

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

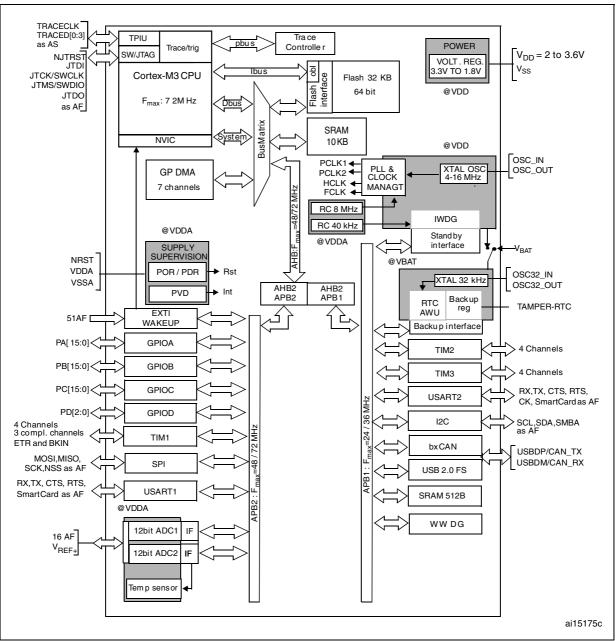
Details

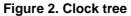
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103r6t6atr

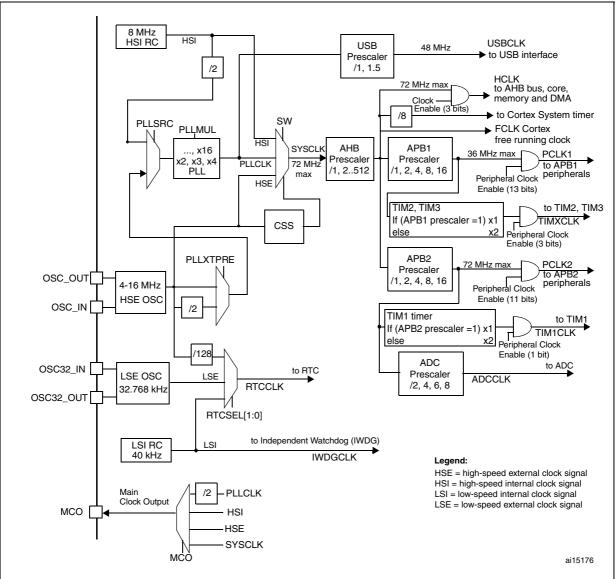
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 44. Table 45.	USB DC electrical characteristics
Table 46.	ADC characteristics
Table 47.	R_{AIN} max for $f_{ADC} = 14$ MHz
Table 48.	ADC accuracy - limited test conditions
Table 49.	ADC accuracy
Table 50.	TS characteristics
Table 51.	VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch
	quad flat package mechanical data
Table 52.	UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
	package mechanical data
Table 53.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
	package mechanical data
Table 54.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
	grid array package mechanical data85
Table 55.	TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Table 56.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 57.	Package thermal characteristics
Table 58.	Ordering information scheme
Table 59.	Document revision history




Figure 1. STM32F103xx performance line block diagram


1. $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C).

2. AF = alternate function on I/O port pin.

STM32F103x4, STM32F103x6

- 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.
- 2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48 MHz.
- 3. To have an ADC conversion time of 1 $\mu s,$ APB2 must be at 14 MHz, 28 MHz or 56 MHz.

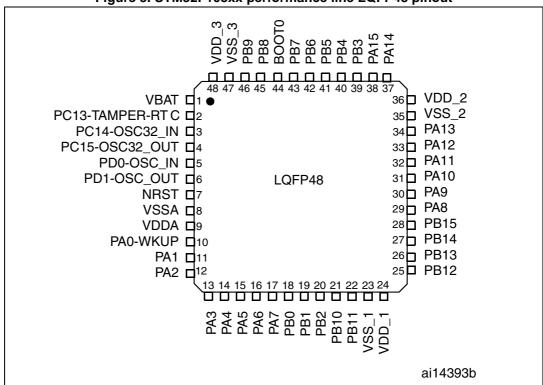
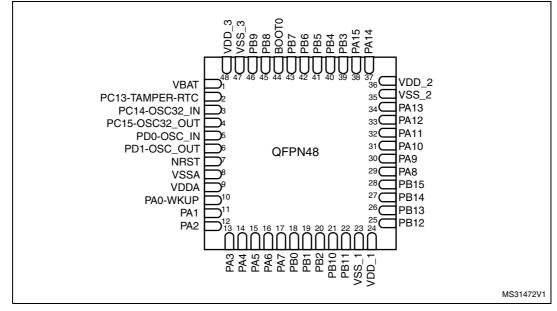



Figure 5. STM32F103xx performance line LQFP48 pinout

Figure 6. STM32F103xx performance line UFQFPN48 pinout

	Pin	IS		able 5. Low-dell				Alternate functions ⁽⁴⁾		
LQFP48/ UFQFPN48	LQFP64	TFBGA64	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
-	-	D1	3	PD1	I/O	FT	PD1	-	-	
-	54	B5	-	PD2	I/O	FT	PD2	TIM3_ETR	-	
39	55	A5	30	PB3	I/O	FT	JTDO	-	TIM2_CH2 / PB3/ TRACESWO	
40	56	A4	31	PB4	I/O	FT	NJTRST	-	TIM3_CH1 /PB4 SPI1_MISO	
41	57	C4	32	PB5	I/O	-	PB5	I2C1_SMBA	TIM3_CH2 / SPI1_MOSI	
42	58	D3	33	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁹⁾ /	USART1_TX	
43	59	C3	34	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁹⁾	USART1_RX	
44	60	B4	35	BOOT0	Ι	-	BOOT0	-	-	
45	61	B3	-	PB8	I/O	FT	PB8	-	I2C1_SCL /CAN_RX	
46	62	A3	-	PB9	I/O	FT	PB9	-	I2C1_SDA / CAN_TX	
47	63	D4	36	V _{SS_3}	S	-	V_{SS_3}	-	-	
48	64	E4	1	V_{DD_3}	S	-	V_{DD_3}	-	-	

Table 5. Low-density STM32F103xx pin definitions (continued)

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).

- PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 7. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48, UFQFPN48 and LQFP64 packages and C1 and C2 in the TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.

8. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.

This alternate function can be remapped by software to some other port pins (if available on the used package). For more
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,
available from the STMicroelectronics website: www.st.com.

4 Memory mapping

The memory map is shown in Figure 8.

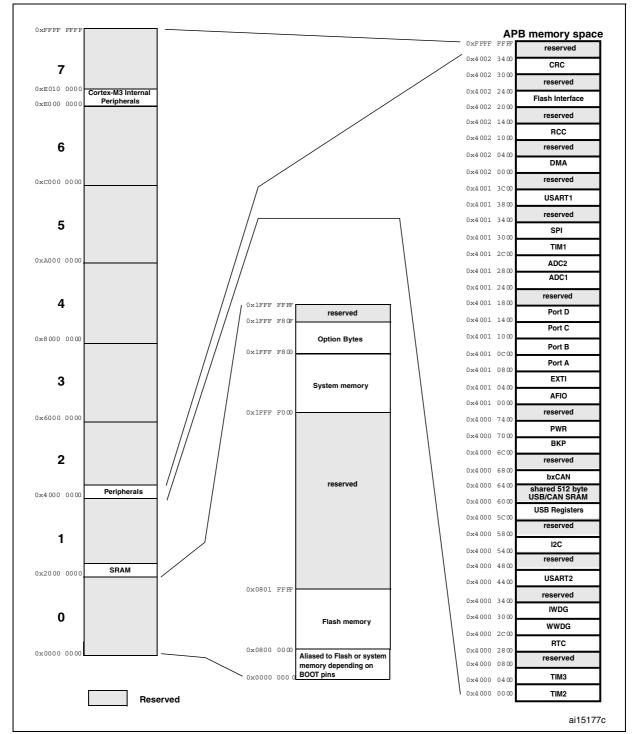


Figure 8. Memory map

DocID15060 Rev 7

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V_{DD}/V_{DDA} power lines (source) ⁽¹⁾	150	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	150	
1	Output current sunk by any I/O and control pin	25	
IIO	Output current source by any I/Os and control pin	-25	mA
ı (2)	Injected current on five volt tolerant pins ⁽³⁾	-5/+0	
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	± 5	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

Table 7. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device. See note 2. on page 71.

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 6: Voltage characteristics* for the maximum allowed input voltage values.

 A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 6: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 9. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	72	
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	72	
V _{DD}	Standard operating voltage	-	2	3.6	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V
⊻DDA` ′	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	V
V _{BAT}	Backup operating voltage	-	1.8	3.6	

Symbol	Parameter		Min	Max	Unit	
		Standard	1 10	-0.3	V _{DD} + 0.3	
V _{IN}	I/O input voltage	FT 10 ⁽³⁾	$2 \text{ V} < \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-0.3	5.5	V
		FIIO	V _{DD} = 2 V	-0.3	5.2	
		BOOT0	·	0	5.5	
		TFBGA6	4	-	308	
	Power dissipation at $T_A =$	LQFP64	LQFP64		444	mW
P _D	85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽⁴⁾	LQFP48	LQFP48		363	
		UFQFPN	UFQFPN48		624	
		VFQFPN	VFQFPN36		1000	
	Ambient temperature for 6	hbient temperature for 6 Maximum power dissipation		-40	85	
т.	suffix version	Low pow	Low power dissipation ⁽⁵⁾		105	
TA	Ambient temperature for 7	Maximum power dissipation		-40	105	°C
	suffix version	Low pow	Low power dissipation ⁽⁵⁾		125	
т.	lunction towns roture ronge	6 suffix v	6 suffix version		105	
TJ	Junction temperature range	7 suffix v	7 suffix version		125	

Table 9. General operating conditions (continued)

1. When the ADC is used, refer to Table 46: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

- 3. To sustain a voltage higher than V_{DD}+0.3 V, the internal pull-up/pull-down resistors must be disabled.
- If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see Table 6.6: Thermal characteristics on page 92).
- In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_J max (see Table 6.6: Thermal characteristics on page 92). 5.

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

	Table TU. Operating	conditions at power-	up / power	-down	
Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate		0	¥	us/V
t _{VDD}	V _{DD} fall time rate	-	20	¥	μ5/ ν

Table 10 Operating conditions at power-up / power-down

5.3.3 Embedded reset and power control block characteristics

The parameters given in Table 11 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 9.

Cumhal	Devementer	Conditions	4	Max	l Imit		
Symbol	Parameter	Conditions	fHCLK	T _A = 85 °C	T _A = 105 °C	Unit	
			72 MHz	26	27		
			48 MHz	17	18		
		External clock ⁽²⁾ , all	36 MHz	14	15		
I _{DD}	Supply current in Sleep mode	peripherals enabled	24 MHz	10	11		
			16 MHz	7	8		
			8 MHz	4	5	~ ^	
		External clock ⁽²⁾ , all	72 MHz	7.5	8	mA	
			48 MHz	6	6.5		
			36 MHz	5	5.5		
		peripherals disabled	24 MHz	4.5	5		
			16 MHz	4	4.5		
1			8 MHz	3	4		

Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM

1. based on characterization, tested in production at $V_{\text{DD}\ \text{max}},\,f_{\text{HCLK}}$ max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Ту	p ⁽¹⁾	Unit
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	
			72 MHz	31.3	24.5	
			48 MHz	21.9	17.4	
			36 MHz	17.2	13.8	
			24 MHz	11.2	8.9	
			16 MHz	8.1	6.6	
		External clock ⁽³⁾	8 MHz	5	4.2	mA
	Supply current in Run mode		4 MHz	3	2.6	
			2 MHz	2	1.8	
			1 MHz	1.5	1.4	
			500 kHz	1.2	1.2	
I _{DD}			125 kHz	1.05	1	
		Running on high speed internal RC	64 MHz	27.6	21.6	
			48 MHz	21.2	16.7	
			36 MHz	16.5	13.1	
			24 MHz	10.5	8.2	
	1		16 MHz	7.4	5.9	
		(HSI), AHB prescaler used to	8 MHz	4.3	3.6	mA
		reduce the	4 MHz	2.4	2	
		frequency	2 MHz	1.5	1.3	
			1 MHz	1	0.9	
			500 kHz	0.7	0.65	
			125 kHz	0.5	0.45	

Table 17. Typical current consumption in Run mode, code with data processing
running from Flash

1. Typical values are measures at T_{A} = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 20* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾	-	5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١L	OSC_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA

 Table 20. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

 Table 21. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Output driving current

The GPIOs (general-purpose inputs/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to $\pm /-3$ mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 7*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 7*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port ⁽²⁾ , I _{IO} = +8 mA	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$1_{O} = 40 \text{ mg}$ 2.7 V < V _{DD} < 3.6 V	V _{DD} 0.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time		-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time			-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	l _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time $2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$		V _{DD} -1.3	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Dutput low level voltage for an I/O pin when 8 pins are sunk at same time $I_{IO} = +6 \text{ mA}$		-	0.4	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} 0.4	-	v

Table 36. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 7* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data, not tested in production.

5.3.16 Communications interfaces

I²C interface characteristics

The STM32F103xx performance line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 40*. Refer also to *Section 5.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode I ² C ⁽¹⁾⁽²⁾		Unit
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time 4.0 - 0.6		-	μs		
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 40. I ² C	characteristics
----------------------------	-----------------

1. Guaranteed by design, not tested in production.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

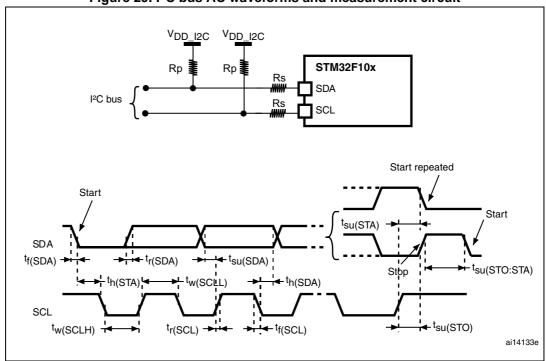


Figure 29. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$

2. Rs = Series protection resistors, Rp = Pull-up resistors, $V_{DD_{-12C}} = 12C$ bus supply.

£ (/LU-)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

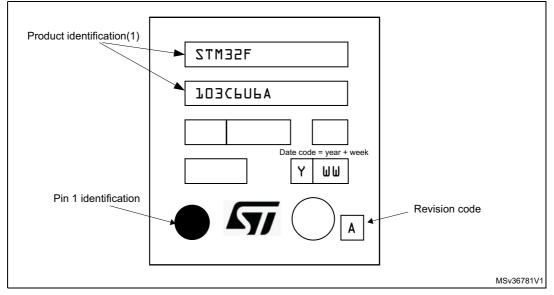
Table 41. SCL frequency (f_{PCI K1}= 36 MHz., V_{DD 12C} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, $f_{SCL} = I^2C$ speed,

 For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1	-	0.020	0.050	-	0.0008	0.0020
A2	-	0.650	1.000	-	0.0256	0.0394
A3	-	0.200	-	-	0.0079	-
b	0.180	0.230	0.300	0.0071	0.0091	0.0118
D	5.875	6.000	6.125	0.2313	0.2362	0.2411
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673
E	5.875	6.000	6.125	0.2313	0.2362	0.2411
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673
е	0.450	0.500	0.550	0.0177	0.0197	0.0217
L	0.350	0.550	0.750	0.0138	0.0217	0.0295
К	0.250	-	-	0.0098	-	-
ddd	-	-	0.080	-	-	0.0031

Table 51. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitchquad flat package mechanical data


1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device Marking for UFQFPN48

The following figure gives an example of topside marking orientation versus ball 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

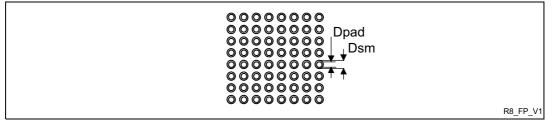


Table 54. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

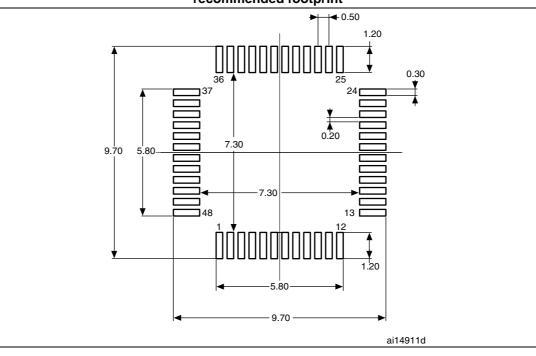
Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array, recommended footprint

Table 55. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 1.125 mm
Pad trace width	0.100 mm



Symbol	Symbol				inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 56. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Date	Revision	Changes
20-May-2010	4	Added VFQFPN48 package. Updated note 2 below Table 40: I ² C characteristics Updated Figure 29: I ² C bus AC waveforms and measurement circuit Updated Figure 28: Recommended NRST pin protection Updated Section 5.3.12: I/O current injection characteristics
19-Apr-2011	5	Updated footnotes below Table 6: Voltage characteristics on page 32 and Table 7: Current characteristics on page 33 Updated tw min in Table 20: High-speed external user clock characteristics on page 46 Updated startup time in Table 23: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) on page 49 Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics

Table 59. Document revision	on history (continued)

