

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f369-c-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 22.7. PCA Frequency Output Mode	268
Figure 22.8. PCA 8-Bit PWM Mode Diagram	
Figure 22.9. PCA 16-Bit PWM Mode	
Figure 22.10. PCA Module 5 with Watchdog Timer Enabled	271
23. Revision Specific Behavior	
Figure 23.1. Device Package - TQFP 48	279
Figure 23.2. Device Package - LQFP 32	280
Figure 23.3. Device Package - QFN 28	280
24. C2 Interface	
Figure 24.1. Typical C2 Pin Sharing	285

3. Global Electrical Characteristics

Table 3.1. Global Electrical Characteristics

-40 to +85 °C, 25 MHz system clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Voltage	SYSCLK = 0 to 50 MHz	2.7	3.0	3.6	V
	SYSCLK > 50 MHz	3.0	3.3	3.6	
Digital Supply RAM Data Retention Voltage		_	1.5	_	V
SYSCLK (System Clock) ^{1,2}	C8051F360/1/2/3/4/5	0	-	100	MHz
	C8051F366/7/8/9	0	—	50	MHz
Specified Operating Temperature Range		-40	—	+85	°C
Digital Supply Current—CP	U Active (Normal Mode, fetching instruction	ns fron	n Flash)	
I _{DD} ²	V _{DD} = 3.6 V, F = 100 MHz		68	75	mA
	V _{DD} = 3.6 V, F = 25 MHz	—	21	25	mA
	V _{DD} = 3.0 V, F = 100 MHz	—	54	60	mA
	V _{DD} = 3.0 V, F = 25 MHz	—	16	18	mA
	V _{DD} = 3.0 V, F = 1 MHz	—	0.48	—	mA
	V _{DD} = 3.0 V, F = 80 kHz	—	36	—	μA
I _{DD} Supply Sensitivity ³	F = 25 MHz	—	56	—	%/V
	F = 1 MHz		57		%/V
I _{DD} Frequency Sensitivity ^{3,4}	V _{DD} = 3.0 V, F <= 20 MHz, T = 25 °C		0.45		mA/MHz
	V _{DD} = 3.0 V, F > 20 MHz, T = 25 °C	—	0.38	—	mA/MHz
	V _{DD} = 3.6 V, F <= 20 MHz, T = 25 °C	—	0.61	—	mA/MHz
	V _{DD} = 3.6 V, F > 20 MHz, T = 25 °C	—	0.51	—	mA/MHz

Name	Pin 'F360/3 (48-pin)	Pin 'F361/4/6/8 (32-pin)	Pin 'F362/5/7/9 (28-pin)	Туре	Description
P1.0	45	26	22	D I/O or A In	Port 1.0. See Section 17 for a complete description.
P1.1	44	25	21	D I/O or A In	Port 1.1. See Section 17 for a complete description.
P1.2	41	24	20	D I/O or A In	Port 1.2. See Section 17 for a complete description.
P1.3	40	23	19	D I/O or A In	Port 1.3. See Section 17 for a complete description.
P1.4	39	22	18	D I/O or A In	Port 1.4. See Section 17 for a complete description.
P1.5	38	21	17	D I/O or A In	Port 1.5. See Section 17 for a complete description.
P1.6	37	20	16	D I/O or A In	Port 1.6. See Section 17 for a complete description.
P1.7	36	19	15	D I/O or A In	Port 1.7. See Section 17 for a complete description.
P2.0	35	18	14	D I/O or A In	Port 2.0. See Section 17 for a complete description.
P2.1	34	17	13	D I/O or A In	Port 2.1. See Section 17 for a complete description.
P2.2	33	16	12	D I/O or A In	Port 2.2. See Section 17 for a complete description.
P2.3	32	15	11	D I/O or A In	Port 2.3. See Section 17 for a complete description.
P2.4	29	14	10	D I/O or A In	Port 2.4. See Section 17 for a complete description.
P2.5	28	13	9	D I/O or A In	Port 2.5. See Section 17 for a complete description.
P2.6	27	12	8	D I/O or A In	Port 2.6. See Section 17 for a complete description.
P2.7	26	11	7	D I/O or A In	Port 2.7. See Section 17 for a complete description.
P3.0	25	—	—	D I/O or A In	Port 3.0. See Section 17 for a complete description.

Table 4.1. Pin	Definitions	for the	C8051F36x	(Continued))
			000011 000		,

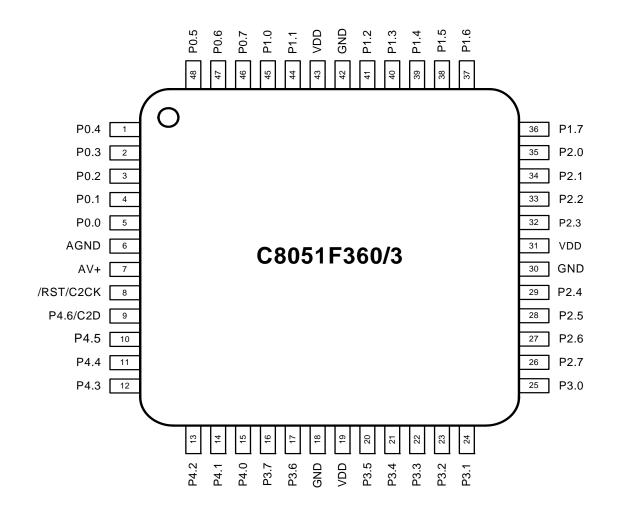


Figure 4.1. TQFP-48 Pinout Diagram (Top View)

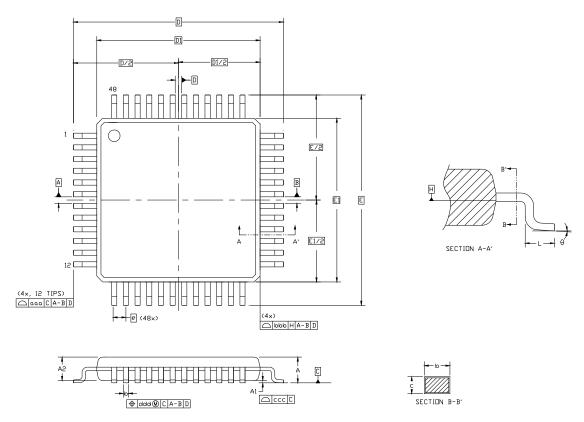


Figure 4.2. TQFP-48 Package Diagram

Dimension	Min	Nom	Max]	Dimension	Min	Nom	Max
А		—	1.20		E	9.00 BSC.		
A1	0.05	—	0.15		E1		7.00 BSC.	
A2	0.95	1.00	1.05		L	0.45	0.60	0.75
b	0.17	0.22	0.27		aaa	0.20		
С	0.09	—	0.20		bbb		0.20	
D		9.00 BSC.			CCC		0.08	
D1		7.00 BSC.	BSC. ddd			0.08		
е		0.50 BSC.		1	θ	0°	3.5°	7°
Notes:					11			

Table 4.2. TQFP-48 Package Dimensions

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation ABC.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are five 16-bit counter/timers (see description in Section 21), one full-duplex UART (see description in Section 19), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (see Section 9.4.6), and up to four byte-wide and one 7-bit-wide I/O Ports (see description in Section 17). The CIP-51 also includes on-chip debug hardware (see description in Section 24), and interfaces directly with the MCU's analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram).

- Fully Compatible with MCS-51 Instruction Set
- 100 or 50 MIPS Peak Using the On-Chip PLL
- 256 Bytes of Internal RAM
- 8/4 Byte-Wide I/O Ports

The CIP-51 includes the following features:

9.1. Performance

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 100 MHz, it has a peak throughput of 100 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

9.4.6.3. SFR Page Stack Example

The following is an example that shows the operation of the SFR Page Stack during interrupts.

In this example, the SFR Page Control is left in the default enabled state (i.e., SFRPGEN = 1), and the CIP-51 is executing in-line code that is writing values to OSCICN (SFR "OSCICN", located at address 0xB6 on SFR Page 0x0F). The device is also using the Programmable Counter Array (PCA) and the 10-bit ADC (ADC0) window comparator to monitor a voltage. The PCA is timing a critical control function in its interrupt service routine (ISR), so its interrupt is enabled and is set to *high* priority. The ADC0 is monitoring a voltage that is less important, but to minimize the software overhead its window comparator is being used with an associated ISR that is set to *low* priority. At this point, the SFR page is set to access the OSCICN SFR (SFRPAGE = 0x0F). See Figure 9.4 below.

Figure 9.4. SFR Page Stack While Using SFR Page 0x0F To Access OSCICN

While CIP-51 executes in-line code (writing values to OSCICN in this example), ADC0 Window Comparator Interrupt occurs. The CIP-51 vectors to the ADC0 Window Comparator ISR and pushes the current SFR Page value (SFR Page 0x0F) into SFRNEXT in the SFR Page Stack. SFR page 0x00 is then automatically placed in the SFRPAGE register. SFRPAGE is considered the "top" of the SFR Page Stack. Software can now access the ADC0 SFR's. Software may switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the ADC0 ISR to access SFR's that are not on SFR Page 0x00. See Figure 9.5 below.

Table 9.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
PCA0CPL2	0xEB	All Pages	PCA Module 2 Capture/Compare Low Byte	page 277
PCA0CPL3	0xED	All Pages	PCA Module 3 Capture/Compare Low Byte	page 277
PCA0CPL4	0xFD	All Pages	PCA Module 4 Capture/Compare Low Byte	page 277
PCA0CPL5	0xF5	All Pages	PCA Module 5 Capture/Compare Low Byte	page 277
PCA0CPM0	0xDA	All Pages	PCA Module 0 Mode	page 276
PCA0CPM1	0xDB	All Pages	PCA Module 1 Mode	page 276
PCA0CPM2	0xDC	All Pages	PCA Module 2 Mode	page 276
PCA0CPM3	0xDD	All Pages	PCA Module 3 Mode	page 276
PCA0CPM4	0xDE	All Pages	PCA Module 4 Mode	page 276
PCA0CPM5	0xDF	All Pages	PCA Module 5 Mode	page 276
PCA0H	0xFA	All Pages	PCA Counter High Byte	page 277
PCA0L	0xF9	All Pages	PCA Counter Low Byte	page 277
PCA0MD	0xD9	All Pages	PCA Mode	page 275
PCON	0x87	All Pages	Power Control	page 106
PLL0CN	0xB3	F	PLL Control	page 179
PLL0DIV	0xA9	F	PLL Divider	page 179
PLL0FLT	0xB2	F	PLL Filter	page 180
PLL0MUL	0xB1	F	PLL Multiplier	page 180
PSCTL	0x8F	0	Flash Write/Erase Control	page 142
PSW	0xD0	All Pages	Program Status Word	page 103
REF0CN	0xD1	All Pages	Voltage Reference Control	page 68 ¹
RSTSRC	0xEF	All Pages	Reset Source	page 133
SBUF0	0x99	All Pages	UART 0 Data Buffer	page 224
SCON0	0x98	All Pages	UART 0 Control	page 223
SFR0CN	0xE5	F	SFR Page Control	page 94
SFRLAST	0x86	All Pages	SFR Stack Last Page	page 95
SFRNEXT	0x85	All Pages	SFR Stack Next Page	page 95
SFRPAGE	0xA7	All Pages	SFR Page Select	page 94
SMB0CF	0xC1	All Pages	SMBus Configuration	page 206
SMB0CN	0xC0	All Pages	SMBus Control	page 208
SMB0DAT	0xC2	All Pages	SMBus Data	page 210

2. Refers to a register in the C8051F360/3 only.

SFR Page: SFR Addres	all pages ss: 0xA8	`	ressable)											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu						
EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0	0000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0							
Bit 7:	EA: Global I	nterrupt En	able.											
	This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set-													
	tings.													
	0: Disable a													
	1: Enable ea	ach interrup	t according	to its indivi	dual mask s	etting.								
Bit 6:	ESPI0: Enat	ole Serial P	eripheral In	terface (SP	Interrupt									
	This bit sets			10 interrupt	S.									
	0: Disable a	II SPI0 inte	rrupts.											
	1: Enable in	terrupt requ	uests genera	ated by SPI	0.									
Bit 5:	ET2: Enable	e Timer 2 In	terrupt.											
	This bit sets	the maskir	ng of the Tin	ner 2 interru	ıpt.									
	0: Disable Timer 2 interrupt.													
	1: Enable interrupt requests generated by the TF2L or TF2H flags.													
Bit 4:	ES0: Enable UARTO Interrupt.													
	This bit sets the masking of the UART0 interrupt.													
	0: Disable UART0 interrupt.													
	1: Enable UART0 interrupt.													
Bit 3:	ET1: Enable	e Timer 1 In	terrupt.											
	This bit sets the masking of the Timer 1 interrupt.													
	0: Disable all Timer 1 interrupt.													
	1: Enable interrupt requests generated by the TF1 flag.													
Bit 2:	EX1: Enable	External I	nterrupt 1.	-	-									
	This bit sets	the maskir	ng of Extern	al Interrupt	1.									
	0: Disable external interrupt 1.													
	1: Enable interrupt requests generated by the /INT1 input.													
Bit 1:	ET0: Enable													
	This bit sets the masking of the Timer 0 interrupt.													
	0: Disable a		•		•									
	1: Enable interrupt requests generated by the TF0 flag.													
Bit 0:	EX0: Enable				0									
	This bit sets			al Interrupt	0.									
	0: Disable e		•	- 1										

SFR Definition 10.1. IE: Interrupt Enable

Steps 3–8 must be repeated for each byte to be written

For block Flash writes, the Flash write procedure is only performed after the last byte of each block is written with the MOVX write instruction. When writing to addresses located in any of the four code banks, a Flash write block is four bytes long, from addresses ending in 00b to addresses ending in 11b. Writes must be performed sequentially (i.e. addresses ending in 00b, 01b, 10b, and 11b must be written in order). The Flash write will be performed following the MOVX write that targets the address ending in 11b. The Flash write will be performed following the MOVX write that targets the address ending in 1b. If any bytes in the block do not need to be updated in Flash, they should be written to 0xFF. The recommended procedure for writing Flash in blocks is as follows:

- Step 1. Disable interrupts.
- Step 2. Set CHBLKW (register CCH0CN) to select block write mode.
- Step 3. Write the first key code to FLKEY: 0xA5.
- Step 4. Write the second key code to FLKEY: 0xF1.
- Step 5. Set PSWE (register PSCTL) to redirect MOVX commands to write to Flash.
- Step 6. Clear the PSEE bit (register PSCTL).
- Step 7. Using the MOVX instruction, write the first data byte to the first block location (ending in 00b).
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Write the first key code to FLKEY: 0xA5.
- Step 10. Write the second key code to FLKEY: 0xF1.
- Step 11. Set PSWE (register PSCTL) to redirect MOVX commands to write to Flash.
- Step 12. Clear the PSEE bit (register PSCTL).
- Step 13. Using the MOVX instruction, write the second data byte to the second block location (ending in 01b).
- Step 14. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 15. Write the first key code to FLKEY: 0xA5.
- Step 16. Write the second key code to FLKEY: 0xF1.
- Step 17. Set PSWE (register PSCTL) to redirect MOVX commands to write to Flash.
- Step 18. Clear the PSEE bit (register PSCTL).
- Step 19. Using the MOVX instruction, write the third data byte to the third block location (ending in 10b).
- Step 20. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 21. Write the first key code to FLKEY: 0xA5.
- Step 22. Write the second key code to FLKEY: 0xF1.
- Step 23. Set PSWE (register PSCTL) to redirect MOVX commands to write to Flash.
- Step 24. Clear the PSEE bit (register PSCTL).
- Step 25. Using the MOVX instruction, write the fourth data byte to the last block location (ending in 11b).
- Step 26. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 27. Re-enable interrupts.

Steps 3-26 must be repeated for each block to be written.

13.1.4. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written and erased using the MOVX write instruction (as described in Section 13.1.2 and Section 13.1.3) and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
CHWRE	N CHRDEN	CHPFEN	CHFLSH	CHRETI	CHISR	CHMOVC	CHBLKW	11100110						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0							
Bit 7:	CHWREN: C	Cache Write	Enable.											
	This bit enables the processor to write to the cache memory. 0: Cache contents are not allowed to change, except during Flash writes/erasures or cache													
	locks.			U	except dur	ing Flash writ	tes/erasure	s or cache						
	1: Writes to			wed.										
Bit 6:	CHRDEN: C													
	This bit enables the processor to read instructions from the cache memory.													
						refetch engin	e.							
	1: Instruction			cache (whe	en availabl	e).								
Bit 5:	CHPFEN: C													
	This bit enab		•	э.										
	0: Prefetch engine is disabled. 1: Prefetch engine is enabled.													
Bit 4:	CHFLSH: Ca	•	ableu.											
Dit 4.			is hit cloars	the cache (contents]	This bit alway	e roade 'O'							
Bit 3:					Jointenita.	nis bit alway	316003 0.							
Dit 0.	CHRETI: Cache RETI Destination Enable. This bit enables the destination of a RETI address to be cached.													
	0: Destinations of RETI instructions will not be cached.													
	1: RETI destinations will be cached.													
Bit 2:	CHISR: Cac	he ISR Ena	ble.											
	This bit allows instructions which are part of an Interrupt Service Routine (ISR) to be cached													
	0: Instructions in ISRs will not be loaded into cache memory.													
	1: Instructions in ISRs can be cached.													
Bit 1:	CHMOVC: C	Cache MOV	C Enable.											
						be loaded inte	o the cache	e memory.						
	0: Data requ													
				ctions will be	e loaded ir	nto cache me	mory.							
Bit 0:	CHBLKW: B													
	This bit allow													
	0: Each byte													
	1: Flash byte	es are writte	n in groups	s of four (for	code space	ce writes).								

SFR Definition 14.1. CCH0CN: Cache Control

17.2. Port I/O Initialization

Port I/O initialization consists of the following steps:

- Step 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
- Step 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
- Step 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
- Step 4. Assign Port pins to desired peripherals using the XBRn registers.
- Step 5. Enable the Crossbar (XBARE = '1').

All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a '1' indicates a digital input, and a '0' indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 17.4 for the PnMDIN register details.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMD-OUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR1 is '0', a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a '0' and for pins configured for analog input mode to avoid unnecessary power dissipation.

Registers XBR0 and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to '1' enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will determine the Port I/O pin-assignments based on the XBRn Register settings.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. **Port output drivers** are disabled while the Crossbar is disabled.

	Valu	es F	Read	d				/alue Vritte	-		
Mode	Status Vector	Vector ACKRQ ARBLOST ACK		ACK	Current SMbus State	Typical Response Options	STA	STo	ACK		
		1	0	x	A slave address was received;	Acknowledge received address.	0	0	1		
			U		ACK requested.	Do not acknowledge received address.	0	0	0		
						Acknowledge received address.	0	0	1		
	0010	1	1	x	Lost arbitration as master; slave address received; ACK	Do not acknowledge received address.	0	0	0		
					requested.	Reschedule failed transfer; do not acknowledge received address.	1	0	0		
ver		0	1	x	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х		
ecei		Ŭ			repeated START.	Reschedule failed transfer.	1	0	Х		
Slave Receiver		1	1	х	Lost arbitration while attempting a STOP.	No action required (transfer complete/aborted).	0	0	0		
S	0001	0	0	х	A STOP was detected while an addressed slave receiver.	No action required (transfer complete).	0	0	Х		
		0	1	x	Lost arbitration due to a detected	Abort transfer.	0	0	Х		
		0			STOP.	Reschedule failed transfer.	1	0	Х		
		1	0	x	A slave byte was received; ACK	Acknowledge received byte; Read SMB0DAT.	0	0	1		
	0000		0000		0		requested.	Do not acknowledge received byte.	0	0	0
		1	1	x	Lost arbitration while transmitting	Abort failed transfer.	0	0	0		
					a data byte as master.	Reschedule failed transfer.	1	0	0		

Table 18.4. SMBus Status Decoding (Continued)

19.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 19.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

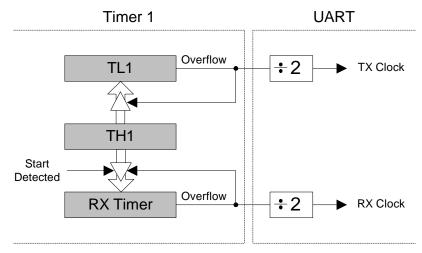


Figure 19.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "21.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 247). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 19.1-A and Equation 19.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 19.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "21. Timers" on page 245. A quick reference for typical baud rates and system clock frequencies is given in Table 19.1 through Table 19.6. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

			Freq	uency: 11.059	2 MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
×	230400	0.00%	48	SYSCLK	XX 2	1	0xE8
Cloc	115200	0.00%	96	SYSCLK	XX	1	0xD0
Timer Clock Osc.	57600	0.00%	192	SYSCLK	XX	1	0xA0
Time Osc.	28800	0.00%	384	SYSCLK	XX	1	0x40
and nal	14400	0.00%	768	SYSCLK/12	00	0	0xE0
-K a xter	9600	0.00%	1152	SYSCLK/12	00	0	0xD0
SCI	2400	0.00%	4608	SYSCLK/12	00	0	0x40
SYSCLK and 7 from External (1200	1200 0.00%		SYSCLK/48	10	0	0xA0
sc.	230400	0.00%	48	EXTCLK/8	11	0	0xFD
LK from Internal Osc., Clock from External O	115200	0.00%	96	EXTCLK/8	11	0	0xFA
n Exte	57600	0.00%	192	EXTCLK/8	11	0	0xF4
om Ir k fron	28800	0.00%	384	EXTCLK/8	11	0	0xE8
Cloc	14400 0.00%		768	EXTCLK/8	11	0	0xD0
SYSCLK from Internal Osc., Timer Clock from External O	9600	0.00%	1152	EXTCLK/8	11	0	0xB8
Notes:		ad T1M bit dafin	itione con he	found in Section	01.1		

Table 19.5. Timer Settings for Standard Baud RatesUsing an External 11.0592 MHz Oscillator

1. SCA1–SCA0 and T1M bit definitions can be found in Section 21.1.

2. X = Don't care.

20.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

R	R/W	R/W	R/W	R	R	R	R	Reset Value
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
lit 7:	SPIBSY: SPI This bit is se			PI transfer is	in progress	s (Master o	r slave Mod	e).
6:	MSTEN: Mas 0: Disable m	aster mode	. Operate i		e.			
it 5:	1: Enable ma CKPHA: SPI This bit contr	0 Clock Ph ols the SPI	ase. 0 clock pha	ise.				
lit 4:	0: Data cente 1: Data cente CKPOL: SPI This bit contr 0: SCK line I	ered on sec 0 Clock Pol rols the SPI	ond edge c arity. 0 clock pol	of SCK perio	od.*			
iit 3:	1: SCK line h SLVSEL: Sla This bit is set is cleared to	t to logic '1' logic '0' wh	d Flag (read whenever t en NSS is l	he NSS pin high (slave	not selected	d). This bit o	does not ind	icate the
it 2:	instantaneou NSSIN: NSS This bit mimi	Instantane	ous Pin Inp Intaneous v	out (read on alue that is	ly). present on			
lit 1:	the register is SRMT: Shift This bit will b and there is receive buffe the transmit	Register Er be set to log no new info er. It returns buffer or by	npty (Valid ic '1' when mation ava to logic '0' a transitior	in Slave Mo all data has ailable to re when a data on SCK.	de, read or been trans ad from the	sferred in/ou transmit bu	uffer or write	e to the
Sit O:	NOTE: SRM RXBMT: Rec This bit will b information. this bit will re NOTE: RXB	ceive Buffer be set to log If there is no eturn to logi	Empty (Va ic '1' when ew informat c '0'.	lid in Slave the receive ion availabl	buffer has	been read a		
Note: In s	lave mode, da sampled one							

SFR Definition 20.1. SPI0CFG: SPI0 Configuration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Bit 7:	GATE1: Ti	mer 1 Gate	Control.								
			nen TR1 = 1 i								
			ly when TR1		T1 is activ	e as define	d by bit IN1	PL in regis			
			Definition 10.	7).							
Bit 6:	C/T1: Cour			مئمط امبر مامر	ماد مام السم ما ال						
			ner 1 increme Timer 1 increr								
	(T1).	Function.		nemeu by n			n external	input pin			
Bits 5–4:	· · ·	10: Timer 1	Mode Select	_							
			Timer 1 opera								
			•								
	T1M1	T1M0		Mod	-						
	0	0		e 0: 13-bit c							
	0	1	Mode 1: 16-bit counter/timer								
	1	0	Mode 2: 8-bit counter/timer with auto-reload								
	1	1	Mo	ode 3: Time	r 1 inactive						
Bit 3:		mor 0 Cata	Control								
Dit 5.	GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level.										
		1: Timer 0 enabled only when $TR0 = 1$ AND /INT0 is active as defined by bit IN0PL in regis-									
			Definition 10.								
Bit 2:	C/T0: Cour	•		,							
	0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3).										
		Function:	Timer 0 increr	nented by h	igh-to-low t	transitions of	on external	input pin			
	(T0).										
			Mode Select								
Bits 1–0:	I hese bits	select the	Timer 0 opera	ation mode.							
Bits 1–0:				Mode	;						
Bits 1–0:	T0M1	TOMO				r					
Bits 1–0:		TOMO 0	Mode	e 0: 13-bit c	ounter/time						
Bits 1–0:	T0M1			e 0: 13-bit c e 1: 16-bit c							
Bits 1–0:	T0M1	0		e 1: 16-bit c	ounter/time	r					

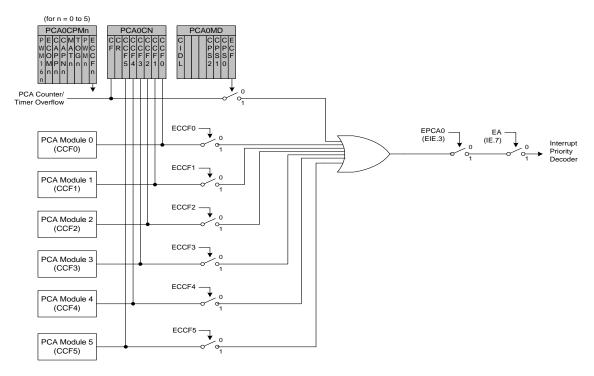
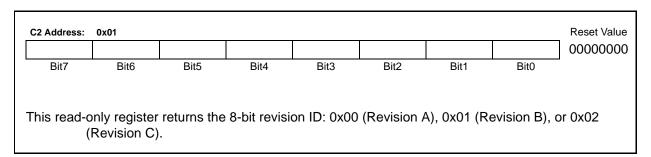
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value			
TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2	_	T2XCLK	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1			
Bit 7:	TF2H: Time										
	Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode,										
	this will occur when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine.										
		•									
			•	•	and must b	be cleared	by software	•			
Bit 6:	TF2L: Time			-	orflowe from		Ov00 When	thic hit ic			
							0x00. When upts are ena				
							. This bit is n				
	ically cleare	•		siegaraiess							
Bit 5:	TF2LEN: Ti			ot Enable.							
					errupts. If TI	F2LEN is a	set and Time	er 2 inter-			
	rupts are en	abled, an in	terrupt will	be generate	d when the	low byte	of Timer 2 ov	erflows.			
	0: Timer 2 L	ow Byte inte	errupts disa	bled.							
	1: Timer 2 L	•	•								
Bit 4:	TF2CEN: Ti				•			_			
				•	•	•	Mode. If TF2				
				•	-		n a falling ed	-			
		•	•				TMR2H:TM				
	0: Timer 2 L					ors on pa	ge 168 for m	ore details			
	1: Timer 2 L	•	•	•							
Bit 3:		•	•	•							
Dit 0.	T2SPLIT: Timer 2 Split Mode Enable. When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload.										
			•								
	0: Timer 2 operates in 16-bit auto-reload mode. 1: Timer 2 operates as two 8-bit auto-reload timers.										
Bit 2:	TR2: Timer										
	This bit ena	bles/disable	s Timer 2. I	n 8-bit mode	e, this bit er	nables/disa	ables TMR2I	H only;			
	TMR2L is always enabled in this mode.										
	0: Timer 2 disabled.										
D '/ /	1: Timer 2 e										
Bit 1:	UNUSED. F										
Bit 0:	T2XCLK: Ti				mor 2 If Tir	nor 2 ic in	9 hit modo	thic hit			
	This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit										
	selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock										
	Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer.										
							0 001001 0011				
	external clo	ck and the s	system cloc	k for either t	mer.						
	external clo 0: Timer 2 e	ck and the s external cloc	system clock	k for either ti is the syster	mer. n clock divi	ded by 12		veen the			

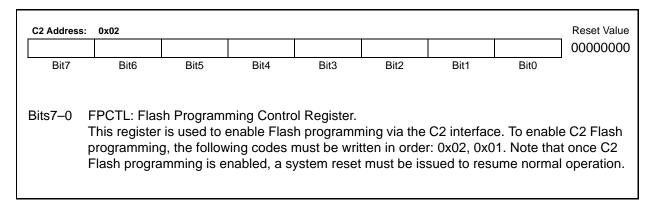
SFR Definition 21.8. TMR2CN: Timer 2 Control

22.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 22.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA0 capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to logic '1'. See Figure 22.3 for details on the PCA interrupt configuration.


Figure 22.3. PCA Interrupt Block Diagram

C2 Register Definition 24.3. REVID: C2 Revision ID

C2 Register Definition 24.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 24.5. FPDAT: C2 Flash Programming Data

C2 Address	: 0xB4			1			1	Reset Valu
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0000000
		CO Fleeb Dree						
DIIS7-U.	This reg	C2 Flash Progrister is used to s. Valid comma	pass Flash	commands		s, and data	during C2 F	lash
DIIS <i>I</i> – U.	This reg	ister is used to	pass Flash ands are list	commands		s, and data	during C2 F	Flash
5ii5 <i>1</i> – U.	This reg accesse	ister is used to	pass Flash ands are list Con	commands ed below.		s, and data	during C2 F	lash
οπο <i>τ</i> =0.	This reg accesse	ister is used to s. Valid comma	pass Flash ands are list Con ead	commands ed below.		s, and data	during C2 F	Flash
UIUS <i>I</i> −U.	This reg accesse Code 0x06	ister is used to s. Valid comma Flash Block Re	pass Flash ands are list Con ead	commands ed below.		s, and data	during C2 F	Flash

