

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f368-c-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

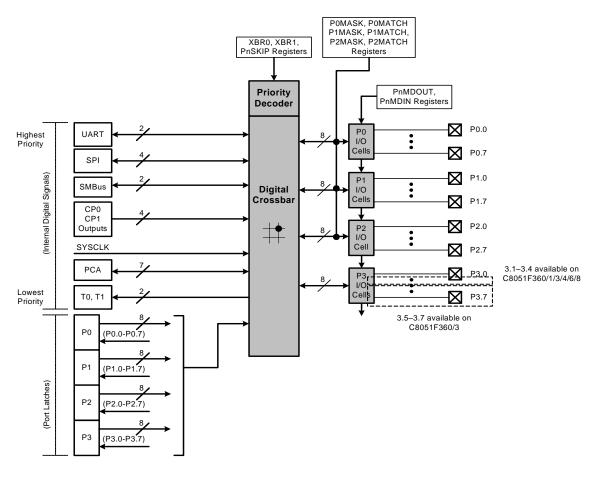
1.	System Overview	18
	1.1. CIP-51 [™] Microcontroller Core	
	1.1.1. Fully 8051 Compatible	
	1.1.2. Improved Throughput	22
	1.1.3. Additional Features	
	1.2. On-Chip Memory	23
	1.3. On-Chip Debug Circuitry	24
	1.4. Programmable Digital I/O and Crossbar	25
	1.5. Serial Ports	
	1.6. Programmable Counter Array	26
	1.7. 10-Bit Analog to Digital Converter	27
	1.8. Comparators	
	1.9. 10-bit Current Output DAC	30
2.	Absolute Maximum Ratings	
3.	Global Electrical Characteristics	33
4.	Pinout and Package Definitions	
5.	10-Bit ADC (ADC0, C8051F360/1/2/6/7/8/9)	
	5.1. Analog Multiplexer	
	5.2. Temperature Sensor	
	5.3. Modes of Operation	
	5.3.1. Starting a Conversion	
	5.3.2. Tracking Modes	
	5.3.3. Settling Time Requirements	
	5.4. Programmable Window Detector	
	5.4.1. Window Detector In Single-Ended Mode	
	5.4.2. Window Detector In Differential Mode	
6.	10-Bit Current Mode DAC (IDA0, C8051F360/1/2/6/7/8/9)	
	6.1. IDA0 Output Scheduling	
	6.1.1. Update Output On-Demand	
	6.1.2. Update Output Based on Timer Overflow	
	6.1.3. Update Output Based on CNVSTR Edge	
	6.2. IDAC Output Mapping	
	Voltage Reference (C8051F360/1/2/6/7/8/9)	
8.		70
9.		
	9.1. Performance	
	9.2. Programming and Debugging Support	
	9.3. Instruction Set	
	9.3.1. Instruction and CPU Timing	
	9.3.2. MOVX Instruction and Program Memory	
	9.4. Memory Organization	
	9.4.1. Program Memory	
	9.4.2. Data Memory	87

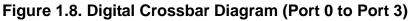
18.	SMBus		
	Figure 18.1.	SMBus Block Diagram	200
		Typical SMBus Configuration	
		SMBus Transaction	
	Figure 18.4.	Typical SMBus SCL Generation	205
	Figure 18.5.	Typical Master Transmitter Sequence	211
	Figure 18.6.	Typical Master Receiver Sequence	212
		Typical Slave Receiver Sequence	
	Figure 18.8.	Typical Slave Transmitter Sequence	214
19.	UART0		
		UART0 Block Diagram	
		UART0 Baud Rate Logic	
		UART Interconnect Diagram	
		8-Bit UART Timing Diagram	
		9-Bit UART Timing Diagram	
		UART Multi-Processor Mode Interconnect Diagram	222
		Serial Peripheral Interface (SPI0)	
	•	SPI Block Diagram	
		Multiple-Master Mode Connection Diagram	235
	Figure 20.3.	3-Wire Single Master and 3-Wire Single Slave Mode	
		Connection Diagram	235
	Figure 20.4.	4-Wire Single Master Mode and 4-Wire Slave Mode	
		Connection Diagram	
		Master Mode Data/Clock Timing	
		Slave Mode Data/Clock Timing (CKPHA = 0)	
	Figure 20.7.	Slave Mode Data/Clock Timing (CKPHA = 1)	238
		SPI Master Timing (CKPHA = 0)	
		SPI Master Timing (CKPHA = 1)	
). SPI Slave Timing (CKPHA = 0)	
	Figure 20.11 Timers	I. SPI Slave Timing (CKPHA = 1)	243
		To Made O Pleak Diagram	247
	-	T0 Mode 0 Block Diagram	
	•	T0 Mode 2 Block Diagram T0 Mode 3 Block Diagram	
	-	Timer 2 16-Bit Mode Block Diagram	
	-	Timer 2 8-Bit Mode Block Diagram	
	•	Timer 3 16-Bit Mode Block Diagram	
		Timer 3 8-Bit Mode Block Diagram	
		able Counter Array	200
	•	PCA Block Diagram	262
		PCA Counter/Timer Block Diagram	
		PCA Interrupt Block Diagram	
	•	PCA Capture Mode Diagram	
		PCA Software Timer Mode Diagram	
		PCA High Speed Output Mode Diagram	
	3		

1. System Overview

C8051F36x devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 100 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- True 10-bit 200 ksps 16-channel single-ended/differential ADC with analog multiplexer
- 10-bit Current Output DAC
- 2-cycle 16 by 16 Multiply and Accumulate Engine
- Precision programmable 25 MHz internal oscillator
- Up to 32 kB of on-chip Flash memory—1024 bytes are reserved
- 1024 bytes of on-chip RAM
- External Data Memory Interface with 64 kB address space
- SMBus/I2C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with six capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, V_{DD} Monitor, and Temperature Sensor
- Two on-chip Voltage Comparators
- up to 39 Port I/O (5 V tolerant)


With on-chip Power-On Reset, V_{DD} Monitor, Watchdog Timer, and clock oscillator, the C8051F36x devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.


The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 3.0 to 3.6 V (100 MIPS) operation or 2.7 to 3.6 V (50 MIPS) operation over the industrial temperature range (-40 to +85 °C). The Port I/O and RST pins are tolerant of input signals up to 5 V. The C8051F36x devices are available in 48-pin TQFP packages, and C8051F36x devices are available in 32-pin LQFP and 28-pin QFN packages (also referred to as MLP or MLF packages). All package types are lead-free (RoHS compliant). See Table 1.1 for ordering part numbers. Block diagrams are included in Figure 1.1, Figure 1.2, and Figure 1.3.

The Digital Crossbar allows mapping of internal digital system resources to Port I/O pins. (See Figure 1.8.) On-chip counter/timers, serial buses, HW interrupts, comparator output, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for the particular application.

1.5. Serial Ports

The C8051F36x Family includes an SMBus/I²C interface, a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

1.6. Programmable Counter Array

An on-chip Programmable Counter/Timer Array (PCA) is included in addition to the four 16-bit general purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with three programmable capture/compare modules. The PCA clock is derived from one of six sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflows, an External Clock Input (ECI), the system clock, or the external oscillator clock source divided by 8. The external clock source selection is useful for

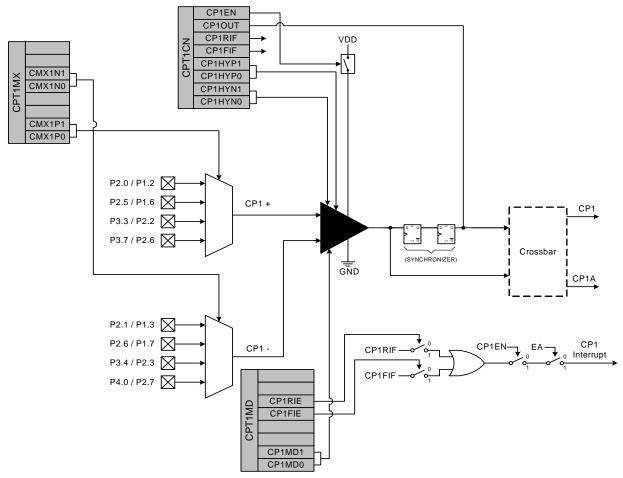


Figure 1.13. Comparator1 Block Diagram

1.9. 10-bit Current Output DAC

The C8051F360/1/2/6/7/8/9 devices includes a 10-bit current-mode Digital-to-Analog Converter (IDA0). The maximum current output of the IDA0 can be adjusted for three different current settings; 0.5 mA, 1 mA, and 2 mA. IDA0 features a flexible output update mechanism which allows for seamless full-scale changes and supports jitter-free updates for waveform generation. Three update modes are provided, allowing IDA0 output updates on a write to IDA0H, on a Timer overflow, or on an external pin edge.

SFR Definition 5.6. ADC0CN: ADC0 Control

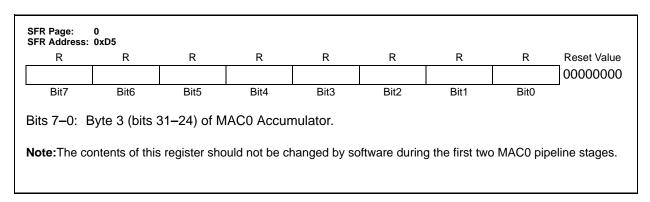
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
AD0EN	AD0TM	AD0INT	AD0BUSY	ADOWINT	AD0CM2	AD0CM1	AD0CM0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	AD0EN: AD0	C0 Enable	Bit.					
	0: ADC0 Disa	abled. ADC	C0 is in low-p	ower shutde	own.			
	1: ADC0 Ena					ersions.		
Bit 6:	AD0TM: AD0	C0 Track N	lode Bit.					
	0: Normal Tra	ack Mode:	When ADC0	is enabled,	tracking is	continuous	unless a coi	nversion is
	in progress.							
	1: Low-powe) bits (see b	elow).	
Bit 5:	AD0INT: AD0		•	•	-			
	0: ADC0 has				since the las	st time AD0I	NT was clea	ared.
	1: ADC0 has	•		ersion.				
Bit 4:	ADOBUSY: A	ADC0 Busy	Bit.					
	Read:							
	0: ADC0 con				i is not curre	enuy in prog	ress. ADOIN	vi is set t
	1: ADC0 con	-	edge of ADC	DU31.				
	Write:		in progress.					
	0: No Effect.							
	1: Initiates A	DC0 Conve	ersion if AD0	CM2-0 = 00	00b			
Bit 3:	ADOWINT: A							
	0: ADC0 Wir					d since this	flag was las	t cleared.
	1: ADC0 Wir						U	
Bits 2–0:	AD0CM2-0:	ADC0 Star	rt of Convers	ion Mode S	elect.			
	When AD0TI	M = 0:						
	000: ADC0 c	onversion	initiated on e	very write c	f '1' to AD0	BUSY.		
	001: ADC0 c							
	010: ADC0 c							
	011: ADC0 c							
	100: ADC0 c					NVSTR.		
	101: ADC0 c		initiated on o	vertiow of I	imer 3.			
	11x: Reserve	-						
	When AD0TI 000: Tracking		on write of '1'		SV and lasts		eks followo	hy con-
	versio	-						
	001: Tracking		on overflow o	f Timer 0 ar	nd lasts 3 S	AR clocks f	ollowed by a	conversio
	010: Tracking	•					•	
	011: Tracking	•						
	100: ADC0 ti edge.							
	101: Tracking			(T) 0			مالمين مالمين	
		n initiateo o	n overtiow o	t limer i ar	nd lasts X S	AR CIOCKS T	ollowen nv r	CONVERSION

SFR Definition 9.1. SFR0CN: SFR Page Control

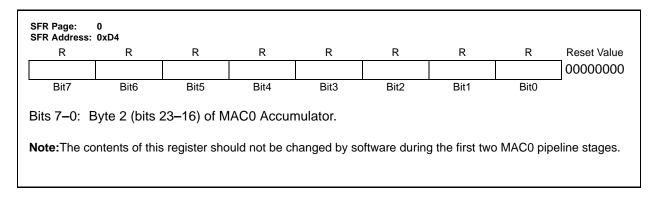
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SFRPGEN	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	·
	•	tch to SFR	page 0. Thi	is bit is used	d to control	•	ervice routine ging functior	ı.

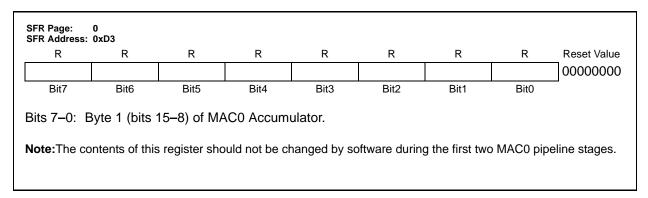
SFR Definition 9.2. SFRPAGE: SFR Page

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	ifying SFR's. Write: Sets th Read: Byte is When enable switch to SFR (unless SFR SFRPAGE is caused by in	he SFR Pa s the SFR p ed in the SF R Page 0x0 Stack was the top by	FR Page Cc 00 and retur altered befo te of the SF	ontrol Regis in to the pre ore a return iR Page Sta	ter (SFR0C vious SFR ing from the ick, and pus	page upon e interrupt). sh/pop ever	return fror	n interrupt


SFR Definition 9.11. PCON: Power Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Reserve	d Reserved	Reserved	Reserved	Reserved	Reserved	STOP	IDLE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 0:	Writing a '1' 1: CIP-51 for IDLE: IDLE I Writing a '1' 1: CIP-51 for and all perip	rced into po Mode Selec to this bit w rced into ID	wer-down r t. ill place the LE mode. (\$	node. (Turn CIP-51 into	s off oscillat	tor). e. This bit v	vill always	read '0'.


SFR Addre			essable)	DAA	DAA		DAA	Descrive
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
_	PSPI0	PT2	PS0	PT1	PX1	PT0	PX0	1000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	UNUSED. R							
Bit 6:	PSPI0: Seria	•	,	,	rupt Priority	Control.		
	This bit sets							
	0: SPI0 inter							
	1: SPI0 inter							
Bit 5:	PT2: Timer 2							
	This bit sets				t.			
	0: Timer 2 int							
D 14	1: Timer 2 int		• •					
Bit 4:	PS0: UARTO							
	This bit sets				τ.			
	0: UART0 int							
Bit 3:	1: UART0 int	•	• •					
BIT 3:	PT1: Timer 1 This bit sets							
	0: Timer 1 inf				ι.			
	1: Timer 1 int							
Bit 2:	PX1: Externa		• •					
DIL Z.	This bit sets				ot 1 interrup	.+		
	0: External Ir				ot i interiup	<i>.</i>		
	1: External Ir							
Bit 1:	PT0: Timer 0		• •					
Dit 1.	This bit sets				t			
	0: Timer 0 int							
	1: Timer 0 int							
Bit 0:	PX0: Externa							
2.1 01	This bit sets				ot 0 interrup	ot.		
	0: External Ir				· · · · · · · · · · · · · · · · · ·			
				iority level.				


SFR Definition 11.7. MAC0ACC3: MAC0 Accumulator Byte 3

SFR Definition 11.8. MAC0ACC2: MAC0 Accumulator Byte 2

SFR Definition 11.9. MAC0ACC1: MAC0 Accumulator Byte 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CHWRE	N CHRDEN	CHPFEN	CHFLSH	CHRETI	CHISR	CHMOVC	CHBLKW	11100110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	CHWREN: C	Cache Write	Enable.					
	This bit enab							
	locks.			U	except dur	ing Flash writ	tes/erasure	s or cache
	1: Writes to			wed.				
Bit 6:	CHRDEN: C							
						he cache me		
						refetch engin	e.	
	1: Instruction			cache (whe	en availabl	e).		
Bit 5:	CHPFEN: C							
	This bit enab		•	э.				
	0: Prefetch e	•						
Bit 4:	1: Prefetch e CHFLSH: Ca	•	ableu.					
Dit 4.			is hit cloars	the cache (contents]	This bit alway	e roade 'O'	
Bit 3:	CHRETI: Ca				Jointenito.	nis bit alway	316003 0.	
Dit 0.	This bit enab				ess to he	cached		
	0: Destinatio							
	1: RETI dest							
Bit 2:	CHISR: Cac	he ISR Ena	ble.					
	This bit allow	vs instructio	ns which ar	e part of an	Interrupt S	Service Routi	ne (ISR) to	be cached
	0: Instruction	ns in ISRs w	ill not be lo	aded into ca	ache mem	ory.		
	1: Instruction	ns in ISRs c	an be cach	ed.				
Bit 1:	CHMOVC: C	Cache MOV	C Enable.					
						be loaded inte	o the cache	e memory.
	0: Data requ							
				ctions will be	e loaded ir	nto cache me	mory.	
Bit 0:	CHBLKW: B							
	This bit allow							
	0: Each byte							
	1: Flash byte	es are writte	n in groups	s of four (for	code space	ce writes).		

SFR Definition 14.1. CCH0CN: Cache Control

Multiplexe	d Mode	Non Multiple	exed Mode
Signal Name	Port Pin	Signal Name	Port Pin
/RD	P4.4	/RD	P4.4
/WR	P4.5	/WR	P4.5
ALE	P0.0	ALE	P0.0
D0/A0	P1.0	D0	P1.0
D1/A1	P1.1	D1	P1.1
D2/A2	P1.2	D2	P1.2
D3/A3	P1.3	D3	P1.3
D4/A4	P1.4	D4	P1.4
D5/A5	P1.5	D5	P1.5
D6/A6	P1.6	D6	P1.6
D7/A7	P1.7	D7	P1.7
A8	P3.4	A0	P2.0
A9	P3.5	A1	P2.1
A10	P3.6	A2	P2.2
A11	P3.7	A3	P2.3
A12	P4.0	A4	P2.4
A13	P4.1	A5	P2.5
A14	P4.2	A6	P2.6
A15	P4.3	A7	P2.7
-	-	A8	P3.4
-	-	A9	P3.5
-	-	A10	P3.6
-	-	A11	P3.7
_	_	A12	P4.0
_	_	A13	P4.1
-	-	A14	P4.2
_	_	A15	P4.3

Table 15.1. EMIF Pinout (C8051F360/3)

SFR Definition 15.1. EMI0CN: External Memory Interface Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PGSEL7	PGSEL6	PGSEL5	PGSEL4	PGSEL3	PGSEL2	PGSEL1	PGSEL0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
a	The XRAM F address whe RAM.							

15.5. Memory Mode Selection

The external data memory space can be configured in one of four modes, shown in Figure 15.3, based on the EMIF Mode bits in the EMI0CF register (SFR Definition 15.2). These modes are summarized below. More information about the different modes can be found in Section "15.6. Timing" on page 159.

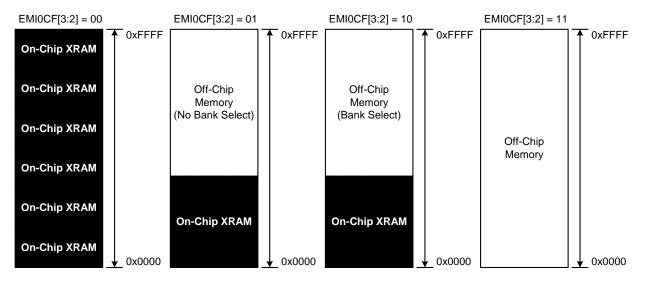
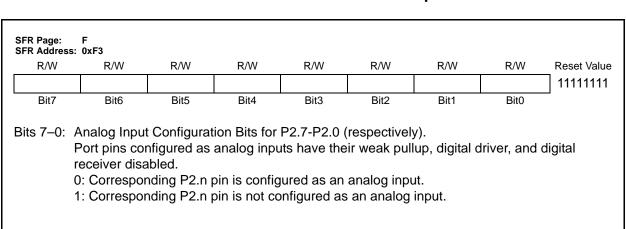


Figure 15.3. EMIF Operating Modes

15.5.1. Internal XRAM Only

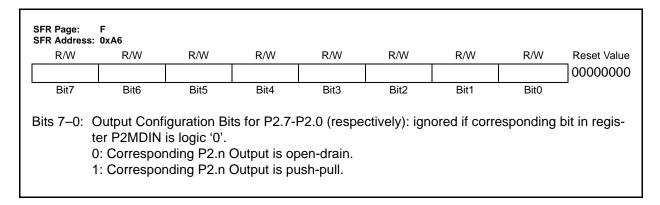
When EMI0CF.[3:2] are set to '00', all MOVX instructions will target the internal XRAM space on the device. Memory accesses to addresses beyond the populated space will wrap on 1k boundaries. As an example, the addresses 0x0400 and 0x1000 both evaluate to address 0x0000 in on-chip XRAM space.

- 8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address and R0 or R1 to determine the low-byte of the effective address.
- 16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.


15.5.2. Split Mode without Bank Select

When EMI0CF.[3:2] are set to '01', the XRAM memory map is split into two areas, on-chip space and off-chip space.

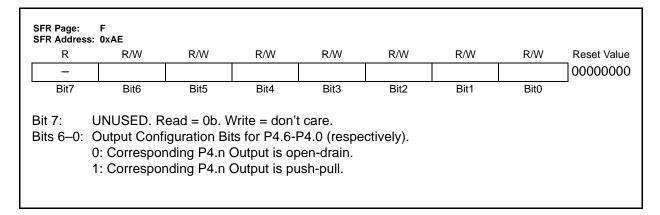
- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-chip or off-chip. However, in the "No Bank Select" mode, an 8-bit MOVX operation will not drive the upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate the upper address bits at will by setting the Port state directly via the port latches. This behavior is in contrast with "Split Mode with Bank Select" described below. The lower 8-bits of the Address Bus A[7:0] are driven, determined by R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.



C8051F360/1/2/3/4/5/6/7/8/9

SFR Definition 17.16. P2MDIN: Port2 Input Mode

SFR Definition 17.17. P2MDOUT: Port2 Output Mode



C8051F360/1/2/3/4/5/6/7/8/9

SFR Address: R	0xB5 R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
_	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0	01111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	0: Logic Low 1: Logic High			ce if corres	ponding P4	MDOUT.n l	oit = 0).	

SFR Definition 17.25. P4: Port4

SFR Definition 17.26. P4MDOUT: Port4 Output Mode

C8051F360/1/2/3/4/5/6/7/8/9

Figure 18.4 shows the typical SCL generation described by Equation 18.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 18.1.

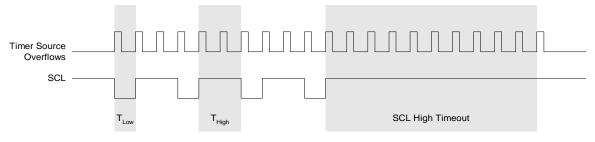


Figure 18.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 18.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time				
	T _{low} – 4 system clocks					
0	or	3 system clocks				
	1 system clock + s/w delay*					
1	11 system clocks	12 system clocks				
*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. The s/w delay occurs between the time SMB0DAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.						

Table 18.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "18.3.3. SCL Low Timeout" on page 202). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

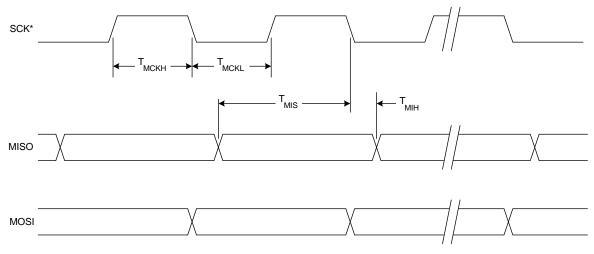
SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 18.4). When a Free Timeout is detected, the interface will respond as if a STOP was detected (an interrupt will be generated, and STO will be set).

20.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to logic '1', and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

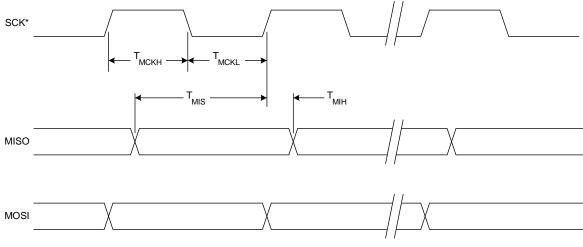
When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic '0', and disabled when NSS is logic '1'. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 20.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. Figure 20.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.


20.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic '1':

All of the following bits must be cleared by software.


- 1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic '1' at the end of each byte transfer. This flag can occur in all SPI0 modes.
- 2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic '1' if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- 3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic '1' when SPI0 is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic '0' to disable SPI0 and allow another master device to access the bus.
- 4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic '1' when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 20.9. SPI Master Timing (CKPHA = 1)

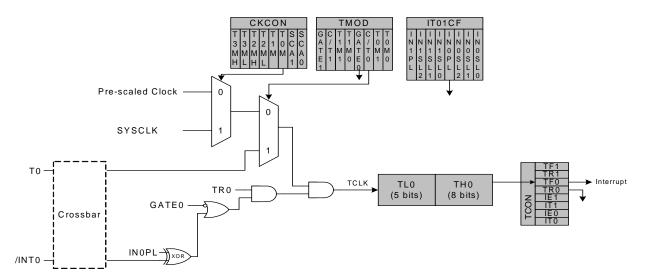


Figure 21.1. T0 Mode 0 Block Diagram

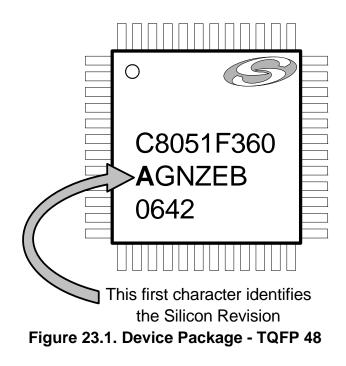
21.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

21.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic '0' or when the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see Section "10.5. External Interrupts" on page 115 for details on the external input signals /INT0 and /INT1).


23. Revision Specific Behavior

This chapter contains behavioral differences between the C8051F36x hardware revisions and behavior as stated in the data sheet.

23.1. Revision Identification

The Lot ID Code on the top side of the device package can be used for decoding device revision information. On C8051F36x devices the revision letter is the first letter of the Lot ID Code.

Figures 23.1, 23.2, and 23.3 show how to find the Lot ID Code on the top side of the device package.

