

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detano	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	448KB (448K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc2287-56f66l34-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
43	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input			
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0			
	CCU6x_ T12HRC	I	In/A	External Run Control Input for T12 of CCU6x			
	CCU6x_ T13HRC	I	In/A	External Run Control Input for T13 of CCU6x			
44	P5.9	I	In/A	Bit 9 of Port 5, General Purpose Input			
	ADC0_CH9	I	In/A	Analog Input Channel 9 for ADC0			
	CC2_T7IN	1	In/A	CAPCOM2 Timer T7 Count Input			
45	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input			
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0			
	BRKIN_A	I	In/A	OCDS Break Signal Input			
46	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input			
	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0			
47	P5.12	I	In/A	Bit 12 of Port 5, General Purpose Input			
	ADC0_CH12	I	In/A	Analog Input Channel 12 for ADC0			
48	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input			
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0			
	EX0BINB	I	In/A	External Interrupt Trigger Input			
49	P5.14	1	In/A	Bit 14 of Port 5, General Purpose Input			
	ADC0_CH14	1	In/A	Analog Input Channel 14 for ADC0			
50	P5.15	1	In/A	Bit 15 of Port 5, General Purpose Input			
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0			
51	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output			
	U0C0_ SELO4	01	St/B	USIC0 Channel 0 Select/Control 4 Output			
	U0C1_ SELO3	02	St/B	USIC0 Channel 1 Select/Control 3 Output			
	READY	I	St/B	External Bus Interface READY Input			

Table 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
52	P2.11	O0 / I	St/B	Bit 11 of Port 2, General Purpose Input/Output		
	U0C0_ SELO2	01	St/B	USIC0 Channel 0 Select/Control 2 Output		
	U0C1_ SELO2	O2	St/B	USIC0 Channel 1 Select/Control 2 Output		
	BHE/WRH	ОН	St/B	External Bus Interf. High-Byte Control Output Can operate either as Byte High Enable (BHE) or as Write strobe for High Byte (WRH).		
53	P11.5	O0 / I	St/B	Bit 5 of Port 11, General Purpose Input/Output		
55	P2.0	O0 / I	St/B	Bit 0 of Port 2, General Purpose Input/Output		
	CCU63_ CC60	02 / I	St/B	CCU63 Channel 0 Input/Output		
	AD13	OH/I	St/B	External Bus Interface Address/Data Line 13		
	RxDC0C	I	St/B	CAN Node 0 Receive Data Input		
56	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output		
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output		
	CCU63_ CC61	O2 / I	St/B	CCU63 Channel 1 Input/Output		
	AD14	OH/I	St/B	External Bus Interface Address/Data Line 14		
	ESR1_5	Ι	St/B	ESR1 Trigger Input 5		
	EX0AINA	I	St/B	External Interrupt Trigger Input		
57	P11.4	O0 / I	St/B	Bit 4 of Port 11, General Purpose Input/Output		
58	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output		
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output		
	CCU63_ CC62	02 / 1	St/B	CCU63 Channel 2 Input/Output		
	AD15	OH/I	St/B	External Bus Interface Address/Data Line 15		
	ESR2_5	Ι	St/B	ESR2 Trigger Input 5		
	EX1AINA	I	St/B	External Interrupt Trigger Input		
59	P11.3	O0 / I	St/B	Bit 3 of Port 11, General Purpose Input/Output		

Table	e 4 Pin De	efinitior	ns and	Functions (cont'd)			
Pin	Symbol	Ctrl.	Туре	Function			
97	P3.3	O0 / I	St/B	Bit 3 of Port 3, General Purpose Input/Output			
	U2C0_ SELO0	01	St/B	USIC2 Channel 0 Select/Control 0 Output			
	U2C1_ SELO1	02	St/B	USIC2 Channel 1 Select/Control 1 Output			
	U2C0_DX2A	I	St/B	USIC2 Channel 0 Shift Control Input			
	RxDC3A	Ι	St/B	CAN Node 3 Receive Data Input			
98	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output			
	U0C0_ SELO3	01	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CCU60_ COUT61	02	St/B	CCU60 Channel 1 Output			
	AD4	OH/I	St/B	External Bus Interface Address/Data Line 4			
	U0C0_DX2B	Ι	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2B	Ι	St/B	USIC0 Channel 1 Shift Control Input			
99	P3.4	O0 / I	St/B	Bit 4 of Port 3, General Purpose Input/Output			
	U2C1_ SELO0	01	St/B	USIC2 Channel 1 Select/Control 0 Output			
	U2C0_ SELO1	02	St/B	USIC2 Channel 0 Select/Control 1 Output			
	U0C0_ SELO4	O3	St/B	USIC0 Channel 0 Select/Control 4 Output			
	U2C1_DX2A	I	St/B	USIC2 Channel 1 Shift Control Input			
	RxDC4A	I	St/B	CAN Node 4 Receive Data Input			
100	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output			
	U0C1_ SCLKOUT	01	St/B	USIC0 Channel 1 Shift Clock Output			
	CCU60_ COUT62	02	St/B	CCU60 Channel 2 Output			
	AD5	OH/I	St/B	External Bus Interface Address/Data Line 5			
	U0C1_DX1B	I	St/B	USIC0 Channel 1 Shift Clock Input			

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Table	Fable 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
101	P3.5	O0 / I	St/B	Bit 5 of Port 3, General Purpose Input/Output		
	U2C1_ SCLKOUT	01	St/B	USIC2 Channel 1 Shift Clock Output		
	U2C0_ SELO2	O2	St/B	USIC2 Channel 0 Select/Control 2 Output		
	U0C0_ SELO5	O3	St/B	USIC0 Channel 0 Select/Control 5 Output		
	U2C1_DX1A	I	St/B	USIC2 Channel 1 Shift Clock Input		
102	P0.6	O0 / I	St/B	Bit 6 of Port 0, General Purpose Input/Output		
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output		
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output		
	CCU61_ COUT63	O3	St/B	CCU61 Channel 3 Output		
	A6	OH	St/B	External Bus Interface Address Line 6		
	U1C1_DX0A	I	St/B	USIC1 Channel 1 Shift Data Input		
	CCU61_ CTRAPA	I	St/B	CCU61 Emergency Trap Input		
	U1C1_DX1B	I	St/B	USIC1 Channel 1 Shift Clock Input		
103	P10.6	O0 / I	St/B	Bit 6 of Port 10, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	TxDC4	02	St/B	CAN Node 4 Transmit Data Output		
	U1C0_ SELO0	O3	St/B	USIC1 Channel 0 Select/Control 0 Output		
	AD6	OH/I	St/B	External Bus Interface Address/Data Line 6		
	U0C0_DX0C	I	St/B	USIC0 Channel 0 Shift Data Input		
	U1C0_DX2D	I	St/B	USIC1 Channel 0 Shift Control Input		
	CCU60_ CTRAPA	Ι	St/B	CCU60 Emergency Trap Input		

Table	Table 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
140	ESR2	O0 / I	St/B	External Service Request 2			
	U1C1_DX0D	I	St/B	USIC1 Channel 1 Shift Data Input			
	U1C1_DX2C	Ι	St/B	USIC1 Channel 1 Shift Control Input			
	U2C1_DX0E	I	St/B	USIC1 Channel 1 Shift Data Input			
	U2C1_DX2B	I	St/B	USIC2 Channel 1 Shift Control Input			
	EX1AINB	I	St/B	External Interrupt Trigger Input			
141	ESR0	O0 / I	St/B	External Service Request 0			
				Note: After power-up, ESR0 operates as open- drain bidirectional reset with a weak pull-up.			
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input			
142	P8.6	O0 / I	St/B	Bit 6 of Port 8, General Purpose Input/Output			
	CCU60_ COUT63	O1	St/B	CCU60 Channel 3 Output			
	CCU60_ CTRAPB	I	St/B	CCU60 Emergency Trap Input			
	BRKIN_D	I	St/B	OCDS Break Signal Input			
143	P8.5	O0 / I	St/B	Bit 5 of Port 8, General Purpose Input/Output			
	CCU60_ COUT62	01	St/B	CCU60 Channel 2 Output			
	TCK_D	I	St/B	JTAG Clock Input			
15	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Table 12 for details.			
54, 91, 127	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Table 12 for details. All V_{DDI1} pins must be connected to each other.			
20	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.			
				Note: The A/D_Converters and ports P5, P6, and P15 are fed from supply voltage V_{DDPA} .			

3.1 Memory Subsystem and Organization

The memory space of the XC228x is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

			a a 1)	
Address Area	Start Loc.	End Loc.	Area Size ¹⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E9'0000 _H	EF'FFFF _H	448 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'FFFF _H	64 Kbytes	Flash timing
Reserved for PSRAM	E1'0000 _H	E7'FFFF _H	448 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'FFFF _H	64 Kbytes	Maximum speed
Reserved for pr. mem.	CC'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	2)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ³⁾	20'5800 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
USIC registers	20'4000 _H	20'57FF _H	6 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	-
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	-
1) The erece mericed with "<"	,	م م الم م الم ما الم ما	Cas askumm "Nister	

Table 5XC228x Memory Map

1) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

2) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

3) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

1024 bytes (2 \times **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word-wide registers which are used to control and monitor functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC2000 Family. In order to to ensure upward compatibility they should either not be accessed or written with zeros.

In order to meet the requirements of designs where more memory is required than is available on chip, up to 12 Mbytes (approximately, see **Table 5**) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals.

Up to 768 Kbytes of on-chip Flash memory store code, constant data, and control data. The on-chip Flash memory consists of up to three modules with a maximum capacity of 256 Kbytes each. Each module is organized in 4-Kbyte sectors.

The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used internally to store operation control parameters and protection information.

Note: The actual size of the Flash memory depends on the chosen derivative (see **Table 1**).

Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A user-defined password sequence temporarily unlocks protected areas. The Flash modules combine 128-bit read access with protected and efficient writing algorithms for programming and erasing. Dynamic error correction provides extremely high read data security for all read access operations. Access to different Flash modules can be executed in parallel. For Flash parameters, please see Section 4.5.

¹⁾ To save control bits, sectors are clustered for protection purposes, they remain separate for programming/erasing.

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Functional Description

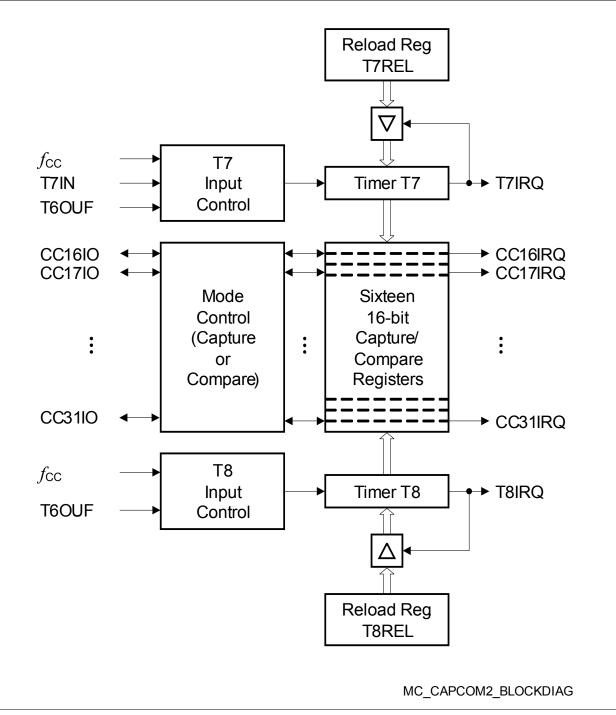


Figure 5 CAPCOM2 Unit Block Diagram

3.7 Capture/Compare Units CCU6x

The XC228x features up to four CCU6 units (CCU60, CCU61, CCU62, CCU63).

The CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with several CCU6 modules.

The module provides two independent timers (T12, T13), that can be used for PWM generation, especially for AC motor control. Additionally, special control modes for block commutation and multi-phase machines are supported.

Timer 12 Features

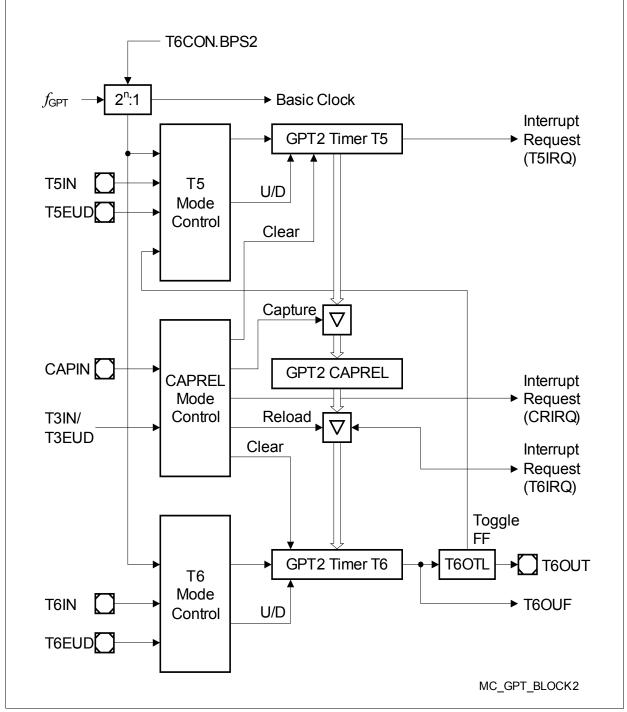
- Three capture/compare channels, where each channel can be used either as a capture or as a compare channel.
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and low-side switches)
- 16-bit resolution, maximum count frequency = peripheral clock
- Dead-time control for each channel to avoid short circuits in the power stage
- Concurrent update of the required T12/13 registers
- Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- · Many interrupt request sources
- Hysteresis-like control mode
- Automatic start on a HW event (T12HR, for synchronization purposes)

Timer 13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock
- Can be synchronized to T12
- Interrupt generation at period match and compare match
- Single-shot mode supported
- Automatic start on a HW event (T13HR, for synchronization purposes)

Additional Features

- Block commutation for brushless DC drives implemented
- Position detection via Hall sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- · Control modes for multi-channel AC drives
- Output levels can be selected and adapted to the power stage


With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XC228x to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

The RTC module can be used for different purposes:

- · System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

3.12 MultiCAN Module

The MultiCAN module contains up to five independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of up to 128 message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer.

The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to its own message object list and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations.



Figure 11 Block Diagram of MultiCAN Module

4.2.1 DC Parameters for Upper Voltage Area

These parameters apply to the upper IO voltage range, 4.5 V $\leq V_{\text{DDP}} \leq$ 5.5 V.

(Operating Conditions apply) ¹⁾							
Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Input low voltage (all except XTAL1)	$V_{\rm IL}{ m SR}$	-0.3	-	$0.3 \times V_{ m DDP}$	V	-	
Input high voltage (all except XTAL1)	$V_{IH}SR$	$0.7 \times V_{\text{DDP}}$	-	V _{DDP} + 0.3	V	-	
Input Hysteresis ²⁾	HYS CC	$0.11 \times V_{\text{DDP}}$	-	-	V	V_{DDP} in [V], Series resistance = 0 Ω	
Output low voltage	V _{OL} CC	_	_	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}^{3)}$	
Output low voltage	V _{OL} CC	_	_	0.4	V	$I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$	
Output high voltage ⁵⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge {I_{\rm OHmax}}^{3)}$	
Output high voltage ⁵⁾	V _{OH} CC	V _{DDP} - 0.4	-	-	V	$I_{\rm OH} \ge I_{\rm OHnom}^{3)4)$	
Input leakage current (Port 5, Port 15) ⁶⁾	I _{OZ1} CC	-	±10	±200	nA	$0 V < V_{IN} < V_{DDP}$	
Input leakage current (all other) ⁶⁾⁷⁾	I _{OZ2} CC	_	±0.2	±5	μA	$T_{\rm J} \le 110^{\circ}{\rm C},$ 0.45 V < $V_{\rm IN}$ < $V_{\rm DDP}$	
Input leakage current (all other) ⁶⁾⁷⁾	I _{OZ2} CC	-	±0.2	±15	μA	$T_{\rm J} \le 150^{\circ}{ m C},$ 0.45 V < $V_{\rm IN}$ < $V_{\rm DDP}$	
Pull level keep current	I _{PLK}	-	-	±30	μA	$V_{\text{PIN}} \ge V_{\text{IH}} (\text{up})^{8)}$ $V_{\text{PIN}} \le V_{\text{IL}} (\text{dn})$	
Pull level force current	I _{PLF}	±250	-	-	μA	$V_{PIN} \leq V_{IL} (up)^{8)}$ $V_{PIN} \geq V_{IH} (dn)$	
Pin capacitance ⁹⁾ (digital inputs/outputs)	$C_{IO} CC$	-	-	10	pF		

Table 14DC Characteristics for Upper Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

- Not subject to production test verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.
- The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 13, Current Limits for Port Output Drivers. The limit for pin groups must be respected.
- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DDP}$). However, only the levels for nominal output currents are verified.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 6) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 7) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are ensured by correlation. For derating, please refer to the following descriptions:

Leakage derating depending on temperature (T_J = junction temperature [°C]):

 $I_{OZ} = 0.05 \times e^{(1.5 + 0.028 \times TJ)}$ [µA]. For example, at a temperature of 130°C the resulting leakage current is 8.54 µA.

Leakage derating depending on voltage level (DV = V_{DDP} - V_{PIN} [V]):

 $I_{OZ} = I_{OZtempmax} - (1.6 \times DV) [\mu A]$

This voltage derating formula is an approximation which applies for maximum temperature.

Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal leakage.

8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: $V_{\text{PIN}} \ge V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \le V_{\text{IL}}$ for a pulldown.

Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: $V_{\text{PIN}} \leq V_{\text{IL}}$ for a pullup; $V_{\text{PIN}} \geq V_{\text{IH}}$ for a pulldown.

These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins.

 Not subject to production test - verified by design/characterization. Because pin P2.8 is connected to two pads (standard pad and high-speed clock pad), it has twice the normal capacitance.

4.2.2 DC Parameters for Lower Voltage Area

These parameters apply to the lower IO voltage range, 3.0 V $\leq V_{\text{DDP}} \leq$ 4.5 V.

Note / Parameter Symbol Values Unit **Test Condition** Min. Max. Тур. V Input low voltage V_{\parallel} SR -0.3 $0.3 \times$ _ _ (all except XTAL1) V_{DDP} Input high voltage $V_{\rm IH}\,\rm SR$ 0.7 × V V_{DDP} _ _ (all except XTAL1) + 0.3 V_{DDP} Input Hysteresis²⁾ HYS CC 0.07 V V_{DDP} in [V], _ _ Series $\times V_{\text{DDP}}$ resistance = 0Ω $I_{\rm OL} \leq I_{\rm OLmax}^{3)}$ V_{OI} CC V Output low voltage 1.0 _ _ $I_{\rm OL} \leq I_{\rm OLnom}^{3)4)}$ V_{OI} CC V Output low voltage 0.4 $I_{\text{OH}} \ge I_{\text{OHmax}}^{3)}$ Output high voltage⁵⁾ $V_{OH} CC$ V $V_{\rm DDP}$ _ - 1.0 $I_{\text{OH}} \ge I_{\text{OHnom}}^{3)4)}$ Output high voltage⁵⁾ V V_{OH} CC V_{DDP} _ _ - 0.4 $0 V < V_{IN} < V_{DDP}$ Input leakage current I_{071} CC ±10 ±200 nA (Port 5, Port 15)⁶⁾ $T_{.1} \le 110^{\circ}$ C, Input leakage current $I_{072} CC$ _ ± 0.2 ± 2.5 μA (all other)⁶⁾⁷⁾ $0.45 V < V_{IN}$ $< V_{\rm DDP}$ $T_{1} \le 150^{\circ} C_{2}$ Input leakage current $I_{072} CC$ ±0.2 ±8 μA _ $0.45 V < V_{IN}$ $(all other)^{6)7}$ $< V_{\rm DDP}$ $V_{\text{PIN}} \ge V_{\text{IH}} (\text{up})^{8}$ Pull level keep current ±10 I_{PI K} _ _ μA $V_{\mathsf{PIN}} \leq V_{\mathsf{IL}} (\mathsf{dn})$ $V_{\mathsf{PIN}} \leq V_{\mathsf{IL}} (\mathsf{up})^{\mathsf{8}}$ Pull level force current I_{PIF} ±150 μA $V_{\text{PIN}} \ge V_{\text{IH}} (\text{dn})$ Pin capacitance⁹⁾ $C_{\rm IO}$ CC 10 pF _ _ (digital inputs/outputs)

Table 15DC Characteristics for Lower Voltage Range
(Operating Conditions apply)¹⁾

1) Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

4.2.3 **Power Consumption**

The power consumed by the XC228x depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ (Table 16) and leakage current $I_{\rm LK}$ (Table 17) must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for V_{DDI} are charged with the maximum possible current, see parameter I_{CC} in **Table 20**.

For additional information, please refer to **Section 5.2**, **Thermal Considerations**.

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Electrical Parameters

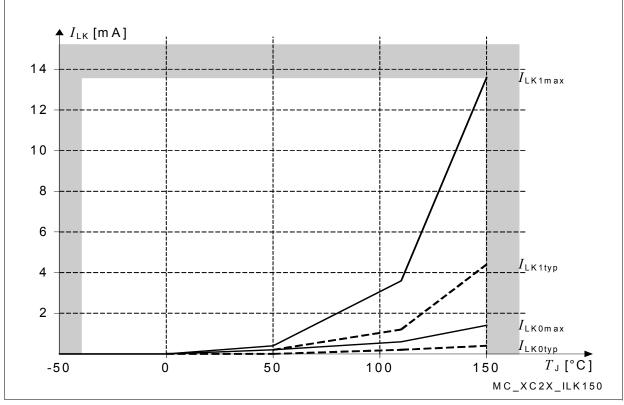


Figure 14 Leakage Supply Current as a Function of Temperature

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Electrical Parameters

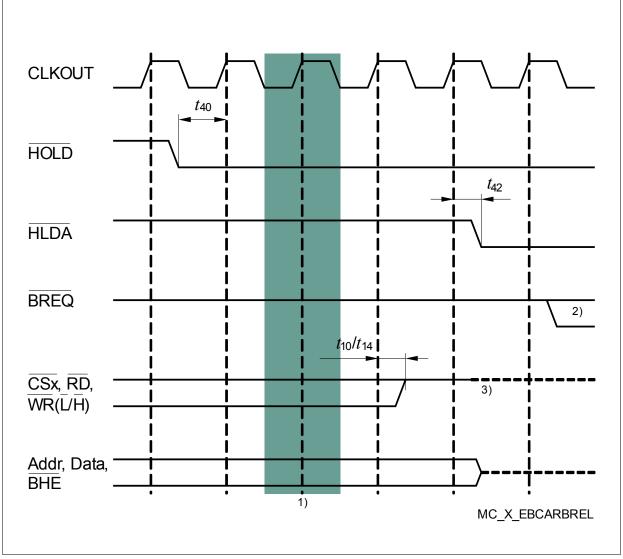


Figure 25 External Bus Arbitration, Releasing the Bus

Notes

- 1. The XC228x completes the currently running bus cycle before granting bus access.
- 2. This is the first possibility for \overline{BREQ} to get active.
- 3. The control outputs will be resistive high (pull-up) after being driven inactive (ALE will be low).

www.infineon.com