

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103c6t6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM32F103xx performance line block diagram
Figure 2.	Clock tree
Figure 3.	STM32F103xx performance line LQFP64 pinout
Figure 4.	STM32F103xx performance line TFBGA64 ballout
Figure 5.	STM32F103xx performance line LQFP48 pinout
Figure 6.	STM32F103xx performance line UFQFPN48 pinout
Figure 7.	STM32F103xx performance line VFQFPN36 pinout
Figure 8.	Memory map
Figure 9.	Pin loading conditions
Figure 10.	Pin input voltage
Figure 11.	Power supply scheme
Figure 12.	Current consumption measurement scheme
Figure 13.	Typical current consumption in Run mode versus frequency (at 3.6 V) -
	code with data processing running from RAM, peripherals enabled
Figure 14.	Typical current consumption in Run mode versus frequency (at 3.6 V) -
	code with data processing running from RAM, peripherals disabled
Figure 15.	Typical current consumption on V _{BAT} with RTC on versus temperature at different
	V _{BAT} values
Figure 16.	Typical current consumption in Stop mode with regulator in Run mode versus
	temperature at V_{DD} = 3.3 V and 3.6 V
Figure 17.	Typical current consumption in Stop mode with regulator in Low-power mode versus
	temperature at V_{DD} = 3.3 V and 3.6 V
Figure 18.	Typical current consumption in Standby mode versus temperature at
	$V_{DD} = 3.3 \text{ V} \text{ and } 3.6 \text{ V} \dots 42$
Figure 19.	High-speed external clock source AC timing diagram
Figure 20.	Low-speed external clock source AC timing diagram47
Figure 21.	Typical application with an 8 MHz crystal
Figure 22.	Typical application with a 32.768 kHz crystal
Figure 23.	Standard I/O input characteristics - CMOS port
Figure 24.	Standard I/O input characteristics - TTL port
Figure 25.	5 V tolerant I/O input characteristics - CMOS port
Figure 26.	5 V tolerant I/O input characteristics - TTL port
Figure 27.	I/O AC characteristics definition
Figure 28.	Recommended NRST pin protection
Figure 29.	I ² C bus AC waveforms and measurement circuit
Figure 30.	SPI timing diagram - slave mode and CPHA = 0
Figure 31.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$
Figure 32.	SPI timing diagram - master mode ⁽¹⁾
Figure 33.	USB timings: definition of data signal rise and fall time
Figure 34.	ADC accuracy characteristics
Figure 35.	Typical connection diagram using the ADC
Figure 36.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})73
Figure 37.	Power supply and reference decoupling(V _{REF+} connected to V _{DDA})
Figure 38.	VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
	quad flat package outline
Figure 39.	VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
	quad flat package recommended footprint
Figure 40.	VFQFPN36 marking example (package view)

in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

Refer to Table 11: Embedded reset and power control block characteristics for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop mode
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.3.12 Low-power modes

The STM32F103xx performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

Note:

DocID15060 Rev 7

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.15 Timers and watchdogs

The low-density STM32F103xx performance line devices include an advanced-control timer, two general-purpose timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control and general-purpose timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No

Table 4. Timer feature comparison

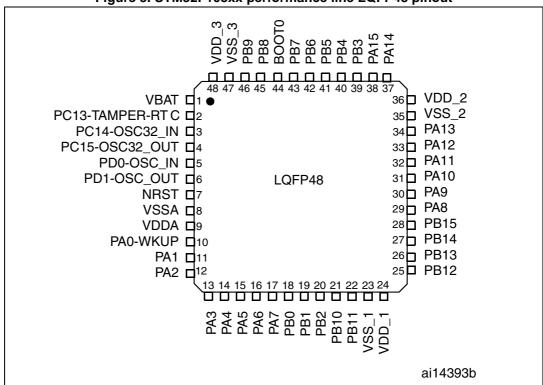
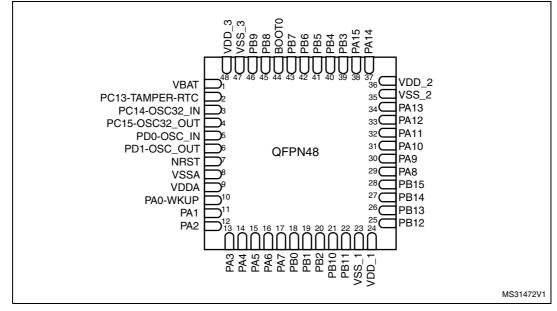



Figure 5. STM32F103xx performance line LQFP48 pinout

Figure 6. STM32F103xx performance line UFQFPN48 pinout

Symbol	Parameter		Conditions	Min	Max	Unit
		Standard	1 10	-0.3	V _{DD} + 0.3	
V _{IN}	I/O input voltage	FT 10 ⁽³⁾	$2 \text{ V} < \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-0.3	5.5	V
		FIIO	V _{DD} = 2 V	-0.3	5.2	
		BOOT0	·	0	5.5	
		TFBGA6	4	-	308	
	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽⁴⁾	LQFP64		-	444	mW
P _D		LQFP48		-	363	
		UFQFPN	UFQFPN48		624	
		VFQFPN	VFQFPN36		1000	
	Ambient temperature for 6	Maximur	Maximum power dissipation		85	
т.	suffix version	Low pow	Low power dissipation ⁽⁵⁾		105	
TA	Ambient temperature for 7	Maximur	Maximum power dissipation		105	°C
	suffix version	Low pow	Low power dissipation ⁽⁵⁾		125	
т.	lunction towns roture ronge	6 suffix v	6 suffix version		105	
TJ	Junction temperature range	7 suffix v	7 suffix version		125	

Table 9. General operating conditions (continued)

1. When the ADC is used, refer to Table 46: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

- 3. To sustain a voltage higher than V_{DD}+0.3 V, the internal pull-up/pull-down resistors must be disabled.
- If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see Table 6.6: Thermal characteristics on page 92).
- In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_J max (see Table 6.6: Thermal characteristics on page 92). 5.

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

	Table To. Operating conditions at power-up / power-down							
Symbol	Parameter	Conditions	Min	Max	Unit			
+	V _{DD} rise time rate		0	¥	us/V			
τ _{VDD}	V _{DD} fall time rate	-	20	¥	μ5/ ν			

Table 10 Operating conditions at power-up / power-down

5.3.3 Embedded reset and power control block characteristics

The parameters given in Table 11 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 9.

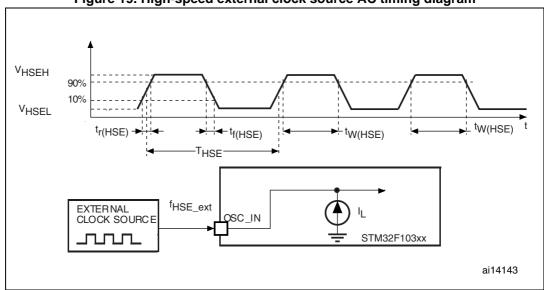
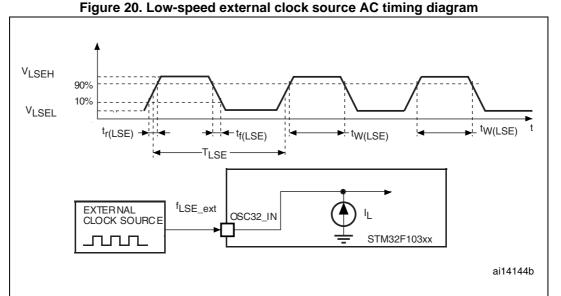



Figure 19. High-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Low-speed internal (LSI) RC oscillator

Table 25. LSI oscillator	characteristics ⁽¹⁾
--------------------------	--------------------------------

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μΑ

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Based on characterization, not tested in production.

3. Guaranteed by design, not tested in production.

Wakeup time from low-power mode

The wakeup times given in *Table 26* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Table 30. EMS characteristics

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f	Unit	
	Farameter		frequency band	8/48 MHz	8/72 MHz	Onit
	Peak level	V _{DD} = 3.3 V, T _A = 25 °C	0.1 to 30 MHz	12	12	
6			30 to 130 MHz	22	19	dBµV
S _{EMI}			130 MHz to 1GHz	23	29	
			SAE EMI Level	4	4	-

Table 31. EMI characteristics

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

				-	
Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C}$ conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$ conforming to JESD22-C101	11	500	v

Table 32. ESD absolute maximum ratings

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 33. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 23* and *Figure 24* for standard I/Os, and in *Figure 25* and *Figure 26* for 5 V tolerant I/Os.

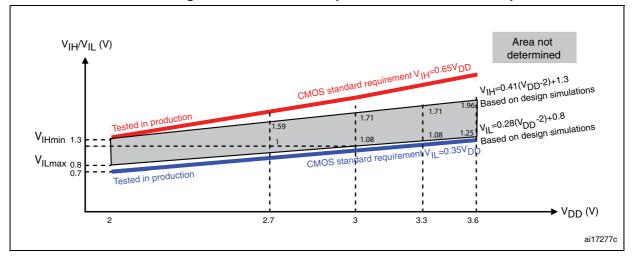
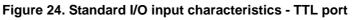
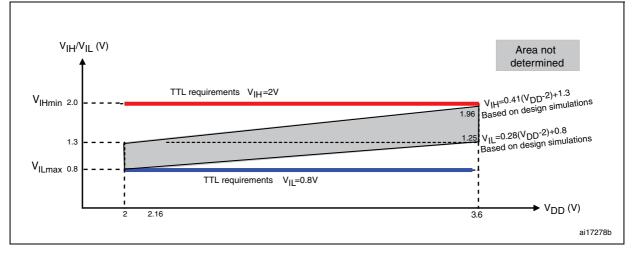




Figure 23. Standard I/O input characteristics - CMOS port

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 37*, respectively.

Unless otherwise specified, the parameters given in *Table 37* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$	-	2	MHz
10	^t f(IO)out	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	125 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time		-	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$	-	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	25 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	ο _L = 30 μr, ν _{DD} = 2 v to 3.0 v	-	25 ⁽³⁾	115
	F _{max(IO)ou} t	froquonov ⁽²⁾	C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	-	50	MHz
			$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to}$ 3.6 V	-	30	MHz
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$	-	20	MHz
		Output high to low ^{IO)out} level fall time	C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	
11	t _{f(IO)out}		C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	ns
		Outent law to kink	C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	113
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to}$ 3.6 V	-	8 ⁽³⁾	
			$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$	-	12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 37. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 27*.

3. Guaranteed by design, not tested in production.

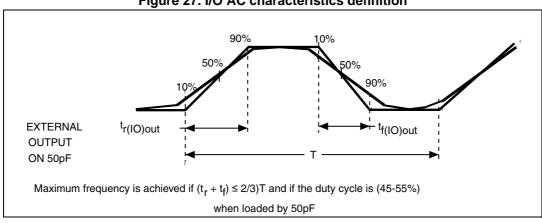


Figure 27. I/O AC characteristics definition

5.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 35*).

Unless otherwise specified, the parameters given in *Table 38* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	V				
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	v				
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV				
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ				
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns				
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	300	-	-	ns				

Table 38. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

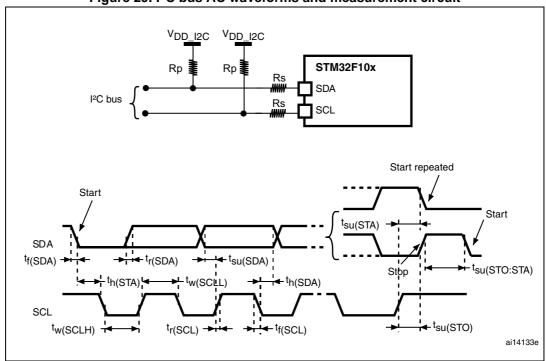


Figure 29. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$

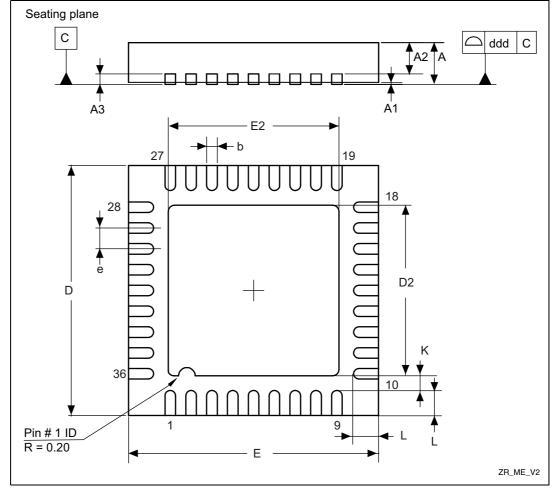
2. Rs = Series protection resistors, Rp = Pull-up resistors, $V_{DD_{-12C}} = 12C$ bus supply.

£ (1/11-)	I2C_CCR value				
f _{SCL} (kHz)	R _P = 4.7 kΩ				
400	0x801E				
300	0x8028				
200	0x803C				
100	0x00B4				
50	0x0168				
20	0x0384				

Table 41. SCL frequency (f_{PCI K1}= 36 MHz., V_{DD 12C} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, $f_{SCL} = I^2C$ speed,

 For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.



6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 VFQFPN36 Package

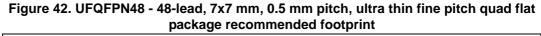
Figure 38. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

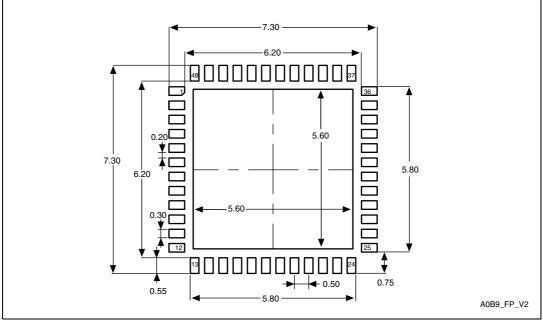
1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Max		
А	0.800	0.900	1.000	0.0315	0.0354	0.0394		
A1	-	0.020	0.050	-	0.0008	0.0020		
A2	-	0.650	1.000	-	0.0256	0.0394		
A3	-	0.200	-	-	0.0079	-		
b	0.180	0.230	0.300	0.0071	0.0091	0.0118		
D	5.875	6.000	6.125	0.2313	0.2362	0.2411		
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673		
E	5.875	6.000	6.125	0.2313	0.2362	0.2411		
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673		
е	0.450	0.500	0.550	0.0177	0.0197	0.0217		
L	0.350	0.550	0.750	0.0138	0.0217	0.0295		
К	0.250	-	-	0.0098	-	-		
ddd	-	-	0.080	-	-	0.0031		

Table 51. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitchquad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

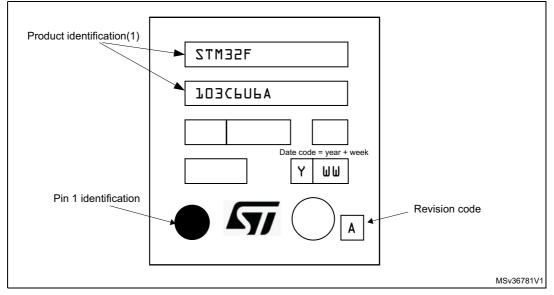




Symbol	millimeters			inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Max		
А	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020		
D	6.900	7.000	7.100	0.2717	0.2756	0.2795		
E	6.900	7.000	7.100	0.2717	0.2756	0.2795		
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244		
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197		
Т	-	0.152	-	-	0.0060	-		
b	0.200	0.250	0.300	0.0079	0.0098	0.0118		
е	-	0.500	-	-	0.0197	-		
ddd	-	-	0.080	-	-	0.0031		

Table 52. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

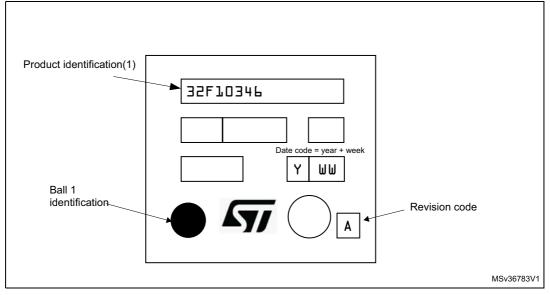
1. Values in inches are converted from mm and rounded to 4 decimal digits.



1. Dimensions are expressed in millimeters.

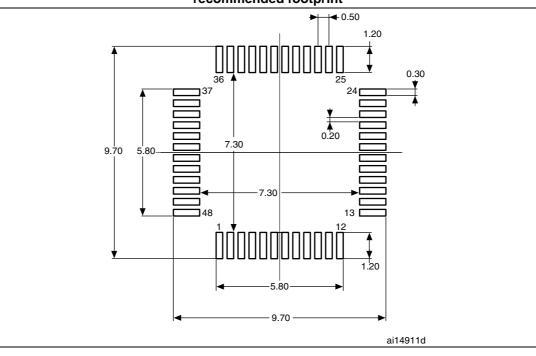
Device Marking for UFQFPN48

The following figure gives an example of topside marking orientation versus ball 1 identifier location.



 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device Marking for TFBGA64


The following figure gives an example of topside marking orientation versus ball 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Figure 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

7 Ordering information scheme

Table 58. Ordering information scheme

Example:	STM32	F	103 C	4	Т	7	А	ххх
Device foreity								
Device family								
STM32 = ARM [®] -based 32-bit microcontroller								
Product type								
F = general-purpose								
Device subfamily								
103 = performance line								
Pin count								
T = 36 pins								
C = 48 pins								
R = 64 pins								
Flash memory size								
4 = 16 Kbytes of Flash memory								
6 = 32 Kbytes of Flash memory								
Package								
H = BGA								
T = LQFP								
U = VFQFPN or UFQFPN								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C.								
7 = Industrial temperature range, -40 to 105 °C.								
Internal code								
"A" or blank								
Options								

xxx = programmed parts

TR = tape and real

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

