------------	-------	-------	-------	------

SFR Page: SFR Addres	all pages s: 0x89							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit0	_1		
Bit 7:	GATE1: Ti	mer 1 Gate	e Control.					
	0: Timer 1	enabled w	hen TR1 = 1 i	rrespective	of /INT1 log	jic level.		
	1: Timer 1	enabled o	nly when TR1	= 1 AND / II	VT1 is activ	e as define	d by bit IN1	PL in regis-
	ter II01CF	· (see SFR	Definition 10.	7).				
Bit 6:	C/T1: COU	nter/ I imer	1 Select.		ماد مامائنه مما اد			
	0: Timer F	UNCTION: III	mer 1 increme	ented by clo	ck defined t	by TTIVI DIt (CKCON.4)	input nin
	(T1)	Function.	Timer Tincrei	nemed by r	lign-lo-low l	ransitions c	on external	input pin
Bits 5–4·	(11). T1M1_T1N	10. Timer	1 Mode Select					
Ы135 ч.	These bits	select the	Timer 1 opera	ation mode				
	T1M1	T1M0		Mod	е			
	0	0	Мос	le 0: 13-bit o	counter/time	er		
	0	1	Мос	le 1: 16-bit o	counter/time	er		
	1	0	Mode 2: 8-b	it counter/ti	mer with au	to-reload		
	1	1	M	ode 3: Time	r 1 inactive			
D 1/ 0								
Bit 3:	GATE0: II	mer 0 Gate	e Control.			·		
	0: Timer 0	enabled w		rrespective		JIC IEVEI.	-1 L L . IN 10	
	tor IT01CE	enabled o	Definition 10	= 1 AND /11	NTU IS activ	e as denned	a by bit line	PL in regis-
Bit 2		nter/Timer	Select	7).				
Dit 2.	0. Timer F	unction: Ti	mer () increme	ented by clo	rk defined h	w TOM bit (
	1: Counter	· Function	Timer 0 increi	mented by t	high-to-low t	ransitions	on external	input pin
	(T0).	r anotion.		nontoù by i			in oxtornal	nipacpin
Bits 1–0:	TOM1-TOM	M0: Timer () Mode Select					
	These bits	select the	Timer 0 opera	ation mode.				
			-					
	T0M1	T0M0		Mode	9			
	0	0	Mode	e 0: 13-bit c	ounter/time	r		
	0	1	Mode	e 1: 16-bit c	ounter/time	r		
	1	0	Mode 2: 8-bi	t counter/tin	ner with aut	o-reload		
	1	1	Mode 3	3: Two 8-bit	counter/time	ers		

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ТЗМН	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
sit 7:	T3MH: Time	r 3 High Byt	e Clock Se	lect.				
	This bit selec	ts the clock	supplied to	o the Timer	3 high byte	e if Timer 3 i	is configure	ed in split 8-
	Dit timer moc	ie. 131VIH is ab buto ugo	Ignored If	lime 3 is in	any other n	NOCIE. Kaitin TM		
	1. Timer 3 hi	gn byte use	s the clock	m clock			COCIN.	
sit 6 [.]	T3MI Timer	3 I ow Byte	Clock Sel	ect				
. U.	This bit selec	cts the clock	supplied t	o Timer 3. I	f Timer 3 is	configured	in split 8-b	it timer
	mode, this bi	t selects the	e clock sup	plied to the	lower 8-bit	timer.	op o	
	0: Timer 3 lo	w byte uses	the clock	defined by t	he T3XCLK	bit in TMR	3CN.	
	1: Timer 3 lo	w byte uses	s the system	n clock.				
Bit 5:	T2MH: Time	r 2 High Byt	e Clock Se	lect.				
	This bit selec	ts the clock	supplied t	o the Timer	2 high byte	if Timer 2 i	is configure	ed in split 8-
	bit timer moc	le. T2MH is	ignored if	Fimer 2 is ir	any other	mode.		
	0: Timer 2 hi	gh byte use	s the clock	defined by	the I2XCL	K bit in TMI	R2CN.	
Sit ∕I·	T: Timer 2 nig	2 Low Byte	s the syste	m clock.				
м 4.	This hit selec	z LOW Dyte	supplied to	n Timer 2 I	f Timer 2 is	configured	in split 8-b	it timer
	mode. this bi	t selects the	e clock sup	plied to the	lower 8-bit	timer.	in opiit o b	
	0: Timer 2 lo	w byte uses	s the clock	defined by t	he T2XCLK	bit in TMR	2CN.	
	1: Timer 2 lo	w byte uses	s the system	n clock.				
3it 3:	T1M: Timer 1	I Clock Sele	ect.					
	This select the	ne clock sou	urce supplie	ed to Timer	1. T1M is ig	nored whe	n C/T1 is s	et to
	logic '1'.							
	0: Timer 1 us	ses the cloc	k defined b	y the presc	ale bits, SC	A1–SCA0.		
2:4 0.	1: Limer 1 us	ses the syst	em clock.					
3it 2:	TOM: Timer (CIOCK Sele	ect.	naliad to Ti	mor O TOM	in innered	when C/TO	io oot to
	Ingic '1'		source su	pplied to Ti		is ignored	when C/TU	is set to
	0: Counter/Ti	imer () uses	the clock o	lefined by t	he prescale	bits SCA1	-SCA0	
	1: Counter/T	imer 0 uses	the system	n clock.	no procoulo		00/10.	
Bits 1–0:	SCA1-SCAC): Timer 0/1	Prescale B	its.				
	These bits co	ontrol the di	vision of the	e clock sup	plied to Tim	er 0 and/or	Timer 1 if	configured
	to use presca	aled clock ir	nputs.					
	SCA1	SCAO		Pr	escaled Clo	ock		
	0	0	Svste	n clock divi	ded by 12			
	0	1	Svster	m clock divi	ded by 4			
	4		Svete	m clock divi	ded by 48			
		0	Syster	II CIUCK UIVI				

SFR Definition 21.3. CKCON: Clock Control

SFR Definition 21.14. TMR3RLL: Timer 3 Reload Register Low Byte

SFR Definition 21.15. TMR3RLH: Timer 3 Reload Register High Byte

SFR Definition 21.16. TMR3L: Timer 3 Low Byte

SFR Definition 21.17. TMR3H Timer 3 High Byte

22.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 22.1.

Equation 22.1. Square Wave Frequency Output

$$F_{sqr} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Where F_{PCA} is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA0 counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 22.7. PCA Frequency Output Mode

24. C2 Interface

C8051F36x devices include an on-chip Silicon Laboratories 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

24.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 24.1. C2ADD: C2 Address

C2 Register Definition 24.2. DEVICEID: C2 Device ID

