

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFQFN Exposed Pad
Supplier Device Package	36-VFQFPN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103t6u7a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	luction	
2	Descr	ription .	
	2.1	Device of	overview
	2.2	Full com	npatibility throughout the family14
	2.3	Overvie	w
		2.3.1	ARM [®] Cortex [™] -M3 core with embedded Flash and SRAM15
		2.3.2	Embedded Flash memory15
		2.3.3	CRC (cyclic redundancy check) calculation unit
		2.3.4	Embedded SRAM15
		2.3.5	Nested vectored interrupt controller (NVIC)15
		2.3.6	External interrupt/event controller (EXTI)16
		2.3.7	Clocks and startup
		2.3.8	Boot modes
		2.3.9	Power supply schemes16
		2.3.10	Power supply supervisor16
		2.3.11	Voltage regulator
		2.3.12	Low-power modes
		2.3.13	DMA
		2.3.14	RTC (real-time clock) and backup registers
		2.3.15	Timers and watchdogs
		2.3.16	I ² C bus
		2.3.17	Universal synchronous/asynchronous receiver transmitter (USART)20
		2.3.18	Serial peripheral interface (SPI) 20
		2.3.19	Controller area network (CAN)
		2.3.20	Universal serial bus (USB) 20
		2.3.21	GPIOs (general-purpose inputs/outputs)21
		2.3.22	ADC (analog-to-digital converter)21
		2.3.23	Temperature sensor
		2.3.24	Serial wire JTAG debug port (SWJ-DP) 21
3	Pinou	its and j	pin description 22
4	Memo	ory map	ping

DocID15060 Rev 7

Figure 1. STM32F103xx performance line block diagram

1. $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C).

2. AF = alternate function on I/O port pin.

STM32F103x4, STM32F103x6

- 1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.
- 2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48 MHz.
- 3. To have an ADC conversion time of 1 $\mu s,$ APB2 must be at 14 MHz, 28 MHz or 56 MHz.

2.3.21 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

I/Os on APB2 with up to 18 MHz toggling speed.

2.3.22 ADC (analog-to-digital converter)

Two 12-bit analog-to-digital converters are embedded into STM32F103xx performance line devices and each ADC shares up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single shunt

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers.

2.3.23 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC12_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.24 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

5.1.7 Current consumption measurement

Figure 12. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 6: Voltage characteristics*, *Table 7: Current characteristics*, and *Table 8: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including $V_{\rm DDA}$ and $V_{\rm DD})^{(1)}$	-0.3	4.0	
V(2)	Input voltage on five volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V
VIN'	Input voltage on any other pin V _{SS} –0.3		4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	
V _{SSX} -V _{SS}	SSX -V _{SS} Variations between all the different ground pins		50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	discharge voltage (human body see Section 5.3.11: Absolute maximum ratings (electrical sensitivity)		-

Table 6. Voltage characteristics

 All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 7: Current characteristics* for the maximum allowed injected current values.

				Тур ⁽¹⁾				
Symbol	Parameter	Conditions	V _{DD} /V _{BA} _T = 2.0 V	V _{DD} /V _{BA} _T = 2.4 V	V _{DD} /V _{BA} _T = 3.3 V	T _A = 85 °C	T _A = 105 ° C	Uni t
Supply current in Stop mode	Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	21.3	21.7	160	200		
	Stop mode	Regulator in Low Power mode, low- speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	11.3	11.7	145	185	
.00	Supply current in Standby mode	Low-speed internal RC oscillator and independent watchdog ON	-	2.75	3.4	-	-	μA
		Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.55	3.2	-	-	
		Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	1.55	1.9	3.2	4.5	
I _{DD_VBA} T	Backup domain supply current	Low-speed oscillator and RTC ON	0.9	1.1	1.4	1.9 ⁽²⁾	2.2	

Table 16. 7	Typical and	maximum	current	consump	otions in	Stop	and S	Standby	modes

1. Typical values are measured at $T_A = 25$ °C.

2. Based on characterization, not tested in production.

				Тур	o ⁽¹⁾				
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit			
			72 MHz	12.6	5.3				
			48 MHz	8.7	3.8				
			36 MHz	6.7	3.1				
			24 MHz	4.8	2.3				
			16 MHz	3.4	1.8				
		External clock ⁽³⁾	8 MHz	2	1.2				
			4 MHz	1.5	1.1				
		2 MHz 1 1 MHz 500 kHz 1				2 MHz	1.25	1	
							1 MHz 1.1	0.98	
			1.05	0.96					
	Supply		125 kHz	1	0.95	~^ ^			
DD	Sleep mode		64 MHz	10.6	4.2	mA			
			48 MHz	8.1	3.2				
			36 MHz	6.1	2.5				
			24 MHz	4.2	1.7				
		Running on high	16 MHz	2.8	1.2				
		(HSI), AHB prescaler	8 MHz	1.4	0.55				
		used to reduce the frequency	4 MHz	0.9	0.5				
			2 MHz	0.7	0.45				
			1 MHz	0.55	0.42				
			500 kHz	0.48	0.4				
			125 kHz	0.4	0.38				

Table 18. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Figure 22. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions		Min	Тур	Max	Unit			
f _{HSI}	Frequency	-		-	8	-	MHz			
DuCy _(HSI)	Duty cycle		-	45	-	55	%			
ACC _{HSI}		User-trimmed register ⁽²⁾	I with the RCC_CR	-	-	1 ⁽³⁾	%			
	Accuracy of the HSI oscillator	Factory- calibrated (4)(5)	$T_A = -40$ to 105 °C	-2	-	2.5	%			
			Factory- collibrated $T_A = -10 \text{ to } 85 \text{ °C}$		-1.5	-	2.2	%		
			(4)(5) $T_{A} = 0 \text{ to } 70 \text{ °C}$		-	2	%			
			-1.1	-	1.8	%				
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs			
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption		-	-	80	100	μΑ			

Table 24. HSI oscillator characteristics⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com.

3. Guaranteed by design, not tested in production.

- 4. Based on characterization, not tested in production.
- 5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified range.

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C}$ conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$ conforming to JESD22-C101	11	500	v

Table 32. ESD absolute maximum ratings

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 33. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

Figure 32. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

USB characteristics

The USB interface is USB-IF certified (Full Speed).

Table 43. USB startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design, not tested in production.

Figure 35. Typical connection diagram using the ADC

1. Refer to Table 46 for the values of R_{AIN} , R_{ADC} and C_{ADC} .

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 36* or *Figure 37*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. The $V_{\mathsf{REF}+}$ input is available only on the TFBGA64 package.

Figure 37. Power supply and reference decoupling(V_{REF+} connected to V_{DDA})

1. The $V_{\mathsf{REF}+}$ input is available only on the TFBGA64 package.

5.3.19 Temperature sensor characteristics

Table 50. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	£	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

1. Based on characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 VFQFPN36 Package

Figure 38. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾					
Symbol	Min	Тур	Мах	Min	Тур	Max			
А	0.800	0.900	1.000	0.0315	0.0354	0.0394			
A1	-	0.020	0.050	-	0.0008	0.0020			
A2	-	0.650	1.000	-	0.0256	0.0394			
A3	-	0.200	-	-	0.0079	-			
b	0.180	0.230	0.300	0.0071	0.0091	0.0118			
D	5.875	6.000	6.125	0.2313	0.2362	0.2411			
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673			
E	5.875	6.000	6.125	0.2313	0.2362	0.2411			
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673			
е	0.450	0.500	0.550	0.0177	0.0197	0.0217			
L	0.350	0.550	0.750	0.0138	0.0217	0.0295			
K	0.250	-	-	0.0098	-	-			
ddd	-	-	0.080	-	-	0.0031			

Table 51. VFQFPN36 - 36-pin, 6x6 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device Marking for VFQFPN36

The following figure gives an example of topside marking orientation versus ball 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
Е	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 52. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device Marking for UFQFPN48

The following figure gives an example of topside marking orientation versus ball 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

6.4 **TFBGA64** package information

Figure 47. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 54. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
grid array package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.200	-	-	0.0472
A1	0.150	-	-	0.0059	-	-
A2	-	0.200	-	-	0.0079	-
A4	-	-	0.600	-	-	0.0236
b	0.250	0.300	0.350	0.0098	0.0118	0.0138
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	-	3.500	-	-	0.1378	-
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	-	3.500	-	-	0.1378	-

Date	Revision	Changes		
14-May-2013	6	Replaced VQFN48 package with UQFN48 in cover page packages, <i>Table 2:</i> STM32F103xx low-density device features and peripheral counts, Figure 6: STM32F103xx performance line UFQFPN48 pinout, <i>Table 5:</i> Low-density STM32F103xx pin definitions, <i>Table 58:</i> Ordering information scheme, updated Table 9: General operating conditions, updated Table 57: Package thermal characteristics, added Figure 41: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline and Table 52: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data Added footnote for TFBGA ADC channels in <i>Table 2:</i> STM32F103xx low-density device features and peripheral counts Updated 'All GPIOs are high current' in Section 2.3.21: GPIOs (general-purpose inputs/outputs) Updated Table 5: Low-density STM32F103xx pin definitions Corrected Sigma letter in Section 5.1.1: Minimum and maximum values Updated Table 7: Current characteristics Added first sentence in Section 5.3.16: Communications interfaces Updated first sentence in Output driving current Added note 5. in Table 2: Standard I/O input characteristics Added notes to Figure 23: Standard I/O input characteristics Added notes to Figure 23: Standard I/O input characteristics - CMOS port, Figure 24: Standard I/O input characteristics - TL port, Figure 25: 5 V tolerant I/O input characteristics - CMOS port and Figure 26: 5 V tolerant I/O input characteristics - TL port Updated Figure 29: P^2 C bus AC waveforms and measurement circuit Updated Figure 29: P^2 C bus AC waveforms and measurement circuit Updated note 2. and 3.,removed note "the device must internally" in Table 40: P^2 C characteristics Updated Figure 29: P^2 C bus AC waveforms and measurement circuit Updated note 2. in Table 41: SCL frequency (f _{PCLK1} = 36 MHz., V _{DD_I2C} = 3.3 V) Updated Figure 47: TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline and Table 54: TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data		
01-June-2015	7	 Added: Package's marking pictures(<i>Figure 40, Figure 43, Figure 46, Figure 49, Figure 52</i>) Updated: <i>Table 40: I²C characteristics</i> Section 6: Package information 		

Table 59. Document revision history (continued)

