
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f363-c-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 22.7. PCA Frequency Output Mode	268
Figure 22.8. PCA 8-Bit PWM Mode Diagram	
Figure 22.9. PCA 16-Bit PWM Mode	
Figure 22.10. PCA Module 5 with Watchdog Timer Enabled	271
23. Revision Specific Behavior	
Figure 23.1. Device Package - TQFP 48	279
Figure 23.2. Device Package - LQFP 32	280
Figure 23.3. Device Package - QFN 28	280
24. C2 Interface	
Figure 24.1. Typical C2 Pin Sharing	285

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by (AD0SC + 1) for $0 \le AD0SC \le 31$).

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2-0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a '1' to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 1 overflow
- 5. A rising edge on the CNVSTR input signal
- 6. A Timer 3 overflow

Writing a '1' to AD0BUSY provides software control of ADC0 whereby conversions are performed "ondemand". During conversion, the AD0BUSY bit is set to logic '1' and reset to logic '0' when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic '1'. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See Section "21. Timers" on page 245 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.7 on the C8051F360 devices and Port pin P0.6 on the C8051F361/2/6/7/8/9 devices. When the CNVSTR input is used as the ADC0 conversion source, the corresponding port pin should be skipped by the Digital Crossbar. To configure the Crossbar to skip the port pin, set the appropriate bit to '1' in register P0SKIP. See Section "17. Port Input/Output" on page 182 for details on Port I/O configuration.

SFR Definition 8.5. CPT1MX: Comparator1 MUX Selection

	R/W	R/W	R/W R/W		R/W	R/W	R/W	Reset Value
-	-	CMX1N ²	CMX1N0			CMX1P1	CMX1P0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–6:	UNUSED.	Read = 11b	, Write = don	't care.				
Bits 5–4:	CMX1N1-	CMX1N0: C	comparator1	Negative I	nput MUX S	Select.		
	These bits	select whic	h Port pin is ι	used as th	e Compara	tor1 negative	e input.	
	CMX1N1	CMX1N0	C8051F	360/3	C8051F36	61/2/4/5/6/7/	8/9	
	CIVIATINT		Negative	Input	Nega	tive Input		
	0	0	P2.1			P1.3		
	0	1	P2.6			P1.7		
	1	0	P3.4			P2.3		
	1	1	P4.0			P2.7		
	CMX1P1– These bits	CMX1P0: C select whic	ο, Write = don omparator1 F h Port pin is ι C8051F	Positive In used as th	e Compara			
	CMX1P1 CMX1		Positive			tive Input	0/3	
	0	0	POSITIVE P2.0		FUS	P1.2		
	0	1	P2.0			P1.2 P1.6		
	0	0	P2.5 P3.3			P2.2		
	1	•	P3.3 P3.7		P2.6			
	1	1	P3.,	/				

ADDRESS	SFR Page	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
F8	0 F	SPIOCN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	PCA0CPL4	PCA0CPH4	VDM0CN
F0	0 F	В	MAC0BL P0MDIN	MAC0BH P1MDIN	P0MAT P2MDIN	P0MASK P3MDIN	PCA0CPL5	PCA0CPH5	- EMI0TC
E8	0 F	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2	PCA0CPL3	PCA0CPH3	RSTSRC
E0	0 F	ACC	P1MAT XBR0	P1MASK XBR1	-	IT01CF	- SFR0CN	EIE1	EIE2
D8	0 F	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2	PCA0CPM3	PCA0CPM4	PCA0CPM5
D0	0 F	PSW	REF0CN	MAC0ACC0 CCH0LC	MAC0ACC1 CCH0MA	MAC0ACC2 P0SKIP	MAC0ACC3 P1SKIP	MAC0OVR P2SKIP	MAC0CF P3SKIP
C8	0 F	TMR2CN	- CCH0TN	TMR2RLL	TMR2RLH	TMR2L	TMR2H	- EIP1	MAC0STA EIP2
C0	0 F	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	- EMI0CF
B8	0 F	IP	IDA0CN	AMX0N	AMX0P	ADC0CF	ADC0L	ADC0H	- OSCICL
B0	0 F	P3	P2MAT PLL0MUL	P2MASK PLL0FLT	- PLL0CN	-	P4	FLSCL OSCXCN	FLKEY OSCICN
A8	0 F	IE	- PLL0DIV	EMIOCN	-	- FLSTAT	- OSCLCN	MAC0RNDL P4MDOUT	MACORNDH P3MDOUT
A0	0 F	P2	SPI0CFG	SPI0CKR	SPI0DAT	MAC0AL P0MDOUT	MAC0AH P1MDOUT	- P2MDOUT	SFRPAGE
98	0 F	SCON0	SBUF0	CPT1CN	CPT0CN	CPT1MD	CPT0MD	CPT1MX	CPT0MX
90	0 F	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	IDA0L	IDA0H
88	0 F	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL CLKSEL
80	0 F	P0	SP	DPL	DPH	- CCH0CN	SFRNEXT	SFRLAST	PCON
		0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table 9.2. Special Function Register (SFR) Memory Map

bit-addressable shaded SFRs are accessible on all SFR Pages regardless of the contents of SFRPAGE

(subtractio AC: Auxilia This bit is s from (subt F0: User F This is a b RS1–RS0: These bits RS1 0 0	set when t on). It is cle ary Carry I set when t raction) th Flag 0. it-address : Register	R/W RS1 Bit4 the last arithmetic eared to 0 by all of Flag he last arithmetic e high order nibb able, general pu Bank Select. ich register bank Register Bank 0 1	other arith c operation ble. It is cle rpose flag k is used c Addr 0x00-	metic oper n resulted ir eared to 0 l for use un luring regis ess 0x07	ations. n a carry int by all other der softwar	o (addition) arithmetic o e control.	or a borrow				
Bit6 CY: Carry This bit is s (subtractio AC: Auxilia This bit is s from (subt F0: User F This is a b RS1–RS0: These bits RS1 0 0	Bit5 Flag. set when t on). It is cle ary Carry I set when t raction) th Flag 0. it-address : Register s select wh RS0 0	Bit4 Bit4 Bit4 Bared to 0 by all of Flag he last arithmetic e high order nibb able, general pu Bank Select. ich register bank Register Bank 0	Bit3 c operatio other arith c operatior ole. It is clo rpose flag c is used c Addr 0x00–	Bit2 n resulted metic oper n resulted ir eared to 0 l for use un luring regis ess 0x07	Bit1 Bit1 in a carry (a ations. n a carry int oy all other der softwar	Bit0 addition) or to (addition) arithmetic o re control.	a borrow or a borrow				
CY: Carry This bit is (subtractio AC: Auxilia This bit is s from (subt F0: User F This is a b RS1–RS0: These bits RS1 0 0	Flag. set when to on). It is cleary Carry F set when to raction) the Flag 0. it-address : Register s select when RS0 0	the last arithmeti eared to 0 by all Flag he last arithmetic e high order nibb able, general pu Bank Select. ich register bank Register Bank	c operatio other arith c operatior ole. It is clo rpose flag c is used c Addr 0x00-	n resulted metic oper n resulted ir eared to 0 l for use un luring regis ess 0x07	in a carry (a ations. n a carry int by all other der softwar	addition) or to (addition) arithmetic o re control.	or a borrow				
This bit is (subtractio AC: Auxilia This bit is from (subt F0: User F This is a b RS1–RS0: These bits RS1 0 0	set when t on). It is cle ary Carry I set when t raction) th flag 0. iit-address : Register : select wh RS0 0	eared to 0 by all o Flag he last arithmetic e high order nibb able, general pu Bank Select. ich register bank Register Bank 0	other arith c operation ble. It is cle rpose flag k is used c Addr 0x00-	metic oper o resulted in eared to 0 l for use un luring regis ess 0x07	ations. n a carry int by all other der softwar	o (addition) arithmetic o e control.	or a borrow				
(subtractio AC: Auxilia This bit is s from (subt F0: User F This is a b RS1–RS0: These bits RS1 0 0	on). It is cle ary Carry I set when t raction) th Flag 0. it-address : Register s select wh RS0 0	eared to 0 by all o Flag he last arithmetic e high order nibb able, general pu Bank Select. ich register bank Register Bank 0	other arith c operation ble. It is cle rpose flag k is used c Addr 0x00-	metic oper o resulted in eared to 0 l for use un luring regis ess 0x07	ations. n a carry int by all other der softwar	o (addition) arithmetic o e control.	or a borrow				
AC: Auxilia This bit is s from (subt F0: User F This is a b RS1–RS0: These bits RS1 0 0	ary Carry I set when t raction) th Flag 0. it-address : Register s select wh RS0 0	Flag he last arithmetic e high order nibb able, general pu Bank Select. ich register bank Register Bank 0	c operation ole. It is clo rpose flag c is used c Addr 0x00–	n resulted in eared to 0 l for use un luring regis ess 0x07	n a carry int by all other der softwar	arithmetic o					
This bit is s from (subt F0: User F This is a b RS1–RS0: These bits RS1 0 0	set when t raction) th Flag 0. it-address : Register s select wh RS0 0	he last arithmetic e high order nibb able, general pu Bank Select. ich register bank Register Bank 0	ole. It is clo rpose flag (is used c Addr 0x00-	eared to 0 for use un luring regis ess 0x07	by all other der softwar	arithmetic o					
F0: User F This is a b RS1–RS0: These bits RS1 0 0	Flag 0. it-address : Register : select wh RS0 0	able, general pu Bank Select. ich register bank Register Bank 0	rpose flag k is used c Addr 0x00–	for use un luring regis ess 0x07	der softwar	e control.	operations.				
This is a b RS1–RS0 These bits RS1 0 0	it-address : Register : select wh RS0 0	Bank Select. ich register bank Register Bank 0	k is used c Addr 0x00-	luring regis ess 0x07							
RS1–RS0: These bits RS1 0 0	: Register select wh RS0 0	Bank Select. ich register bank Register Bank 0	k is used c Addr 0x00-	luring regis ess 0x07							
These bits RS1 0 0	select wh	ich register bank Register Bank 0	Addr 0x00-	ess 0x07	ter accesse	es.					
RS1 0 0	RS0 0	Register Bank	Addr 0x00-	ess 0x07	ter access	es.					
0 0	0	0	0x00-	0x07							
0											
	1	1	0x08–								
				0 1 1 0x08–0x0F							
1 0 2 0x10–0x17 1 1 3 0x18–0x1F											
								This bit is : • An ADD, • A MUL in • A DIV ins The OV bit cases. F1: User F This is a b PARITY: P	set to 1 ur ADDC, or astruction c struction c t is cleared Flag 1. it-address Parity Flag	SUBB instruction results in an over auses a divide-b d to 0 by the ADI able, general pu	on causes rflow (resu y-zero cor D, ADDC, rpose flag
	DV: Overf This bit is An ADD, A MUL ir A DIV ins The OV bi cases. F1: User F This is a b PARITY: F	DV: Overflow Flag. This bit is set to 1 ur An ADD, ADDC, or A MUL instruction of A DIV instruction c The OV bit is cleared cases. This is a bit-address PARITY: Parity Flag. This bit is set to 1 if t	DV: Overflow Flag. This bit is set to 1 under the following An ADD, ADDC, or SUBB instruction A MUL instruction results in an ove A DIV instruction causes a divide-b The OV bit is cleared to 0 by the ADI cases. F1: User Flag 1. This is a bit-addressable, general pu PARITY: Parity Flag. This bit is set to 1 if the sum of the eig	DV: Overflow Flag. This bit is set to 1 under the following circumsta An ADD, ADDC, or SUBB instruction causes A MUL instruction results in an overflow (results A DIV instruction causes a divide-by-zero cor The OV bit is cleared to 0 by the ADD, ADDC, cases. F1: User Flag 1. This is a bit-addressable, general purpose flag PARITY: Parity Flag. This bit is set to 1 if the sum of the eight bits in t	DV: Overflow Flag. This bit is set to 1 under the following circumstances: An ADD, ADDC, or SUBB instruction causes a sign-cha A MUL instruction results in an overflow (result is greate A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MU cases. F1: User Flag 1. This is a bit-addressable, general purpose flag for use un PARITY: Parity Flag. This bit is set to 1 if the sum of the eight bits in the accumu	DV: Overflow Flag. This bit is set to 1 under the following circumstances: An ADD, ADDC, or SUBB instruction causes a sign-change overflor A MUL instruction results in an overflow (result is greater than 255) A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV cases. F1: User Flag 1. This is a bit-addressable, general purpose flag for use under softwar PARITY: Parity Flag. This bit is set to 1 if the sum of the eight bits in the accumulator is odd	DV: Overflow Flag. This bit is set to 1 under the following circumstances: An ADD, ADDC, or SUBB instruction causes a sign-change overflow. A MUL instruction results in an overflow (result is greater than 255). A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions cases. F1: User Flag 1. This is a bit-addressable, general purpose flag for use under software control. PARITY: Parity Flag. This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleare				

SFR Definition 9.8. PSW: Program Status Word

10.2. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP, EIP1, or EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 10.1.

10.3. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. Additional clock cycles will be required if a cache miss occurs (see Section 14 for more details). If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) is when the CPU is performing an RETI instruction followed by a DIV as the next instruction, and a cache miss event also occurs. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	Ν	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	Ν	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
SMB0	0x003B	7	SI (SMB0CN.0)	Y	Ν	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
RESERVED	0x0043	8	N/A	N/A	N/A	N/A	N/A
ADC0 Window Comparator	0x004B	9	AD0WINT (ADC0CN.5)	Y	Ν	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
ADC0 End of Conversion	0x0053	10	AD0INT (ADC0STA.5)	Y	Ν	EADC0 (EIE1.3)	PADC0 (EIP1.3)

Table	10.1.	Interrupt	Summary
-------	-------	-----------	---------

R	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
Bit7	Bit6	MAC0SC Bit5	MAC0SD Bit4	MAC0CA Bit3	MAC0SAT Bit2	MAC0FM Bit1	MAC0MS Bit0	0000000		
2	2.10	2.10	2	2.10	2.12	2	2.10			
		Read = 00b, 1								
Bit 5:		Accumulator					2			
		o 1, the 40-bit						Xt SYSCLP		
		direction of th	•	• •			05D bit.			
Bit 4:					Shint is comp	Jele.				
Dit 4 .	MAC0SD: Accumulator Shift Direction. This bit controls the direction of the accumulator shift activated by the MAC0SC bit.									
		ccumulator w								
	1: MAC0 Accumulator will be shifted right.									
Bit 3:	MAC0CA: Clear Accumulator.									
	This bit is used to reset MAC0 before the next operation.									
	When set to	o '1', the MAC	0 Accumu	ator will be	cleared to ze	ero and the	e MAC0 Sta	tus registe		
	will be reset during the next SYSCLK cycle.									
		be cleared to	•		the reset is	complete.				
Bit 2:		Saturate Rou								
		ntrols whether								
		ccurs, the Ro						•		
		0 Accumulate			r more detai	is about ro	ounding and	saturation		
		g Register wi g Register wi		ate.						
Bit 1:		Fractional Mc								
Dit 1.		ects between		de and Fra	ctional Mode	e for MAC	Operations			
		perates in Inte					oporation			
		perates in Fra	•							
Bit 0:		Mode Select								
	This bit sel	ects between	MAC Mod	e and Multip	oly Only Mod	de.				
	0: MAC (M	ultiply and Ac	cumulate)	Mode.						
	1: Multiply	Only Mode.								
		,								

SFR Definition 11.1. MAC0CF: MAC0 Configuration

13. Flash Memory

All devices include either 32 kB (C8051F360/1/2/3/4/5/6/7) or 16 kB (C8051F368/9) of on-chip, reprogrammable Flash memory for program code or non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface, or by software using the MOVX write instructions. Once cleared to logic '0', a Flash bit must be erased to set it back to logic '1'. Bytes should be erased (set to 0xFF) before being reprogrammed. Flash write and erase operations are automatically timed by hardware for proper execution. During a Flash erase or write, the FLBUSY bit in the FLSTAT register is set to '1' (see SFR Definition 14.5). During this time, instructions that are located in the prefetch buffer or the branch target cache can be executed, but the processor will stall until the erase or write is completed if instruction data must be fetched from Flash memory. Interrupts that have been pre-loaded into the branch target cache can also be serviced at this time, if the current code is also executing from the prefetch engine or cache memory. Any interrupts that are not pre-loaded into cache, or that occur while the core is halted, will be held in a pending state during the Flash write/erase operation, and serviced in priority order once the Flash operation has completed. Refer to Table 13.2 for the electrical characteristics of the Flash memory.

13.1. Programming the Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "24. C2 Interface" on page 283. For detailed guidelines on writing or erasing Flash from firmware, please see Section "13.3. Flash Write and Erase Guidelines" on page 140.

The Flash memory can be programmed from software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic '1'. This directs the MOVX writes to Flash memory instead of to XRAM, which is the default target. The PSWE bit remains set until cleared by software. To avoid errant Flash writes, it is recommended that interrupts be disabled while the PSWE bit is logic '1'.

Flash memory is read using the MOVC instruction. MOVX reads are always directed to XRAM, regardless of the state of PSWE.

Note: To ensure the integrity of the Flash contents, the on-chip V_{DD} Monitor must be enabled in any system that includes code that writes and/or erases Flash memory from software. Furthermore, there should be no delay between enabling the V_{DD} Monitor and enabling the V_{DD} Monitor as a reset source. Any attempt to write or erase Flash memory while the V_{DD} Monitor disabled will cause a Flash Error device reset.

A write to Flash memory can clear bits but cannot set them; only an erase operation can set bits in Flash. A byte location to be programmed must be erased before a new value can be written.

Write/Erase timing is automatically controlled by hardware. Note that on the 32 k Flash devices, 1024 bytes beginning at location 0x7C00 are reserved. Flash writes and erases targeting the reserved area should be avoided.

13.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and

erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 13.2.

13.1.2. Erasing Flash Pages From Software

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) the PSWE and PSEE bits must be set to '1' (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic '0' but cannot set them; only an erase operation can set bits to logic '1' in Flash. A byte location to be programmed should be erased before a new value is written. The Flash memory is organized in 1024-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 1024-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Write the first key code to FLKEY: 0xA5.
- Step 3. Write the second key code to FLKEY: 0xF1.
- Step 4. Set PSEE (PSCTL.1) to enable Flash erases.
- Step 5. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.
- Step 6. Use the MOVX instruction to write a data byte to any location within the page to be erased.
- Step 7. Clear PSEE to disable Flash erases.
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Re-enable interrupts.

13.1.3. Writing Flash Memory From Software

Bytes in Flash memory can be written one byte at a time, or in small blocks. The CHBLKW bit in register CCH0CN (SFR Definition 14.1) controls whether a single byte or a block of bytes is written to Flash during a write operation. When CHBLKW is cleared to '0', the Flash will be written one byte at a time. When CHBLKW is set to '1', the Flash will be written in blocks of four bytes for addresses in code space. Block writes are performed in the same amount of time as single byte writes, which can save time when storing large amounts of data to Flash memory.

For single-byte writes to Flash, bytes are written individually, and the Flash write is performed after each MOVX write instruction. The recommended procedure for writing Flash in single bytes is as follows:

- Step 1. Disable interrupts.
- Step 2. Clear CHBLKW (register CCH0CN) to select single-byte write mode.
- Step 3. Write the first key code to FLKEY: 0xA5.
- Step 4. Write the second key code to FLKEY: 0xF1.
- Step 5. Set PSWE (register PSCTL) to redirect MOVX commands to write to Flash.
- Step 6. Clear the PSEE bit (register PSCTL).
- Step 7. Use the MOVX instruction to write a data byte to the desired location (repeat as necessary).
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Re-enable interrupts.

14. Branch Target Cache

The C8051F36x device families incorporate a 32x4 byte branch target cache with a 4-byte prefetch engine. Because the access time of the Flash memory is 40 ns, and the minimum instruction time is 10 ns (C8051F360/1/2/3/4/5/6/7) or 20 ns (C8051F368/9), the branch target cache and prefetch engine are necessary for full-speed code execution. Instructions are read from Flash memory four bytes at a time by the prefetch engine, and given to the CIP-51 processor core to execute. When running linear code (code without any jumps or branches), the prefetch engine alone allows instructions to be executed at full speed. When a code branch occurs, a search is performed for the branch target (destination address) in the cache. If the branch target information is found in the cache (called a "cache hit"), the instruction data is read from the cache and immediately returned to the CIP-51 with no delay in code execution. If the branch target is not found in the cache (called a "cache miss"), the processor may be stalled for up to four clock cycles while the next set of four instructions is retrieved from Flash memory. Each time a cache miss occurs, the requested instruction data is written to the cache if allowed by the current cache settings. A data flow diagram of the interaction between the CIP-51 and the Branch Target Cache and Prefetch Engine is shown in Figure 14.1.

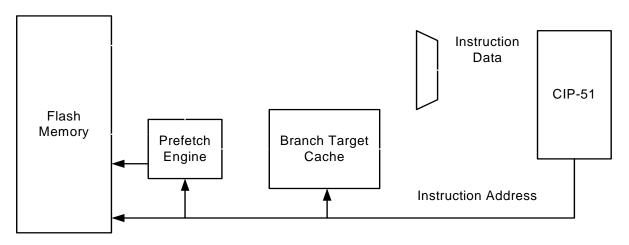


Figure 14.1. Branch Target Cache Data Flow

14.1. Cache and Prefetch Operation

The branch target cache maintains two sets of memory locations: "slots" and "tags". A slot is where the cached instruction data from Flash is stored. Each slot holds four consecutive code bytes. A tag contains the 13 most significant bits of the corresponding Flash address for each four-byte slot. Thus, instruction data is always cached along four-byte boundaries in code space. A tag also contains a "valid bit", which indicates whether a cache location contains valid instruction data. A special cache location (called the linear tag and slot), is reserved for use by the prefetch engine. The cache organization is shown in Figure 14.2. Each time a Flash read is requested, the address is compared with all valid cache tag locations (including the linear tag). If any of the tag locations match the requested address, the data from that slot is immediately provided to the CIP-51. If the requested address matches a location that is currently being read by the prefetch engine, the CIP-51 will be stalled until the read is complete. If a match is not found, the current prefetch operation is abandoned, and a new prefetch operation is initiated for the requested instruction data. When the prefetch engine begins reading the next four-byte word from Flash memory. If the newly-fetched data also meets the criteria necessary to be cached, it will be written to the cache in the slot indicated by the current replacement algorithm.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CHWRE	N CHRDEN	CHPFEN	CHFLSH	CHRETI	CHISR	CHMOVC	CHBLKW	11100110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	CHWREN: C	Cache Write	Enable.					
	This bit enab							
	0: Cache cor locks.	ntents are r	ot allowed	to change, o	except dur	ing Flash wri	ites/erasure	s or cache
	1: Writes to o	cache mem	ory are allo	wed.				
Bit 6:	CHRDEN: C							
	This bit enab	oles the pro	cessor to re	ad instructi	ons from t	he cache me	mory.	
	0: All instruc	tion data co	mes from F	lash memo	ry or the p	refetch engir	ne.	
	1: Instruction			cache (whe	n availabl	e).		
Bit 5:	CHPFEN: Ca							
	This bit enab	oles the pre	fetch engine	э.				
	0: Prefetch e	-						
	1: Prefetch e	•						
Bit 4:	CHFLSH: Ca							
	When writter				contents. 7	This bit alway	/s reads '0'.	
Bit 3:	CHRETI: Ca							
	This bit enab					cached.		
	0: Destinatio				cached.			
	1: RETI dest							
Bit 2:	CHISR: Cac							
	This bit allow			•	•		ine (ISR) to	be cached
	0: Instruction				ache mem	ory.		
	1: Instruction			ed.				
Bit 1:	CHMOVC: C							
	This bit allow						the cache	e memory.
	0: Data requ							
	1: Data requ			ctions will be	e loaded ir	nto cache me	emory.	
Bit 0:	CHBLKW: B							
	This bit allow							
	0: Each byte							
	1: Flash byte	ac aro writte	n in arouns	ot tour (for	code spac	ce writes)		

SFR Definition 14.1. CCH0CN: Cache Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	CHMS	SCTL		CHALGM	CHFIXM	CHM	ISTH	00000100
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–4:	CHMSCTL: (Cache Miss	Penalty A	ccumulator	Bits 4–1).			
	These are bi		-		· ,	To read the	ese bits, th	ney must firs
	be latched by							
	14.4).	-						
Bit 3:	CHALGM: C	ache Algor	ithm Selec	t.				
	This bit seled	cts the cach	ne replacer	nent algorith	m.			
	0: Cache use	es Rebound	d algorithm					
	1: Cache use	es Pseudo-	random alg	gorithm.				
Bit 2:	CHFIXM: Ca	che Fix MC	OVC Enabl	e.				
	This bit force	s MOVC w	rites to the	cache mem	ory to use s	lot 0.		
	0: MOVC da	ta is written	according	to the curre	nt algorithm	selected b	y the CHA	ALGM bit.
	1: MOVC da	ta is always	s written to	cache slot 0				
Bits 1–0:	CHMSTH: C							
	These bits de		•		data will be	cached.		

SFR Definition 14.2. CCH0TN: Cache Tuning

15.4. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

15.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 15.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the 'Q' outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time /RD or /WR is asserted.

See Section "15.6.2. Multiplexed Mode" on page 164 for more information.

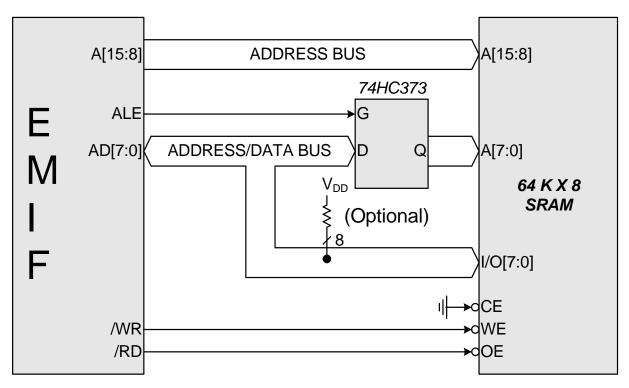
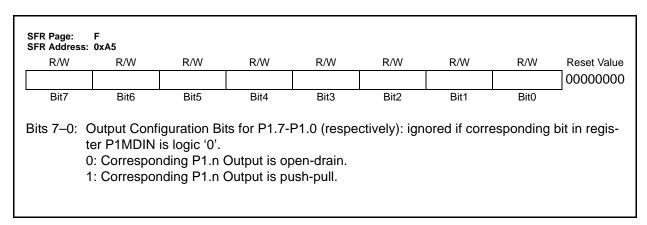
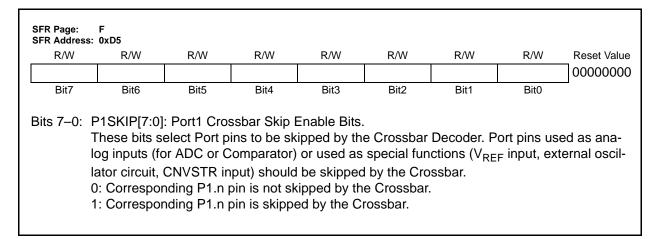


Figure 15.1. Multiplexed Configuration Example



R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Reserve	served Reserved CLKDI		CLKDIV0	Reserved	CLKSL2	CLKSL1	CLKSL0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1
Bits 7–6: RESERVED. Read = 00b. Must Write 00b.								
Bits 5–4: CLKDIV1-0: Output SYSCLK Divide Factor.								
These bits can be used to pre-divide SYSCLK before it is output to a port pin through the								
	crossbar. 00: Output will be SYSCLK.							
01: Output will be SYSCLK/2.								
10: Output will be SYSCLK/4.								
11: Output will be SYSCLK/8.								
See Section "17. Port Input/Output" on page 182 for more details about routing this output to								
a port pin.								
Bit 3:	RESERVED							
Bits 2–0: CLKSL2–0: System Clock Source Select Bits.								
000: SYSCLK derived from the high-frequency Internal Oscillator, and scaled as per the IFCN bits in OSCICN.								
	001: SYSCL	K derived fi	rom the Ext	ernal Oscilla	ator circuit.			
	010: SYSCL OSCLD b	K derived fi its in OSCL		-frequency	nternal Os	cillator, and	scaled as p	per the
	011: RESERVED.							
	100: SYSCLK derived from the PLL.							
	• • • • • • • • • • • •		rom the PLL					


SFR Definition 16.4. CLKSEL: System Clock Selection

SFR Definition 17.11. P1MDOUT: Port1 Output Mode

SFR Definition 17.12. P1SKIP: Port1 Skip

SFR Definition 17.13. P1MAT: Port1 Match

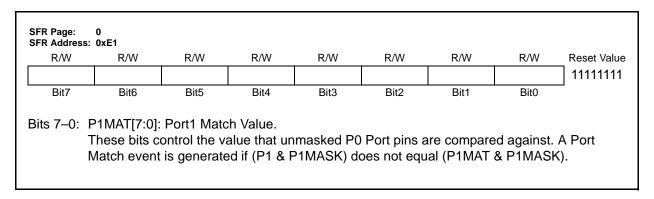


Figure 18.4 shows the typical SCL generation described by Equation 18.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 18.1.

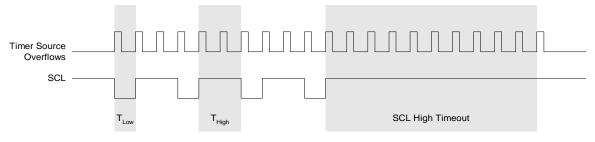


Figure 18.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 18.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time						
	T _{low} – 4 system clocks							
0	0 or 3 system clocks							
	1 system clock + s/w delay*							
1	11 system clocks 12 system clocks							
*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. The s/w delay occurs between the time SMB0DAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.								

Table 18.2. Minimum SDA Setup and Hold Times

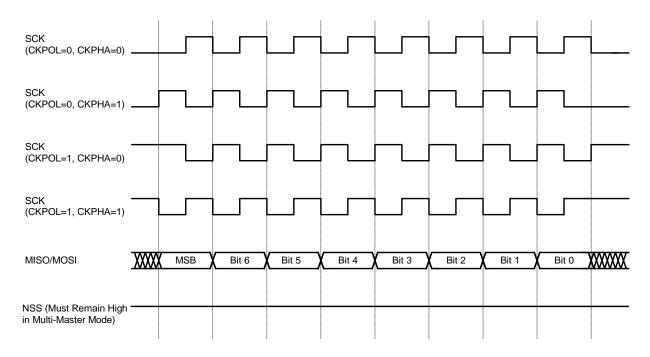
With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "18.3.3. SCL Low Timeout" on page 202). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

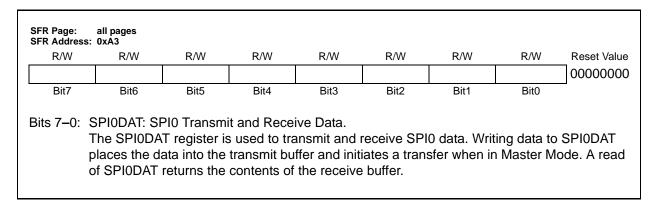
SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 18.4). When a Free Timeout is detected, the interface will respond as if a STOP was detected (an interrupt will be generated, and STO will be set).

20.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 20.5. For slave mode, the clock and data relationships are shown in Figure 20.6 and Figure 20.7. Note that CKPHA must be set to '0' on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, C8051F33x, and C8051F36x.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 20.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.




Figure 20.5. Master Mode Data/Clock Timing

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
f	SCR7–SCR These bits de or master m clock, and is and <i>SPI0CK</i>	etermine th ode operat given in th	e frequency ion. The SC e following	CK clock fre equation, w	quency is a here SYSC	divided ver <i>LK</i> is the sy	sion of the	system
j	$f_{SCK} = \frac{1}{2 \times 10^{-5}}$	SYSCL (SPI0CF	$\frac{K}{(R+1)}$					
f	or 0 <= SPI	0CKR <= 2	55					
Example: I	f SYSCLK =	2 MHz and	SPIOCKR	= 0x04,				
	2000000							
$f_{SCK} =$	$\frac{2000000}{2 \times (4+1)}$)						

SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate

SFR Definition 20.4. SPI0DAT: SPI0 Data

22.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 22.1.

Equation 22.1. Square Wave Frequency Output

$$F_{sqr} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Where F_{PCA} is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA0 counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

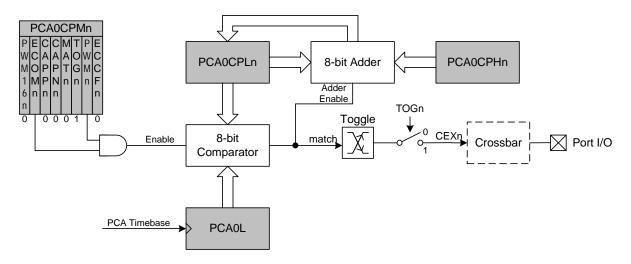


Figure 22.7. PCA Frequency Output Mode

