

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

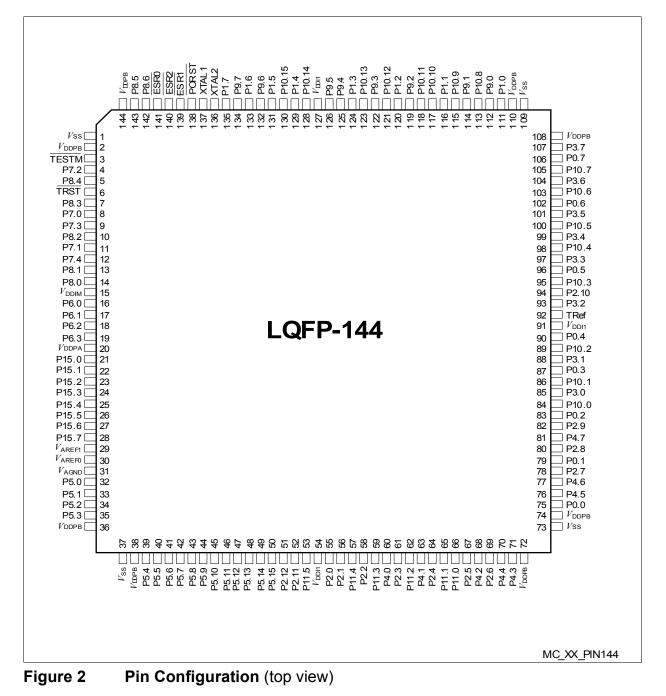
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	82K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.1 Pin Configuration and Definition

The pins of the XC228x are described in detail in **Table 4**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. **Figure 2** summarizes all pins, showing their locations on the four sides of the package.

Table	Table 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
43	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input		
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0		
	CCU6x_ T12HRC	I	In/A	External Run Control Input for T12 of CCU6x		
	CCU6x_ T13HRC	I	In/A	External Run Control Input for T13 of CCU6x		
44	P5.9	I	In/A	Bit 9 of Port 5, General Purpose Input		
	ADC0_CH9	I	In/A	Analog Input Channel 9 for ADC0		
	CC2_T7IN	1	In/A	CAPCOM2 Timer T7 Count Input		
45	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input		
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0		
	BRKIN_A	I	In/A	OCDS Break Signal Input		
46	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input		
	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0		
47	P5.12	I	In/A	Bit 12 of Port 5, General Purpose Input		
	ADC0_CH12	I	In/A	Analog Input Channel 12 for ADC0		
48	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input		
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0		
	EX0BINB	I	In/A	External Interrupt Trigger Input		
49	P5.14	1	In/A	Bit 14 of Port 5, General Purpose Input		
	ADC0_CH14	1	In/A	Analog Input Channel 14 for ADC0		
50	P5.15	1	In/A	Bit 15 of Port 5, General Purpose Input		
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0		
51	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output		
	U0C0_ SELO4	01	St/B	USIC0 Channel 0 Select/Control 4 Output		
	U0C1_ SELO3	02	St/B	USIC0 Channel 1 Select/Control 3 Output		
	READY	I	St/B	External Bus Interface READY Input		

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Pin	Symbol	Ctrl.	Туре	Function
60	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output
	CC2_24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.
	CS0	OH	St/B	External Bus Interface Chip Select 0 Output
61	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output
	CCU63_ COUT63	O2	St/B	CCU63 Channel 3 Output
	CC2_16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.
	A16	OH	St/B	External Bus Interface Address Line 16
	ESR2_0	I	St/B	ESR2 Trigger Input 0
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input
	U0C1_DX0D	1	St/B	USIC0 Channel 1 Shift Data Input
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input
62	P11.2	O0 / I	St/B	Bit 2 of Port 11, General Purpose Input/Output
	CCU63_ CCPOS2A	I	St/B	CCU63 Position Input 2
63	P4.1	O0 / I	St/B	Bit 1 of Port 4, General Purpose Input/Output
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output
	CC2_25	O3 / I	St/B	CAPCOM2 CC25IO Capture Inp./ Compare Out.
	CS1	OH	St/B	External Bus Interface Chip Select 1 Output
64	P2.4	O0 / I	St/B	Bit 4 of Port 2, General Purpose Input/Output
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output
	CC2_17	O3 / I	St/B	CAPCOM2 CC17IO Capture Inp./ Compare Out.
	A17	OH	St/B	External Bus Interface Address Line 17
	ESR1_0	I	St/B	ESR1 Trigger Input 0
	U0C0_DX0F	I	St/B	USIC0 Channel 0 Shift Data Input
	RxDC1A	I	St/B	CAN Node 1 Receive Data Input
65	P11.1	O0 / I	St/B	Bit 1 of Port 11, General Purpose Input/Output
	CCU63_ CCPOS1A	I	St/B	CCU63 Position Input 1

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Table	Table 4Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
83	P0.2	O0 / I	St/B	Bit 2 of Port 0, General Purpose Input/Output		
	U1C0_ SCLKOUT	01	St/B	USIC1 Channel 0 Shift Clock Output		
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output		
	CCU61_ CC62	O3 / I	St/B	CCU61 Channel 2 Input/Output		
	A2	ОН	St/B	External Bus Interface Address Line 2		
	U1C0_DX1B	l	St/B	USIC1 Channel 0 Shift Clock Input		
84	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_ CC60	02 / I	St/B	CCU60 Channel 0 Input/Output		
	AD0	OH/I	St/B	External Bus Interface Address/Data Line 0		
	ESR1_2	I	St/B	ESR1 Trigger Input 2		
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input		
85	P3.0	O0 / I	St/B	Bit 0 of Port 3, General Purpose Input/Output		
	U2C0_DOUT	01	St/B	USIC2 Channel 0 Shift Data Output		
	BREQ	OH	St/B	External Bus Request Output		
	ESR1_1	I	St/B	ESR1 Trigger Input 1		
	U2C0_DX0A	I	St/B	USIC2 Channel 0 Shift Data Input		
	RxDC3B	I	St/B	CAN Node 3 Receive Data Input		
	U2C0_DX1A	I	St/B	USIC2 Channel 0 Shift Clock Input		
86	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	CCU60_ CC61	02 / I	St/B	CCU60 Channel 1 Input/Output		
	AD1	OH/I	St/B	External Bus Interface Address/Data Line 1		
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input		

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Table	Fable 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
101	P3.5	O0 / I	St/B	Bit 5 of Port 3, General Purpose Input/Output			
	U2C1_ SCLKOUT	01	St/B	USIC2 Channel 1 Shift Clock Output			
	U2C0_ SELO2	O2	St/B	USIC2 Channel 0 Select/Control 2 Output			
	U0C0_ SELO5	O3	St/B	USIC0 Channel 0 Select/Control 5 Output			
	U2C1_DX1A	I	St/B	USIC2 Channel 1 Shift Clock Input			
102	P0.6	O0 / I	St/B	Bit 6 of Port 0, General Purpose Input/Output			
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output			
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output			
	CCU61_ COUT63	O3	St/B	CCU61 Channel 3 Output			
	A6	OH	St/B	External Bus Interface Address Line 6			
	U1C1_DX0A	I	St/B	USIC1 Channel 1 Shift Data Input			
	CCU61_ CTRAPA	I	St/B	CCU61 Emergency Trap Input			
	U1C1_DX1B	I	St/B	USIC1 Channel 1 Shift Clock Input			
103	P10.6	O0 / I	St/B	Bit 6 of Port 10, General Purpose Input/Output			
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output			
	TxDC4	02	St/B	CAN Node 4 Transmit Data Output			
	U1C0_ SELO0	O3	St/B	USIC1 Channel 0 Select/Control 0 Output			
	AD6	OH/I	St/B	External Bus Interface Address/Data Line 6			
	U0C0_DX0C	I	St/B	USIC0 Channel 0 Shift Data Input			
	U1C0_DX2D	I	St/B	USIC1 Channel 0 Shift Control Input			
	CCU60_ CTRAPA	Ι	St/B	CCU60 Emergency Trap Input			

Table	Table 4Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
131	P1.5	O0 / I	St/B	Bit 5 of Port 1, General Purpose Input/Output			
	CCU62_ COUT60	01	St/B	CCU62 Channel 0 Output			
	U1C1_ SELO3	O2	St/B	USIC1 Channel 1 Select/Control 3 Output			
	BRKOUT	O3	St/B	OCDS Break Signal Output			
	A13	OH	St/B	External Bus Interface Address Line 13			
	U2C0_DX0C	I	St/B	USIC2 Channel 0 Shift Data Input			
132	P9.6	O0 / I	St/B	Bit 6 of Port 9, General Purpose Input/Output			
	CCU63_ COUT63	01	St/B	CCU63 Channel 3 Output			
	CCU63_ COUT62	O2	St/B	CCU63 Channel 2 Output			
	CCU63 _ CTRAPA	I	St/B	CCU63 Emergency Trap Input			
	CCU60_ CCPOS1B	I	St/B	CCU60 Position Input 1			
133	P1.6	O0 / I	St/B	Bit 6 of Port 1, General Purpose Input/Output			
	CCU62_ CC61	01/1	St/B	CCU62 Channel 1 Input/Output			
	U1C1_ SELO2	O2	St/B	USIC1 Channel 1 Select/Control 2 Output			
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output			
	A14	OH	St/B	External Bus Interface Address Line 14			
	U2C0_DX0D	I	St/B	USIC2 Channel 0 Shift Data Input			
134	P9.7	O0 / I	St/B	Bit 7 of Port 9, General Purpose Input/Output			
	CCU63_ CTRAPB	I	St/B	CCU63 Emergency Trap Input			
	U2C0_DX1D	I	St/B	USIC2 Channel 0 Shift Clock Input			
	CCU60_ CCPOS0B	I	St/B	CCU60 Position Input 0			

3 Functional Description

The architecture of the XC228x combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see **Figure 3**). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC228x.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC228x.

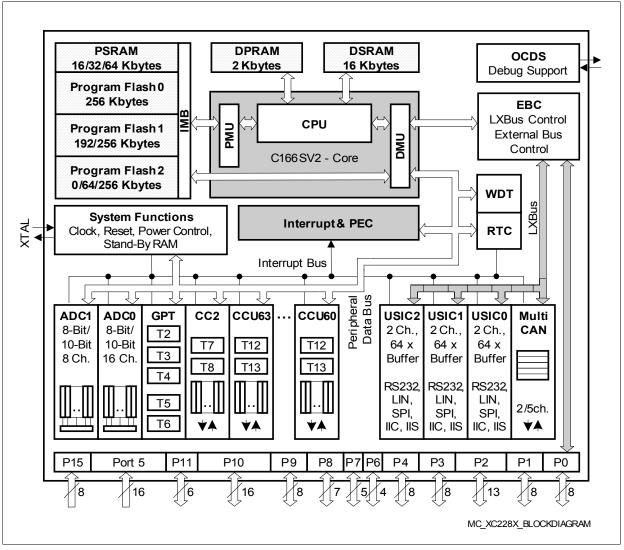
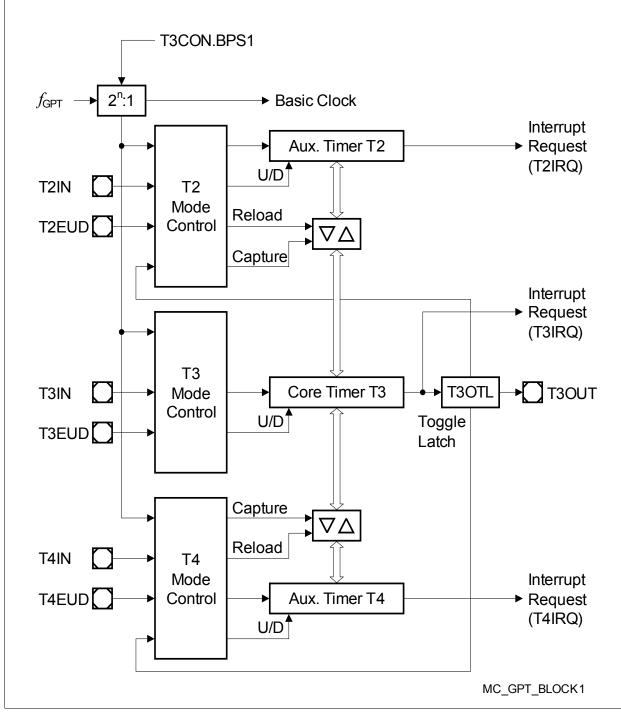
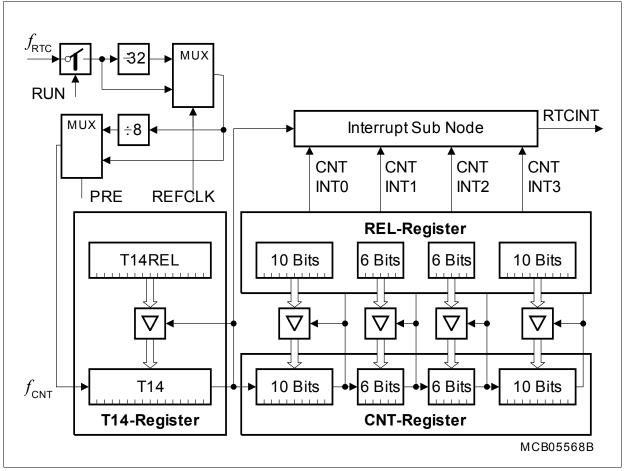



Figure 3 Block Diagram


3.9 Real Time Clock

The Real Time Clock (RTC) module of the XC228x can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of: – a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 9 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

3.12 MultiCAN Module

The MultiCAN module contains up to five independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of up to 128 message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer.

The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to its own message object list and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations.



Figure 11 Block Diagram of MultiCAN Module

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Up to five independent CAN nodes
- Up to 128 independent message objects (shared by the CAN nodes)
- Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.16 **Power Management**

The XC228x provides the means to control the power it consumes either at a given time or averaged over a certain duration.

Three mechanisms can be used (and partly in parallel):

• **Supply Voltage Management** permits the temporary reduction of the supply voltage of major parts of the logic or even its complete disconnection. This drastically reduces the power consumed because it eliminates leakage current, particularly at high temperature.

Several power reduction modes provide the best balance of power reduction and wake-up time.

• **Clock Generation Management** controls the frequency of internal and external clock signals. Clock signals for currently inactive parts of logic are disabled automatically. The user can drastically reduce the consumed power by reducing the XC228x system clock frequency.

External circuits can be controlled using the programmable frequency output EXTCLK.

• **Peripheral Management** permits temporary disabling of peripheral modules. Each peripheral can be disabled and enabled separately. The CPU can be switched off while the peripherals can continue to operate.

Wake-up from power reduction modes can be triggered either externally with signals generated by the external system, or internally by the on-chip wake-up timer. This supports intermittent operation of the XC228x by generating cyclic wake-up signals. Full performance is available to quickly react to action requests while the intermittent sleep phases greatly reduce the average system power consumption.

Note: When selecting the supply voltage and the clock source and generation method, the required parameters must be carefully written to the respective bitfields, to avoid unintended intermediate states. Recommended sequences are provided which ensure the intended operation of power supply system and clock system. Please refer to the Programmer's Guide.

Mnemonic	uction Set Summary (cont'd) Description	Bytes				
ROL/ROR	Rotate left/right direct word GPR	2				
ASHR	Arithmetic (sign bit) shift right direct word GPR	2				
MOV(B)	Move word (byte) data	2/4				
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4				
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4				
JMPS	Jump absolute to a code segment	4				
JB(C)	Jump relative if direct bit is set (and clear bit)	4				
JNB(S)	Jump relative if direct bit is not set (and set bit)	4				
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4				
CALLS	Call absolute subroutine in any code segment	4				
PCALL	Push direct word register onto system stack and call absolute subroutine					
TRAP	Call interrupt service routine via immediate trap number	2				
PUSH/POP	Push/pop direct word register onto/from system stack	2				
SCXT	Push direct word register onto system stack and update register with word operand					
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)	2				
RETS	Return from inter-segment subroutine	2				
RETI	Return from interrupt service subroutine	2				
SBRK	Software Break	2				
SRST	Software Reset	4				
IDLE	Enter Idle Mode	4				
PWRDN	Unused instruction ¹⁾	4				
SRVWDT	Service Watchdog Timer	4				
DISWDT/ENWDT	Disable/Enable Watchdog Timer	4				
EINIT	End-of-Initialization Register Lock	4				
ATOMIC	Begin ATOMIC sequence	2				
EXTR	Begin EXTended Register sequence	2				
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4				
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4				

Table 10Instruction Set Summary (cont'd)					
Mnemonic	Description	Bytes			
NOP	Null operation	2			
CoMUL/CoMAC	Multiply (and accumulate)	4			
CoADD/CoSUB	Add/Subtract	4			
Co(A)SHR	(Arithmetic) Shift right	4			
CoSHL	Shift left	4			
CoLOAD/STORE	Load accumulator/Store MAC register	4			
CoCMP	Compare	4			
CoMAX/MIN	Maximum/Minimum	4			
CoABS/CoRND	Absolute value/Round accumulator	4			
CoMOV	Data move	4			
CoNEG/NOP	Negate accumulator/Null operation	4			

1) The Enter Power Down Mode instruction is not used in the XC228x, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC228x. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Table 12 Operating Condition Parameters

Parameter	Symbol		Values	s –	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Digital core supply voltage	V _{DDI}	1.4	_	1.6	V	
Core Supply Voltage Difference	∆VDDI	-10	-	+10	mV	V _{DDIM} - V _{DDI1}
Digital supply voltage for IO pads and voltage regulators, upper voltage range	$V_{ m DDPA}, V_{ m DDPB}$	4.5	-	5.5	V	2)
Digital supply voltage for IO pads and voltage regulators, lower voltage range	$V_{ m DDPA}, V_{ m DDPB}$	3.0	-	4.5	V	2)
Digital ground voltage	V _{SS}	0	-	0	V	Reference voltage
Overload current	I _{OV}	-5	-	5	mA	Per IO pin ³⁾⁴⁾
		-2	-	5	mA	Per analog input pin ³⁾⁴⁾
Overload positive current coupling factor for analog inputs ⁵⁾	K _{ova}	_	1.0 × 10 ⁻⁶	1.0 × 10 ⁻⁴	-	<i>I</i> _{OV} > 0
Overload negative current coupling factor for analog inputs ⁵⁾	K _{ova}	-	2.5 × 10 ⁻⁴	1.5 × 10 ⁻³	-	<i>I</i> _{OV} < 0
Overload positive current coupling factor for digital I/O pins ⁵⁾	K _{OVD}	-	1.0 × 10 ⁻⁴	5.0 × 10 ⁻³	-	<i>I</i> _{OV} > 0
Overload negative current coupling factor for digital I/O pins ⁵⁾	K _{OVD}	-	1.0 × 10 ⁻²	3.0 × 10 ⁻²	-	<i>I</i> _{OV} < 0
Absolute sum of overload currents	ΣΙΙΟΥΙ	-	-	50	mA	4)

Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC228x and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC228x provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC228x.

4.4 System Parameters

The following parameters specify several aspects which are important when integrating the XC228x into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol		Values	S	Unit	Note /	
		Min. Typ.		Max.		Test Condition	
Supply watchdog (SWD) supervision level (see Table 21)	V _{SWD} CC	V _{LV} - 0.150	V _{LV}	V _{LV} + 0.100	V	$V_{\rm LV}$ = selected voltage in upper voltage area	
		V _{LV} - 0.125	V _{LV}	V _{LV} + 0.050	V	$V_{\rm LV}$ = selected voltage in lower voltage area	
Core voltage (PVC) supervision level (see Table 22)	V _{PVC} CC	V _{LV} - 0.070	V _{LV}	V _{LV} + 0.030	V	$V_{\rm LV}$ = selected voltage	
Current control limit	I _{CC} CC	13	-	30	mA	Power domain DMP_M	
		90	-	150	mA	Power domain DMP_1	
Wakeup clock source frequency	f _{WU} CC	400	500	600	kHz	FREQSEL = 00 _B	
Internal clock source frequency	$f_{\rm INT}$ CC	4.8	5.0	5.2	MHz		
Startup time from stopover mode	$t_{\rm SSO}$ CC	200	260	320	μS	User instruction from PSRAM	
Startup time from standby mode	t _{SSB} CC	2.5	2.8	3.5	ms	User instruction from Flash	

Table 20Various System Parameters

4.5 Flash Memory Parameters

The XC228x is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XC228x's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Parameter	Symbol	Li	mit Val	ues	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Programming time per 128-byte page	t _{PR}	-	3 ¹⁾	3.5	ms	ms
Erase time per sector/page	t _{ER}	-	4 ¹⁾	5	ms	ms
Data retention time	t _{RET}	20	-	-	years	1,000 erase / program cycles
Flash erase endurance for user sectors ²⁾	N_{ER}	15,000	-	-	cycles	Data retentior time 5 years
Flash erase endurance for security pages	N _{SEC}	10	-	-	cycles	Data retentior time 20 years
Drain disturb limit	$N_{\rm DD}$	64	-	_	cycles	3)

Table 23Flash Characteristics(Operating Conditions apply)

 Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This requirement is only relevant for extremely low system frequencies. In the XC228x erased areas must be programmed completely (with actual code/data or dummy values) before that area is read.

2) A maximum of 64 Flash sectors can be cycled 15,000 times. For all other sectors the limit is 1,000 cycles.

3) This parameter limits the number of subsequent programming operations within a physical sector. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal sector erase/program cycles this limit will not be violated.

Access to the XC228x Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Electrical Parameters

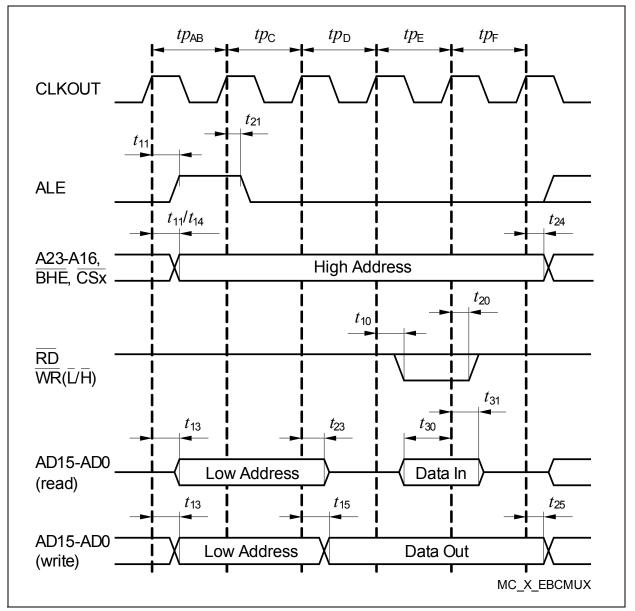


Figure 22 Multiplexed Bus Cycle

XC2287 / XC2286 / XC2285 XC2000 Family Derivatives

Electrical Parameters

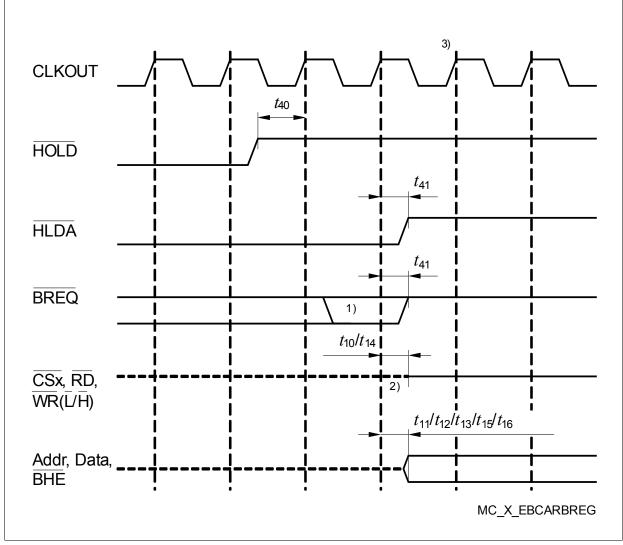


Figure 26 External Bus Arbitration, Regaining the Bus

Notes

- 1. This is the last chance for BREQ to trigger the indicated regain sequence. Even if BREQ is activated earlier, the regain sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the XC228x requesting the bus.
- 2. The control outputs will be resistive high (pull-up) before being driven inactive (ALE will be low).
- 3. The next XC228x-driven bus cycle may start here.