

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f366-c-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13.3.2.16.4.2 PSWE Maintenance	141
13.3.3.System Clock	141
13.4.Flash Read Timing	143
14. Branch Target Cache	145
14.1.Cache and Prefetch Operation	145
14.2.Cache and Prefetch Optimization	
15. External Data Memory Interface and On-Chip XRAM	152
15.1.Accessing XRAM	
15.1.1.16-Bit MOVX Example	152
15.1.2.8-Bit MOVX Example	152
15.2.Configuring the External Memory Interface	
15.3.Port Configuration	153
15.4.Multiplexed and Non-multiplexed Selection	156
15.4.1.Multiplexed Configuration	156
15.4.2.Non-multiplexed Configuration	157
15.5.Memory Mode Selection	158
15.5.1.Internal XRAM Only	158
15.5.2.Split Mode without Bank Select	
15.5.3.Split Mode with Bank Select	158
15.5.4.External Only	159
15.6.Timing	159
15.6.1.Non-multiplexed Mode	161
15.6.2.Multiplexed Mode	164
16. Oscillators	
16.1.Programmable Internal High-Frequency (H-F) Oscillator	168
16.1.1. Internal Oscillator Suspend Mode	
16.2. Programmable Internal Low-Frequency (L-F) Oscillator	170
16.2.1.Calibrating the Internal L-F Oscillator	
16.3.External Oscillator Drive Circuit	172
16.4.System Clock Selection	172
16.5.External Crystal Example	175
16.6.External RC Example	176
16.7.External Capacitor Example	
16.8.Phase-Locked Loop (PLL)	177
16.8.1.PLL Input Clock and Pre-divider	
16.8.2.PLL Multiplication and Output Clock	
16.8.3.Powering on and Initializing the PLL	
17. Port Input/Output	
17.1.Priority Crossbar Decoder	
17.2.Port I/O Initialization	
17.3.General Purpose Port I/O	
18. SMBus	200
18.1.Supporting Documents	200

List of Figures

1.	System Overview	
	Figure 1.1. C8051F360/3 Block Diagram	20
	Figure 1.2. C8051F361/4/6/8 Block Diagram	21
	Figure 1.3. C8051F362/5/7/9 Block Diagram	21
	Figure 1.4. Comparison of Peak MCU Execution Speeds	22
	Figure 1.5. On-Chip Clock and Reset	23
	Figure 1.6. On-Board Memory Map	24
	Figure 1.7. Development/In-System Debug Diagram	25
	Figure 1.8. Digital Crossbar Diagram (Port 0 to Port 3)	26
	Figure 1.9. PCA Block Diagram	27
	Figure 1.10. PCA Block Diagram	27
	Figure 1.11. 10-Bit ADC Block Diagram	28
	Figure 1.12. Comparator0 Block Diagram	29
	Figure 1.13. Comparator1 Block Diagram	30
	Figure 1.14. IDA0 Functional Block Diagram	31
	Absolute Maximum Ratings	
3.	Global Electrical Characteristics	
4.	Pinout and Package Definitions	
	Figure 4.1. TQFP-48 Pinout Diagram (Top View)	
	Figure 4.2. TQFP-48 Package Diagram	
	Figure 4.3. LQFP-32 Pinout Diagram (Top View)	
	Figure 4.4. LQFP-32 Package Diagram	
	Figure 4.5. QFN-28 Pinout Diagram (Top View)	
	Figure 4.6. QFN-28 Package Drawing	
	Figure 4.7. Typical QFN-28 Landing Diagram	
	Figure 4.8. QFN-28 Solder Paste Recommendation	46
5.	10-Bit ADC (ADC0, C8051F360/1/2/6/7/8/9)	
	Figure 5.1. ADC0 Functional Block Diagram	
	Figure 5.2. Typical Temperature Sensor Transfer Function	
	Figure 5.3. Temperature Sensor Error with 1-Point Calibration	
	Figure 5.4. 10-Bit ADC Track and Conversion Example Timing	
	Figure 5.5. ADC0 Equivalent Input Circuits	
	Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data	
	Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data	
	Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data	
•	Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data	61
6.	10-Bit Current Mode DAC (IDA0, C8051F360/1/2/6/7/8/9)	~~
	Figure 6.1. IDA0 Functional Block Diagram	
-	Figure 6.2. IDA0 Data Word Mapping	64
1.	Voltage Reference (C8051F360/1/2/6/7/8/9)	~ 7
0	Figure 7.1. Voltage Reference Functional Block Diagram	67
ŏ.	Comparators	70
	Figure 8.1. Comparator0 Functional Block Diagram	70

5. 10-Bit ADC (ADC0, C8051F360/1/2/6/7/8/9)

The ADC0 subsystem for the C8051F360/1/2/6/7/8/9 consists of two analog multiplexers (referred to collectively as AMUX0) with 23 total input selections, and a 200 ksps, 10-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 operates in both Single-ended and Differential modes, and may be configured to measure P1.0-P3.4 (where available), the Temperature Sensor output, or V_{DD} with respect to P1.0-P3.4, VREF, or GND. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic '1'. The ADC0 subsystem is in low power shutdown when this bit is logic '0'.

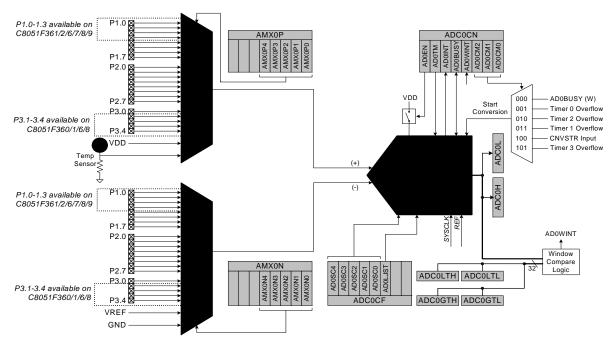


Figure 5.1. ADC0 Functional Block Diagram

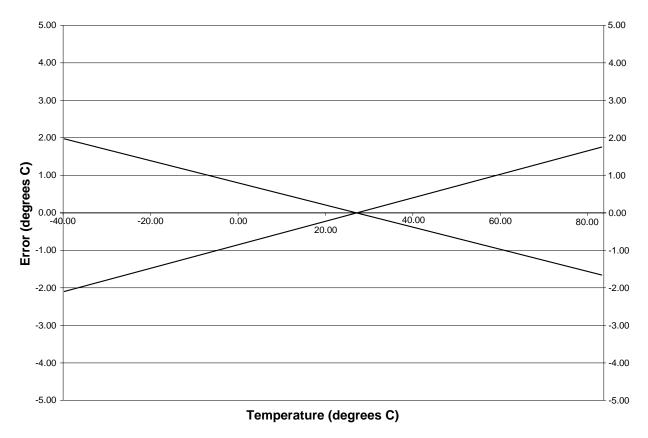
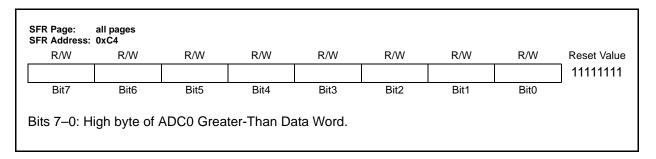
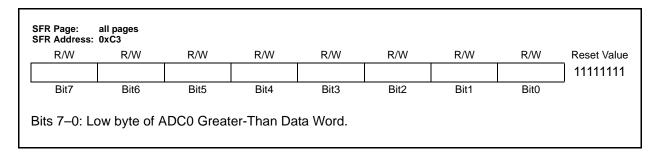


Figure 5.3. Temperature Sensor Error with 1-Point Calibration

SFR Definition 5.6. ADC0CN: ADC0 Control


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
AD0EN	AD0TM	AD0INT	AD0BUSY	ADOWINT	AD0CM2	AD0CM1	AD0CM0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	AD0EN: AD0	C0 Enable	Bit.					
	0: ADC0 Disa	abled. ADC	C0 is in low-p	ower shutde	own.			
	1: ADC0 Ena					ersions.		
Bit 6:	AD0TM: AD0	C0 Track N	lode Bit.					
	0: Normal Tra	ack Mode:	When ADC0	is enabled,	tracking is	continuous	unless a coi	nversion is
	in progress.							
	1: Low-powe) bits (see b	elow).	
Bit 5:	AD0INT: AD0		•	•	-			
	0: ADC0 has				since the las	st time AD0I	NT was clea	ared.
	1: ADC0 has	•		ersion.				
Bit 4:	ADOBUSY: A	ADC0 Busy	Bit.					
	Read:							
	0: ADC0 con				i is not curre	enuy in prog	ress. ADOIN	vi is set t
	1: ADC0 con	-	edge of ADC	DU31.				
	Write:		in progress.					
	0: No Effect.							
	1: Initiates A	DC0 Conve	ersion if AD0	CM2-0 = 00	00b			
Bit 3:	ADOWINT: A							
	0: ADC0 Wir					d since this	flag was las	t cleared.
	1: ADC0 Wir						U	
Bits 2–0:	AD0CM2-0:	ADC0 Star	rt of Convers	ion Mode S	elect.			
	When AD0TI	M = 0:						
	000: ADC0 c	onversion	initiated on e	very write c	f '1' to AD0	BUSY.		
	001: ADC0 c							
	010: ADC0 c							
	011: ADC0 c							
	100: ADC0 c					NVSTR.		
	101: ADC0 c		initiated on o	vertiow of I	imer 3.			
	11x: Reserve	-						
	When AD0TI 000: Tracking		on write of '1'		SV and lasts		eks followo	hy con-
	versio	-						
	001: Tracking		on overflow o	f Timer 0 ar	nd lasts 3 S	AR clocks f	ollowed by a	conversio
	010: Tracking	•					•	
	011: Tracking	•						
	100: ADC0 ti edge.							
	101: Tracking			(T) 0			مالمينية والمبيرة	
		n initiated (n overtiow o	t limer i ar	nd lasts X S	AR CIOCKS T	ollowen nv r	CONVERSION


5.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte

SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte

SFR Definition 8.5. CPT1MX: Comparator1 MUX Selection

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	CMX1N ²	CMX1N0	-	-	CMX1P1	CMX1P0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–6:	UNUSED.	Read = 11b	, Write = don	't care.				
Bits 5–4:	CMX1N1-	CMX1N0: C	comparator1	Negative I	nput MUX S	Select.		
	These bits	select whic	h Port pin is ι	used as th	e Compara	tor1 negative	e input.	
	CMX1N1	CMX1N0	C8051F	360/3	C8051F36	61/2/4/5/6/7/	8/9	
	CIVIATINT		Negative	Input	Nega	tive Input		
	0	0	P2.7	1		P1.3		
	0	1	P2.6	6		P1.7		
	1	0	P3.4	4		P2.3		
	1	1	P4.(C		P2.7		
	CMX1P1– These bits	CMX1P0: C select whic	ο, Write = don omparator1 F h Port pin is ι C8051F	Positive In used as th	e Compara			
	CMX1P1	CMX1P0	Positive			tive Input	0/3	
	0	0	POSITIVE P2.0		FUS	P1.2		
	0	1	P2.5	-		P1.6		
	0	0	P3.3	-		P2.2		
	1	•				P2.6		
	1	1	P3.7	/				

Mnemonic	Description	Bytes	Clock Cycles
JZ rel	Jump if A equals zero	2	2/3*
JNZ rel	Jump if A does not equal zero	2	2/3*
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4*
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4*
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4*
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5*
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3*
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4*
NOP	No operation	1	1
	incur a cache-miss penalty if the branch target location See Section "14. Branch Target Cache" on page 145 f		

Table 9.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (2s complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00-0x7F) or an SFR (0x80-0xFF).

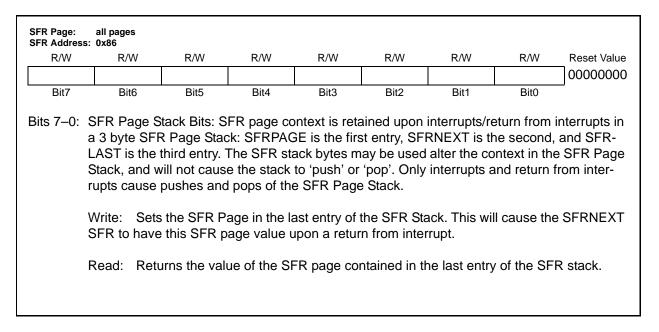
#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64K-byte program memory space.


There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0000000
	a 3 byte SFI LAST is the	•		GE is the fire	st entry, SF	RNEXT is t		, and SFR-
	LAST is the Stack, and v rupts cause	third entry. vill not caus pushes and	The SFR st e the stack I pops of th	GE is the firs ack bytes m to 'push' or e SFR Page	st entry, SF ay be used 'pop'. Only e Stack.	RNEXT is the contract of the c	he second ontext in th and return	, and SFR- le SFR Page from inter-
	LAST is the Stack, and v	third entry. vill not caus pushes and s the SFR P	The SFR st e the stack d pops of th rage contair	GE is the firs ack bytes m to 'push' or e SFR Page ned in the se	st entry, SF hay be used 'pop'. Only e Stack. econd byte	RNEXT is the alter the contract interrupts a of the SFR	he second ontext in th and return Stack. Thi	, and SFR- le SFR Page from inter-

SFR Definition 9.3. SFRNEXT: SFR Next Register

SFR Definition 9.4. SFRLAST: SFR Last Register

SFR Page: SFR Addres	all pages ss: 0xA8	`	ressable)					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	EA: Global I	nterrupt En	able.					
	This bit glob	ally enable	s/disables a	II interrupts	. It overrides	s the individ	ual interru	pt mask set
	tings.							
	0: Disable a							
	1: Enable ea	ach interrup	t according	to its indivi	dual mask s	etting.		
Bit 6:	ESPI0: Enat	ole Serial P	eripheral In	terface (SP	Interrupt			
	This bit sets			10 interrupt	S.			
	0: Disable a	II SPI0 inte	rrupts.					
	1: Enable in	terrupt requ	uests genera	ated by SPI	0.			
Bit 5:	ET2: Enable	e Timer 2 In	terrupt.					
	This bit sets	the maskir	ng of the Tin	ner 2 interru	ıpt.			
	0: Disable T	imer 2 intei	rupt.					
	1: Enable in	terrupt requ	lests genera	ated by the	TF2L or TF2	2H flags.		
Bit 4:	ES0: Enable	e UART0 In	terrupt.					
	This bit sets	the maskir	ng of the UA	RT0 interru	ipt.			
	0: Disable U	ART0 inter	rupt.					
	1: Enable U	ART0 interi	rupt.					
Bit 3:	ET1: Enable	e Timer 1 In	terrupt.					
	This bit sets	the maskir	ng of the Tin	ner 1 interru	ipt.			
	0: Disable a	ll Timer 1 ir	nterrupt.		-			
	1: Enable in	terrupt requ	uests genera	ated by the	TF1 flag.			
Bit 2:	EX1: Enable	External I	nterrupt 1.	-	-			
	This bit sets	the maskir	ng of Extern	al Interrupt	1.			
	0: Disable e	xternal inte	rrupt 1.					
	1: Enable in	terrupt requ	Jests genera	ated by the	/INT1 input.			
Bit 1:	ET0: Enable							
	This bit sets	the maskir	ng of the Tin	ner 0 interru	ipt.			
	0: Disable a		•		•			
	1: Enable in			ated by the	TF0 flag.			
Bit 0:	EX0: Enable				0			
	This bit sets			al Interrupt	0.			
	0: Disable e		•	- 1				

SFR Definition 10.1. IE: Interrupt Enable

12.2. Power-Fail Reset/V_{DD} Monitor

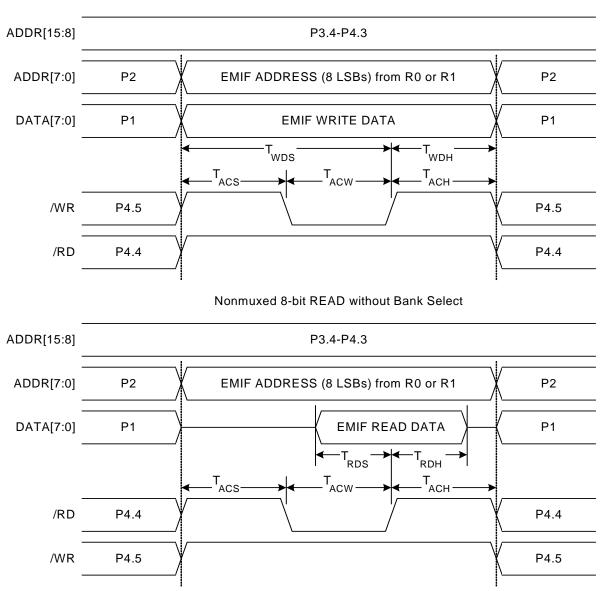
When a power-down transition or power irregularity causes V_{DD} to drop below V_{RST} , the power supply monitor will drive the RST pin low and hold the CIP-51 in a reset state (see Figure 12.2). When V_{DD} returns to a level above V_{RST} , the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads '1', the data may no longer be valid. The V_{DD} Monitor is enabled after power-on resets; however its defined state (enabled/disabled) is not altered by any other reset source. For example, if the V_{DD} Monitor is disabled and a software reset is performed, the V_{DD} Monitor will still be disabled after the reset. To protect the integrity of Flash contents, the VDD Monitor must be enabled and selected as a reset source if software contains routines which erase or write Flash memory. If the VDD Monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device reset.

The V_{DD} Monitor must be enabled before it is selected as a reset source. Selecting the V_{DD} Monitor as a reset source before it is enabled and stabilized may cause a system reset. The procedure for configuring the V_{DD} Monitor as a reset source is shown below:

- Step 1. Enable the V_{DD} Monitor (VDMEN bit in VDM0CN = '1').
- Step 2. Wait for the VDD Monitor to stabilize (approximately 5 μs). Note: This delay should be omitted if software contains routines which erase or write Flash memory.
- Step 3. Select the V_{DD} Monitor as a reset source (PORSF bit in RSTSRC = '1').

See Table 12.1 for complete electrical characteristics of the V_{DD} Monitor.

Note: Software should take care not to inadvertently disable the VDD Monitor as a reset source when writing to RSTSRC to enable other reset sources or to trigger a software reset. All writes to RSTSRC should explicitly set PORSF to '1' to keep the VDD Monitor enabled as a reset source.



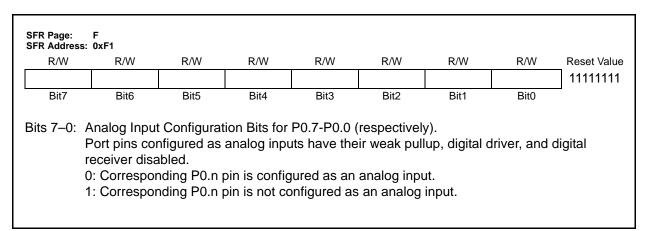
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
_	-	_	EMD2	EMD1	EMD0	EALE1	EALE0	00000011
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
Bits 7–5:	UNUSED. R	ead = 000k	o. Write = do	on't care.				
Bit 4:	EMD2: EMIF	Multiplex	Mode Selec	:t.				
	0: EMIF oper	ates in mu	Itiplexed ad	dress/data	mode.			
	1: EMIF oper	ates in no	n-multiplexe	d mode (se	parate addi	ress and da	ta pins).	
3its 3–2:	EMD1-0: EM	IIF Operat	ing Mode Se	elect.				
	These bits co	ontrol the c	perating mo	ode of the E	xternal Mer	nory Interfa	ce.	
	00: Internal C	Only: MOV	X accesses	on-chip XR	AM only. Al	I effective a	ddresses a	alias to
	on-chip r	nemory sp	ace.					
	01: Split Mod	e without I	Rank Salact		المطابين مامط	1 I		
		c without i	Dalik Select	. Accesses	below the 1	k boundar	y are direct	ed on-chip
	•		e 1 k bound				•	•
	Accesse	s above th		ary are dire	cted off-chi	p. 8-bit off-o	hip MOVX	operations
	Accesse use the c	s above th urrent con	e 1 k bound	ary are dire Address Hiç	cted off-chi gh port latch	p. 8-bit off-ones to resolv	hip MOVX ve upper ac	operations
	Accesse use the c Note tha containe	s above th current con t in order to d in the on	e 1 k bound tents of the b access off -chip addres	ary are dire Address Hig -chip space ss space.	cted off-chi gh port latch , EMI0CN r	p. 8-bit off-ones to resolven nust be set	chip MOVX ve upper ac to a page t	operations dress byte hat is not
	Accesse use the c Note tha	s above th current con t in order to d in the on	e 1 k bound tents of the b access off -chip addres	ary are dire Address Hig -chip space ss space.	cted off-chi gh port latch , EMI0CN r	p. 8-bit off-ones to resolven nust be set	chip MOVX ve upper ac to a page t	operations dress byte hat is not
	Accesse use the c Note tha containe 10: Split Moc Accesse	s above th current con t in order to d in the on le with Bar s above th	e 1 k bound tents of the o access off -chip addres nk Select: Ac e 1 k bound	ary are dire Address Hig -chip space ss space. ccesses bel ary are dire	cted off-chi gh port latch , EMI0CN r ow the 1 k l cted off-chi	p. 8-bit off-o nes to resolv nust be set boundary a p. 8-bit off-o	chip MOVX ve upper ac to a page t re directed chip MOVX	operations dress byte hat is not on-chip.
	Accesse use the c Note that containe 10: Split Moc Accesse use the c	s above th current con t in order to d in the on e with Bar s above th contents of	e 1 k bound tents of the o access off -chip addres k Select: Ac e 1 k bound EMI0CN to	ary are dire Address Hig -chip space ss space. ccesses bel ary are dire determine	cted off-chi gh port latch , EMI0CN r ow the 1 k l cted off-chi the high-by	p. 8-bit off- nes to resolv nust be set boundary a p. 8-bit off- te of the ad	chip MOVX ve upper ac to a page t re directed chip MOVX dress.	operations dress byte hat is not on-chip. operations
	Accesse use the c Note tha containe 10: Split Moc Accesse	s above th current con t in order to d in the on e with Bar s above th contents of	e 1 k bound tents of the o access off -chip addres k Select: Ac e 1 k bound EMI0CN to	ary are dire Address Hig -chip space ss space. ccesses bel ary are dire determine	cted off-chi gh port latch , EMI0CN r ow the 1 k l cted off-chi the high-by	p. 8-bit off- nes to resolv nust be set boundary a p. 8-bit off- te of the ad	chip MOVX ve upper ac to a page t re directed chip MOVX dress.	operations dress byte hat is not on-chip. operations
Bits 1–0:	Accesse use the c Note that containe 10: Split Moc Accesse use the c 11: External	s above th current con t in order to d in the on le with Bar s above th contents of Only: MOV	e 1 k bound tents of the . o access off -chip addres hk Select: Ad e 1 k bound EMI0CN to /X accesses	ary are dire Address Hig -chip space ss space. ccesses bel ary are dire determine s off-chip XF	cted off-chi gh port latch , EMIOCN r ow the 1 k l cted off-chi the high-by RAM only. C	p. 8-bit off- nes to resolv nust be set boundary a p. 8-bit off-c te of the ad on-chip XRA	chip MOVX ve upper ac to a page t re directed chip MOVX dress. M is not vi	operations dress byte hat is not on-chip. operations
Bits 1–0:	Accesse use the c Note tha containe 10: Split Moc Accesse use the c 11: External CPU.	s above th current con t in order to d in the on le with Bar s above th contents of Only: MOV	e 1 k bound tents of the o access off -chip addres k Select: Ac e 1 k bound EMI0CN to /X accesses	ary are dire Address Hig -chip space ss space. ccesses bel ary are dire determine s off-chip XF Bits (only h	cted off-chi gh port latch , EMIOCN r ow the 1 k l cted off-chi the high-by &AM only. C as effect w	p. 8-bit off- nes to resolve nust be set boundary a p. 8-bit off-o te of the ad on-chip XRA hen EMD2	chip MOVX ve upper ac to a page t re directed chip MOVX dress. M is not vi	operations dress byte hat is not on-chip. operations
Bits 1–0:	Accesse use the c Note that contained 10: Split Moc Accesse use the c 11: External CPU. EALE1–0: Al	s above th current con t in order to d in the on le with Bar s above th contents of Only: MOV LE Pulse-V and ALE	e 1 k bound tents of the o access off -chip addres k Select: Ac e 1 k bound EMI0CN to /X accesses Vidth Select low pulse wi	ary are dire Address Hig -chip space ss space. ccesses bel ary are dire determine s off-chip XF Bits (only h idth = 1 SYS	cted off-chi gh port latch , EMI0CN r ow the 1 k l cted off-chi the high-by RAM only. C as effect w SCLK cycle	p. 8-bit off-cones to resolve nust be set boundary and p. 8-bit off-cones te of the ad on-chip XRA hen EMD2	chip MOVX ve upper ac to a page t re directed chip MOVX dress. M is not vi	operations dress byte hat is not on-chip. operations
3its 1–0:	Accesse use the c Note tha containe 10: Split Moc Accesse use the c 11: External CPU. EALE1–0: AI 00: ALE high	s above th current con t in order to d in the on le with Bar s above th contents of Only: MOV LE Pulse-V and ALE	e 1 k bound tents of the o access off -chip addres k Select: Ad e 1 k bound EMI0CN to /X accesses Vidth Select low pulse wi low pulse wi	ary are dire Address Hig -chip space ss space. ccesses bel ary are dire determine s off-chip XF Bits (only h idth = 1 SYS idth = 2 SYS	cted off-chi gh port latch , EMI0CN r ow the 1 k l cted off-chi the high-by RAM only. C as effect w SCLK cycle SCLK cycle	p. 8-bit off-cones to resolve nust be set boundary and p. 8-bit off-cone te of the ad on-chip XRA hen EMD2 s.	chip MOVX ve upper ac to a page t re directed chip MOVX dress. M is not vi	operations Idress byte hat is not on-chip. operations

SFR Definition 15.2. EMI0CF: External Memory Configuration

15.6.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '101' or '111'.

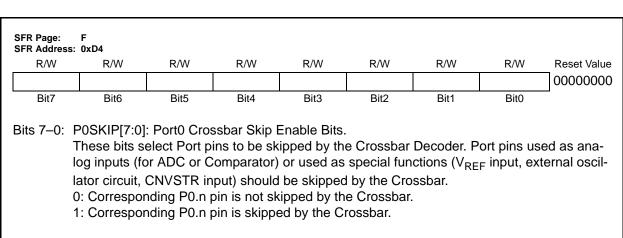
Nonmuxed 8-bit WRITE without Bank Select

Figure 15.5. Non-multiplexed 8-bit MOVX without Bank Select Timing

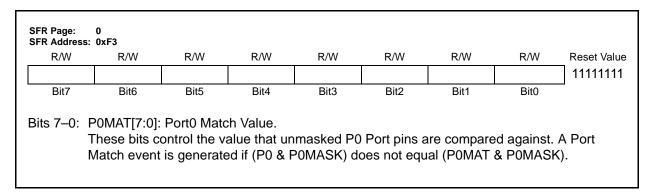


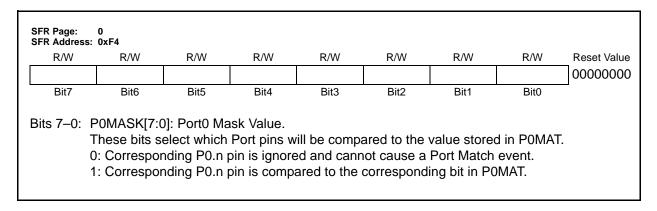
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
WEAKPU	JD XBARE	T1E	T0E	ECIE		PCA0ME		0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	WEAKPUD: F	ort I/O We	eak Pullup I	Disable.				
	0: Weak Pullu	ps enable	d (except fo	or Ports who	ose I/O are	configured	as analog	input).
	1: Weak Pullu	ps disable	d.					
Bit 6:	XBARE: Cros	sbar Enab	le.					
	0: Crossbar d	sabled.						
	1: Crossbar e	nabled.						
Bit 5:	T1E: T1 Enab							
	0: T1 unavaila		•					
	1: T1 routed to							
Bit 4:	T0E: T0 Enab	-						
	0: T0 unavaila		•					
	1: T0 routed to							
Bit 3:	ECIE: PCA0 E			t Enable				
	0: ECI unavai		•					
	1: ECI routed			D'I.				
Bits 2–0:	PCA0ME: PC							
	000: All PCA			t pins.				
	001: CEX0 ro			20				
	010: CEX0, C 011: CEX0, C							
	100: CEX0, C				t nine			
	100: CEX0, C				•	he		
	,	,						
	110: CEX0, C	EX1 CEY	2 CEX3 C	EXA CEXE	v routed to	Port ning		

SFR Definition 17.2. XBR1: Port I/O Crossbar Register 1


SFR Definition 17.4. P0MDIN: Port0 Input Mode

SFR Definition 17.5. P0MDOUT: Port0 Output Mode


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	Dutput Confi er P0MDIN	•	ts for P0.7-I	P0.0 (respe	ctively): ign	ored if corre	esponding	bit in regis-



SFR Definition 17.6. P0SKIP: Port0 Skip

SFR Definition 17.7. P0MAT: Port0 Match

SFR Definition 17.8. P0MASK: Port0 Mask

18.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).

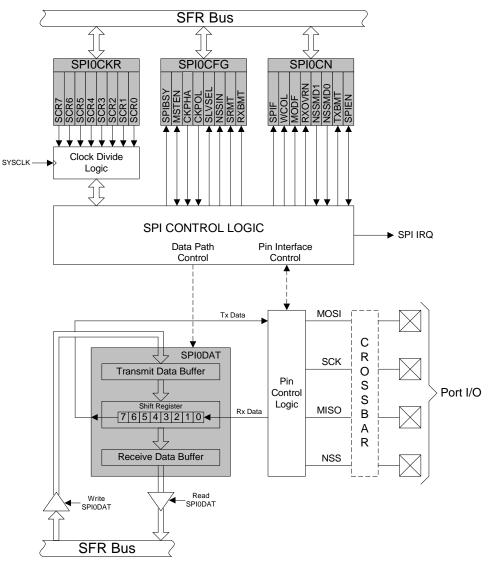
SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

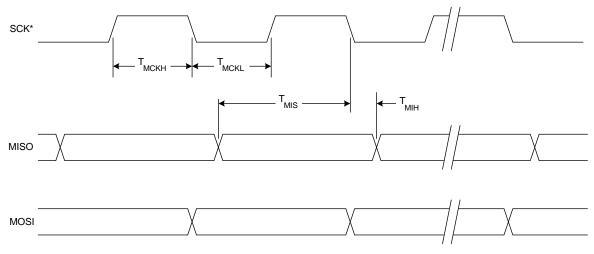
Table 18.1. SMBus Clock Source Selection

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 18.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "21. Timers" on page 245.

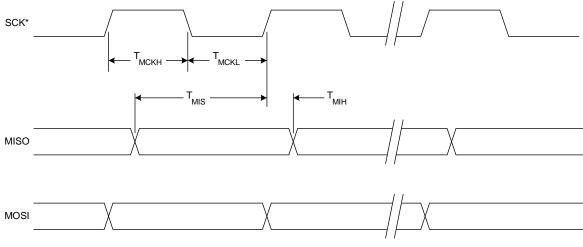
$$T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$$

Equation 18.1. Minimum SCL High and Low Times


The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 18.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 18.2.


20. Enhanced Serial Peripheral Interface (SPI0)

The Enhanced Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.



* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 20.9. SPI Master Timing (CKPHA = 1)

Parameter	Description	Min	Max	Units
Master Mode Timing* (See Figure 20.8 and Figure 20.9)				
Т _{МСКН}	SCK High Time	1 x T _{SYSCLK}	—	ns
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	—	ns
T _{MIS}	MISO Valid to SCK Shift Edge	1 x T _{SYSCLK} + 20	—	ns
Т _{МІН}	SCK Shift Edge to MISO Change	0	—	ns
Slave Mode 1	iming* (See Figure 20.10 and Figure 20.11)	1		
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	_	ns
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}	—	ns
T _{SEZ}	NSS Falling to MISO Valid	—	4 x T _{SYSCLK}	ns
T _{SDZ}	NSS Rising to MISO High-Z	—	4 x T _{SYSCLK}	ns
т _{скн}	SCK High Time	5 x T _{SYSCLK}	—	ns
Т _{СК∟}	SCK Low Time	5 x T _{SYSCLK}	—	ns
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}	—	ns
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}	—	ns
т _{ѕон}	SCK Shift Edge to MISO Change	—	4 x T _{SYSCLK}	ns
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6 x T _{SYSCLK}	8 x T _{SYSCLK}	ns
*Note: T _{SYSCLI}	$_{\rm C}$ is equal to one period of the device system clock (SY	/SCLK).	1	1

Table 20.1. SPI Slave Timing Parameters