E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	768
Total RAM Bits	-
Number of I/O	77
Number of Gates	30000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl030v2-vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

	AGL015 ¹	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000
Package					M1AGL250		M1AGL600	M1AGL1000
QN48	-	C, I	-	-	-	-	-	_
QN68	C, I	-	-	-	-	-	-	-
UC81	-	C, I	-	-	-	-	-	-
CS81	-	C, I	-	-	-	-	-	-
CS121	-	_	C, I	C, I	-	-	_	-
VQ100	-	C, I	C, I	C, I	C, I	-	-	-
QN132 ²	-	C, I	C, I ²	C, I	-	-	-	-
CS196	-	-	-	C, I	C, I	C, I	-	-
FG144	-	-	-	C, I	C, I	C, I	C, I	C, I
FG256	-	-	-	-	-	C, I	C, I	C, I
CS281	-	-	-	-	-	-	C, I	C, I
FG484	-	-	-	-	-	C, I	C, I	C, I

Notes:

1. AGL015 is not recommended for new designs.

2. Package not available.

C = Commercial temperature range: 0°C to 85°C junction temperature.

I = Industrial temperature range: -40°C to 100°C junction temperature.

IGLOO Device Status

IGLOO Devices	Status	M1 IGLOO Devices	Status
AGL015	Not recommended for new designs.		
AGL030	Production		
AGL060	Production		
AGL125	Production		
AGL250	Production	M1AGL250	Production
AGL400	Production		
AGL600	Production	M1AGL600	Production
AGL1000	Production	M1AGL1000	Production

References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/soc/contact/default.aspx.

AGL015 and AGL030

The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features.

Devices Not Recommended For New Designs

AGL015 is not recommended for new designs.

Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	122.16
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	122.16
2.5 V LVCMOS	5	2.5	-	68.37
1.8 V LVCMOS	5	1.8	-	34.53
1.5 V LVCMOS (JESD8-11)	5	1.5	-	23.66
1.2 V LVCMOS ⁵	5	1.2	-	14.90
1.2 V LVCMOS Wide Range ⁵	5	1.2	-	14.90
3.3 V PCI	10	3.3	-	181.06
3.3 V PCI-X	10	3.3	-	181.06

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC7} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	104.38
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	104.38
2.5 V LVCMOS	5	2.5	-	59.86
1.8 V LVCMOS	5	1.8	-	31.26
1.5 V LVCMOS (JESD8-11)	5	1.5	-	21.96
1.2 V LVCMOS ⁵	5	1.2	-	13.49
1.2 V LVCMOS Wide Range ⁵	5	1.2	-	13.49

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

3.3 V LVCMOS Wide Range		VI	VIL VIH		IH	VOL	VOH IOL I		VOL VOH IOL IOH IOSL IOS		VOL VOH IOL IOH IOSL IOS		н юг юн		OH IOL IOH IOSL IO		IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μ Α ⁵	μ Α ⁵						
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10						
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10						
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10						
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10						
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10						
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10						

Table 2-64 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard Plus I/O Banks

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
tosue	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-155 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-84 for more information.

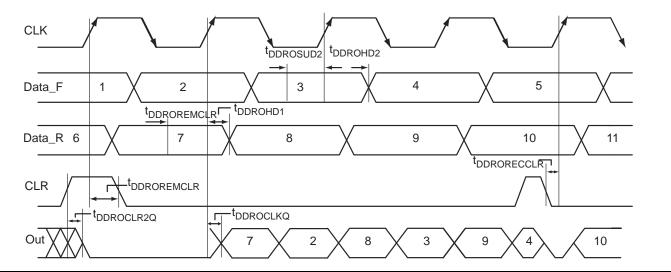


Figure 2-24 • Output DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-167 • Output DDR Propagation Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.38	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-177 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.	
Parameter	Description	Min. ¹ Max	κ. ² Units
t _{RCKL}	Input Low Delay for Global Clock	1.39 1.7	3 ns
t _{RCKH}	Input High Delay for Global Clock	1.41 1.8	4 ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18	ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15	ns
t _{RCKSW}	Maximum Skew for Global Clock	0.4	3 ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-178 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.45	1.79	ns
t _{RCKH}	Input High Delay for Global Clock	1.48	1.91	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-191 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description					
t _{AS}	Address setup time	0.83	ns			
t _{AH}	Address hold time	0.16	ns			
t _{ENS}	REN, WEN setup time	0.81	ns			
t _{ENH}	REN, WEN hold time 0.					
t _{BKS}	BLK setup time	1.65	ns			
t _{BKH}	BLK hold time	0.16	ns			
t _{DS}	Input data (DIN) setup time	0.71	ns			
t _{DH}	Input data (DIN) hold time	0.36	ns			
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	3.53	ns			
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)					
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	1.81	ns			
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge	0.23	ns			
t _{C2CRWL} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge	0.35	ns			
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge	0.41	ns			
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	2.06	ns			
	RESET Low to data out Low on DOUT (pipelined)					
t _{REMRSTB}	RESET removal	0.61	ns			
t _{RECRSTB}	RESET recovery	3.21	ns			
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns			
t _{CYC}	Clock cycle time	6.24	ns			
F _{MAX}	Maximum frequency	160	MHz			

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

FIFO

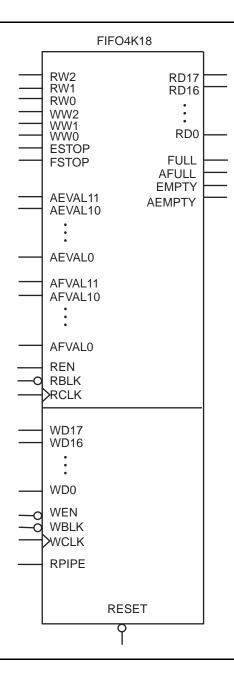


Figure 2-37 • FIFO Model

3 – Pin Descriptions

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO V5 devices, and 1.2 V or 1.5 V for IGLOO V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For IGLOO V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on IGLOO devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

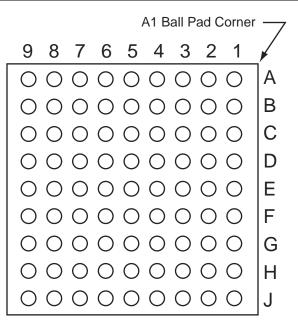
VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.

- 1.5 V for IGLOO V5 devices
- 1.2 V or 1.5 V for IGLOO V2 devices

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide* for a complete board solution for the PLL analog power supply and ground.

• There is one VCCPLF pin on IGLOO devices.


VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO devices.

4 – Package Pin Assignments

UC81

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

	UC81		UC81
Pin Number		Die Neueleen	
	AGL030 Function	Pin Number	AGL030 Function
A1	IO00RSB0	E1	GEB0/IO71RSB1
A2	IO02RSB0	E2	GEA0/IO72RSB1
A3	IO06RSB0	E3	GEC0/IO73RSB1
A4	IO11RSB0	E4	VCCIB1
A5	IO16RSB0	E5	VCC
A6	IO19RSB0	E6	VCCIB0
A7	IO22RSB0	E7	GDC0/IO32RSB0
A8	IO24RSB0	E8	GDA0/IO33RSB0
A9	IO26RSB0	E9	GDB0/IO34RSB0
B1	IO81RSB1	F1	IO68RSB1
B2	IO04RSB0	F2	IO67RSB1
B3	IO10RSB0	F3	IO64RSB1
B4	IO13RSB0	F4	GND
B5	IO15RSB0	F5	VCCIB1
B6	IO20RSB0	F6	IO47RSB1
B7	IO21RSB0	F7	IO36RSB0
B8	IO28RSB0	F8	IO38RSB0
B9	IO25RSB0	F9	IO40RSB0
C1	IO79RSB1	G1	IO65RSB1
C2	IO80RSB1	G2	IO66RSB1
C3	IO08RSB0	G3	IO57RSB1
C4	IO12RSB0	G4	IO53RSB1
C5	IO17RSB0	G5	IO49RSB1
C6	IO14RSB0	G6	IO45RSB1
C7	IO18RSB0	G7	IO46RSB1
C8	IO29RSB0	G8	VJTAG
C9	IO27RSB0	G9	TRST
D1	IO74RSB1	H1	IO62RSB1
D2	IO76RSB1	H2	FF/IO60RSB1
D3	IO77RSB1	H3	IO58RSB1
D4	VCC	H4	IO54RSB1
D5	VCCIB0	H5	IO48RSB1
D6	GND	H6	IO43RSB1
D7	IO23RSB0	H7	IO42RSB1
D8	IO31RSB0	H8	TDI
D9	IO30RSB0	H9	TDO

UC81			
Pin Number	AGL030 Function		
J1	IO63RSB1		
J2	IO61RSB1		
J3	IO59RSB1		
J4	IO56RSB1		
J5	IO52RSB1		
J6	IO44RSB1		
J7	ТСК		
J8	TMS		
J9	VPUMP		

	CS81	CS81		
Pin Number	AGL250 Function	Pin Number	AGL250 Funct	
A1	GAA0/IO00RSB0	E1	GFB0/IO109NE	
A2	GAA1/IO01RSB0	E2	GFB1/IO109PD	
A3	GAC0/IO04RSB0	E3	GFA1/IO108PS	
A4	IO13RSB0	E4	VCCIB3	
A5	IO21RSB0	E5	VCC	
A6	IO27RSB0	E6	VCCIB1	
A7	GBB0/IO37RSB0	E7	GCA0/IO50ND	
A8	GBA1/IO40RSB0	E8	GCA1/IO50PD	
A9	GBA2/IO41PPB1	E9	GCB2/IO52PPI	
B1	GAA2/IO118UPB3	F1	VCCPLF	
B2	GAB0/IO02RSB0	F2	VCOMPLF	
B3	GAC1/IO05RSB0	F3	GND	
B4	IO11RSB0	F4	GND	
B5	IO23RSB0	F5	VCCIB2	
B6	GBC0/IO35RSB0	F6	GND	
B7	GBB1/IO38RSB0	F7	GDA1/IO60US	
B8	IO41NPB1	F8	GDC1/IO58UD	
B9	GBB2/IO42PSB1	F9	GDC0/IO58VD	
C1	GAB2/IO117UPB3	G1	GEA0/IO98ND	
C2	IO118VPB3	G2	GEC1/IO100PD	
C3	GND	G3	GEC0/IO100ND	
C4	IO15RSB0	G4	IO91RSB2	
C5	IO25RSB0	G5	IO86RSB2	
C6	GND	G6	IO71RSB2	
C7	GBA0/IO39RSB0	G7	GDB2/IO62RS	
C8	GBC2/IO43PDB1	G8	VJTAG	
C9	IO43NDB1	G9	TRST	
D1	GAC2/IO116USB3	H1	GEA1/IO98PDI	
D2	IO117VPB3	H2	FF/GEB2/IO96R	
D3	GFA2/IO107PSB3	H3	IO93RSB2	
D4	VCC	H4	IO90RSB2	
D5	VCCIB0	H5	IO85RSB2	
D6	GND	H6	IO77RSB2	
D7	IO52NPB1	H7	GDA2/IO61RS	
D8	GCC1/IO48PDB1	H8	TDI	
D9	GCC0/IO48NDB1	H9	TDO	

CS81			
Pin Number	AGL250 Function		
J1	GEA2/IO97RSB2		
J2	GEC2/IO95RSB2		
J3	IO92RSB2		
J4	IO88RSB2		
J5	IO84RSB2		
J6	IO74RSB2		
J7	ТСК		
J8	TMS		
J9	VPUMP		

Package Pin Assignments

	CS281	CS281	
Pin Number	AGL1000 Function	Pin Number	AGL1000 Function
R15	IO122RSB2	V10	IO145RSB2
R16	GDA1/IO113PPB1	V11	IO144RSB2
R18	GDB0/IO112NPB1	V12	IO134RSB2
R19	GDC0/IO111NPB1	V13	IO133RSB2
T1	IO197PPB3	V14	GND
T2	GEC0/IO190NPB3	V15	IO119RSB2
T4	GEB0/IO189NPB3	V16	GDA2/IO114RSB
T5	IO181RSB2	V17	TDI
Т6	IO172RSB2	V18	VCCIB2
T7	IO171RSB2	V19	TDO
T8	IO156RSB2	W1	GND
Т9	IO159RSB2	W2	FF/GEB2/IO186RS
T10	GND	W3	IO183RSB2
T11	IO139RSB2	W4	IO176RSB2
T12	IO138RSB2	W5	IO170RSB2
T13	IO129RSB2	W6	IO162RSB2
T14	IO123RSB2	W7	IO157RSB2
T15	GDC2/IO116RSB2	W8	IO152RSB2
T16	TMS	W9	IO149RSB2
T18	VJTAG	W10	VCCIB2
T19	GDB1/IO112PPB1	W11	IO140RSB2
U1	IO193PDB3	W12	IO135RSB2
U2	GEA1/IO188PPB3	W13	IO130RSB2
U6	IO167RSB2	W14	IO125RSB2
U14	IO128RSB2	W15	IO120RSB2
U18	TRST	W16	IO118RSB2
U19	GDA0/IO113NPB1	W17	GDB2/IO115RSB
V1	IO193NDB3	W18	тск
V2	VCCIB3	W19	GND
V3	GEC2/IO185RSB2	L	
V4	IO182RSB2		
V5	IO175RSB2		
V6	GND		
V7	IO161RSB2		
V8	IO143RSB2		

V9

IO146RSB2

Package Pin Assignments

	VQ100		VQ100	VQ100	
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
1	GND	36	IO93RSB1	72	IO42RSB0
2	GAA2/IO67RSB1	37	VCC	73	GBA2/IO41RSB0
3	IO68RSB1	38	GND	74	VMV0
4	GAB2/IO69RSB1	39	VCCIB1	75	GNDQ
5	IO132RSB1	40	IO87RSB1	76	GBA1/IO40RSB0
6	GAC2/IO131RSB1	41	IO84RSB1	77	GBA0/IO39RSB0
7	IO130RSB1	42	IO81RSB1	78	GBB1/IO38RSB0
8	IO129RSB1	43	IO75RSB1	79	GBB0/IO37RSB0
9	GND	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0
10	GFB1/IO124RSB1	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0
11	GFB0/IO123RSB1	46	GDA2/IO70RSB1	82	IO32RSB0
12	VCOMPLF	47	TCK	83	IO28RSB0
13	GFA0/IO122RSB1	48	TDI	84	IO25RSB0
14	VCCPLF	49	TMS	85	IO22RSB0
15	GFA1/IO121RSB1	50	VMV1	86	IO19RSB0
16	GFA2/IO120RSB1	51	GND	87	VCCIB0
17	VCC	52	VPUMP	88	GND
18	VCCIB1	53	NC	89	VCC
19	GEC0/IO111RSB1	54	TDO	90	IO15RSB0
20	GEB1/IO110RSB1	55	TRST	91	IO13RSB0
21	GEB0/IO109RSB1	56	VJTAG	92	IO11RSB0
22	GEA1/IO108RSB1	57	GDA1/IO65RSB0	93	IO09RSB0
23	GEA0/IO107RSB1	58	GDC0/IO62RSB0	94	IO07RSB0
24	VMV1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0
25	GNDQ	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0
26	GEA2/IO106RSB1	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0
27	FF/GEB2/IO105RSB	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0
	1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0
28	GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0
29	IO102RSB1	65	GCC1/IO51RSB0		
30	IO100RSB1	66	VCCIB0		
31	IO99RSB1	67	GND		
32	IO97RSB1	68	VCC		
33	IO96RSB1	69	IO47RSB0		
34	IO95RSB1	70	GBC2/IO45RSB0		
35	IO94RSB1	71	GBB2/IO43RSB0		

	FG144		FG144	FG144	
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function
A1	GNDQ	D1	IO169PDB3	G1	GFA1/IO162PPB3
A2	VMV0	D2	IO169NDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO172NDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO174PPB3	G4	GFA0/IO162NPB3
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO34RSB0	D7	GBC0/IO54RSB0	G7	GND
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO86PPB1
A9	IO50RSB0	D9	GBB2/IO61PDB1	G9	IO74NDB1
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO74PDB1
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO73NDB1
A12	GNDQ	D12	GCB1/IO70PPB1	G12	GCB2/IO73PDB1
B1	GAB2/IO173PDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO164NDB3	H2	GFB2/IO160PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO164PDB3	H3	GFC2/IO159PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO146PDB3
B5	IO13RSB0	E5	IO174NPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO80PDB1
B7	IO31RSB0	E7	VCCIB0	H7	IO80NDB1
B8	IO39RSB0	E8	GCC1/IO69PDB1	H8	GDB2/IO90RSB2
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO86NPB1
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO71NDB1	H11	IO84PSB1
B12	VMV1	E12	IO72NDB1	H12	VCC
C1	IO173NDB3	F1	GFB0/IO163NPB3	J1	GEB1/IO145PDB3
C2	GFA2/IO161PPB3	F2	VCOMPLF	J2	IO160NDB3
C3	GAC2/IO172PDB3	F3	GFB1/IO163PPB3	J3	VCCIB3
C4	VCC	F4	IO161NPB3	J4	GEC0/IO146NDB3
C5	IO16RSB0	F5	GND	J5	IO129RSB2
C6	IO25RSB0	F6	GND	J6	IO131RSB2
C7	IO28RSB0	F7	GND	J7	VCC
C8	IO42RSB0	F8	GCC0/IO69NDB1	J8	ТСК
C9	IO45RSB0	F9	GCB0/IO70NPB1	J9	GDA2/IO89RSB2
C10	GBA2/IO60PDB1	F10	GND	J10	TDO
C11	IO60NDB1	F11	GCA1/IO71PDB1	J11	GDA1/IO88PDB1
C12	GBC2/IO62PPB1	F12	GCA2/IO72PDB1	J12	GDB1/IO87PDB1

Package Pin Assignments

	FG256		FG256	FG256	
Pin Number	AGL400 Function	Pin Number	AGL400 Function	Pin Number	AGL400 Function
A1	GND	C7	IO20RSB0	E13	GBC2/IO62PDB1
A2	GAA0/IO00RSB0	C8	IO24RSB0	E14	IO65RSB1
A3	GAA1/IO01RSB0	C9	IO33RSB0	E15	IO52RSB0
A4	GAB0/IO02RSB0	C10	IO39RSB0	E16	IO66PDB1
A5	IO16RSB0	C11	IO45RSB0	F1	IO150NDB3
A6	IO17RSB0	C12	GBC0/IO54RSB0	F2	IO149NPB3
A7	IO22RSB0	C13	IO48RSB0	F3	IO09RSB0
A8	IO28RSB0	C14	VMV0	F4	IO152UDB3
A9	IO34RSB0	C15	IO61NPB1	F5	VCCIB3
A10	IO37RSB0	C16	IO63PDB1	F6	GND
A11	IO41RSB0	D1	IO151VDB3	F7	VCC
A12	IO43RSB0	D2	IO151UDB3	F8	VCC
A13	GBB1/IO57RSB0	D3	GAC2/IO153UDB3	F9	VCC
A14	GBA0/IO58RSB0	D4	IO06RSB0	F10	VCC
A15	GBA1/IO59RSB0	D5	GNDQ	F11	GND
A16	GND	D6	IO10RSB0	F12	VCCIB1
B1	GAB2/IO154UDB3	D7	IO19RSB0	F13	IO62NDB1
B2	GAA2/IO155UDB3	D8	IO26RSB0	F14	IO49RSB0
B3	IO12RSB0	D9	IO30RSB0	F15	IO64PPB1
B4	GAB1/IO03RSB0	D10	IO40RSB0	F16	IO66NDB1
B5	IO13RSB0	D11	IO46RSB0	G1	IO148NDB3
B6	IO14RSB0	D12	GNDQ	G2	IO148PDB3
B7	IO21RSB0	D13	IO47RSB0	G3	IO149PPB3
B8	IO27RSB0	D14	GBB2/IO61PPB1	G4	GFC1/IO147PPB3
B9	IO32RSB0	D15	IO53RSB0	G5	VCCIB3
B10	IO38RSB0	D16	IO63NDB1	G6	VCC
B11	IO42RSB0	E1	IO150PDB3	G7	GND
B12	GBC1/IO55RSB0	E2	IO08RSB0	G8	GND
B13	GBB0/IO56RSB0	E3	IO153VDB3	G9	GND
B14	IO44RSB0	E4	IO152VDB3	G10	GND
B15	GBA2/IO60PDB1	E5	VMV0	G11	VCC
B16	IO60NDB1	E6	VCCIB0	G12	VCCIB1
C1	IO154VDB3	E7	VCCIB0	G13	GCC1/IO67PPB1
C2	IO155VDB3	E8	IO25RSB0	G14	IO64NPB1
C3	IO11RSB0	E9	IO31RSB0	G15	IO73PDB1
C4	IO07RSB0	E10	VCCIB0	G16	IO73NDB1
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO146NPB3
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO145NDB3

FG484			
Pin Number	AGL1000 Function		
AA15	NC		
AA16	IO122RSB2		
AA17	IO119RSB2		
AA18	IO117RSB2		
AA19	NC		
AA20	NC		
AA21	VCCIB1		
AA22	GND		
AB1	GND		
AB2	GND		
AB3	VCCIB2		
AB4	IO180RSB2		
AB5	IO176RSB2		
AB6	IO173RSB2		
AB7	IO167RSB2		
AB8	IO162RSB2		
AB9	IO156RSB2		
AB10	IO150RSB2		
AB11	IO145RSB2		
AB12	IO144RSB2		
AB13	IO132RSB2		
AB14	IO127RSB2		
AB15	IO126RSB2		
AB16	IO123RSB2		
AB17	IO121RSB2		
AB18	IO118RSB2		
AB19	NC		
AB20	VCCIB2		
AB21	GND		
AB22	GND		
B1	GND		
B2	VCCIB3		
B3	NC		
B4	IO06RSB0		
B5	IO08RSB0		
	IO12RSB0		

Revision	Changes	Page
Revision 23 (December 2012)	The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).	III
	The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added.	2-115, 2-116
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 22 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40271).	N/A
Revision 21 (May 2012)	Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet in revision 19 and has been removed (SAR 38217).	I to IV
	Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same to '3.6' in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR 37685).	2-82
	Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).	2-127
	The following sentence was removed from the VMVx description in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision / Version	Changes	Page
Revision 8 (cont'd)	Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, and Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 were updated to change PDC2 to PDC6 and PDC3 to PDC7. The table notes were updated to reflect that power was measured on VCCI.	2-10 through 2-11
	In Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices, the description for PAC13 was changed from Static to Dynamic.	2-13
	Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices and Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device were updated to add PDC6 and PDC7, and to change the definition for PDC5 to bank quiescent power. Subtitles were added to indicate type of devices and core supply voltage.	2-14, 2-16
	The "Total Static Power Consumption—PSTAT" section was updated to revise the calculation of P _{STAT} , including PDC6 and PDC7.	2-17
	Footnote † was updated to include information about PAC13. The PLL Contribution equation was changed from: $P_{PLL} = P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-18
Revision 7 (Jun 2008) Packaging v1.5	The "QN132" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-28
Revision 6 (Jun 2008) Packaging v1.4	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
	Pin numbers were added to the "QN68" package diagram. Note 2 was added below the diagram.	4-25
Revision 5 (Mar 2008) Packaging v1.3	The "CS196" package and pin table was added for AGL250.	4-12
Revision 4 (Mar 2008) Product Brief v1.0	The "Low Power" section was updated to change "1.2 V and 1.5 V Core Voltage" to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 12 μ W)" was removed from "Low Power Active FPGA Operation."	Ι
	1.2_V was added to the list of core and I/O voltages in the "Advanced I/O" and "I/Os with Advanced I/O Standards" section sections.	l, 1-7
	The "Embedded Memory" section was updated to remove the footnote reference from the section heading and place it instead after "4,608-Bit" and "True Dual-Port SRAM (except ×18)."	Ι

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	N/A IV III
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20