E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	768
Total RAM Bits	-
Number of I/O	77
Number of Gates	30000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl030v5-vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

	AGL015 ¹	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000
Package					M1AGL250		M1AGL600	M1AGL1000
QN48	-	C, I	-	-	-	-	-	_
QN68	C, I	-	-	-	-	-	-	-
UC81	-	C, I	-	-	-	-	-	-
CS81	-	C, I	-	-	-	-	-	-
CS121	-	_	C, I	C, I	-	-	-	-
VQ100	-	C, I	C, I	C, I	C, I	-	-	-
QN132 ²	-	C, I	C, I ²	C, I	-	-	-	-
CS196	-	-	-	C, I	C, I	C, I	-	-
FG144	-	-	-	C, I	C, I	C, I	C, I	C, I
FG256	-	-	-	-	-	C, I	C, I C, I	
CS281	-	-	-	-	-	-	– C, I	
FG484	-	-	-	-	-	C, I	C, I	C, I

Notes:

1. AGL015 is not recommended for new designs.

2. Package not available.

C = Commercial temperature range: 0°C to 85°C junction temperature.

I = Industrial temperature range: -40°C to 100°C junction temperature.

IGLOO Device Status

IGLOO Devices	Status	M1 IGLOO Devices	Status
AGL015	Not recommended for new designs.		
AGL030	Production		
AGL060	Production		
AGL125	Production		
AGL250	Production	M1AGL250	Production
AGL400	Production		
AGL600	Production	M1AGL600	Production
AGL1000	Production	M1AGL1000	Production

References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/soc/contact/default.aspx.

AGL015 and AGL030

The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features.

Devices Not Recommended For New Designs

AGL015 is not recommended for new designs.

field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The IGLOO device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs.

[†] The AGL015 and AGL030 do not support PLL or SRAM.

User Nonvolatile FlashROM

IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The Microsemi development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGL015 and AGL030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015 and AGL030 do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

Wide Range I/O Support

IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-5 on page 1-9).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Table 2-2 •	Recommended Ope	erating Conditions ¹
-------------	-----------------	---------------------------------

Symbol	Para	ameter	Commercial	Industrial	Units
	Junction Temperature ²		0 to +85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage ⁵		1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range DC core supply voltage ^{4,6}		1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁷	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁵	1.425 to 1.575	1.425 to 1.575	V
		1.2 V - 1.5 V DC core supply voltage ^{4,6}	1.14 to 1.575	1.14 to 1.575	V
VCCI and	1.2 V DC core supply voltage ⁶		1.14 to 1.26	1.14 to 1.26	V
VMV ⁹	1.2 V DC wide range DC supply voltage ⁶		1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.0 V DC supply voltage ¹⁰		2.7 to 3.6	2.7 to 3.6	V
·	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

- 2. Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-25 on page 2-24. VCCI should be at the same voltage within a given I/O bank.
- 4. All IGLOO devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2 devices powered by 1.2 V supply must switch the core supply to 1.5 V for in-system programming.
- 5. For $IGLOO^{\mathbb{R}}$ V5 devices
- 6. For IGLOO V2 devices only, operating at VCCI \geq VCC.
- 7. VPUMP can be left floating during operation (not programming mode).
- 8. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information.
- 9. VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information.
- 10. 3.3 V wide range is compliant to the JESD-8B specification and supports 3.0 V VCCI operation.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-29 • Summary of AC Measuring Points

Standard	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V VCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
1.2 V LVCMOS	0.60 V
1.2 V LVCMOS Wide Range	0.60 V
3.3 V PCI	0.285 * VCCI (RR)
	0.615 * VCCI (FF)
3.3 V PCI-X	0.285 * VCCI (RR)
	0.615 * VCCI (FF)

Table 2-30 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification.

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	IL	v	н	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	132	127	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	268	181	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

 Table 2-48 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	V _{OL}	VОН	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

1.2 V DC Core Voltage

Table 2-158 • Input Data Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.68	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.97	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	1.02	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	1.19	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	1.19	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Output Register

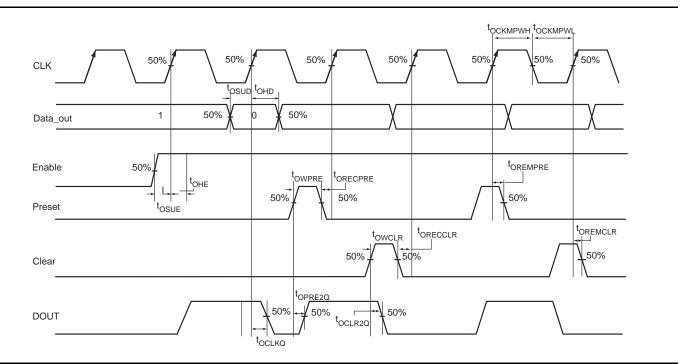


Figure 2-19 • Output Register Timing Diagram

Table 2-177 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.	
Parameter	Description	Min. ¹ Max	κ. ² Units
t _{RCKL}	Input Low Delay for Global Clock	1.39 1.7	3 ns
t _{RCKH}	Input High Delay for Global Clock	1.41 1.8	4 ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18	ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15	ns
t _{RCKSW}	Maximum Skew for Global Clock	0.4	3 ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-178 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.45	1.79	ns
t _{RCKH}	Input High Delay for Global Clock	1.48	1.91	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.

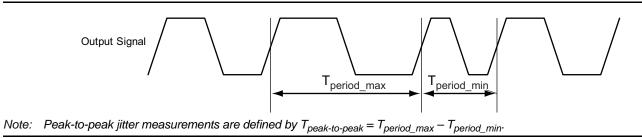
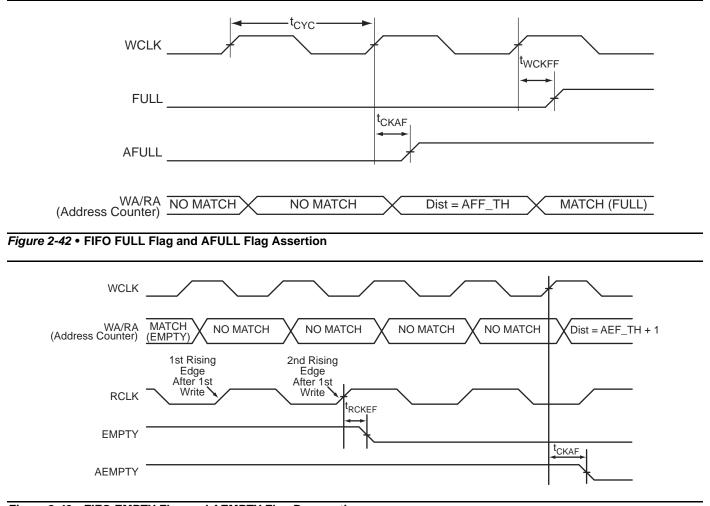


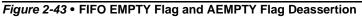
Figure 2-30 • Peak-to-Peak Jitter Definition

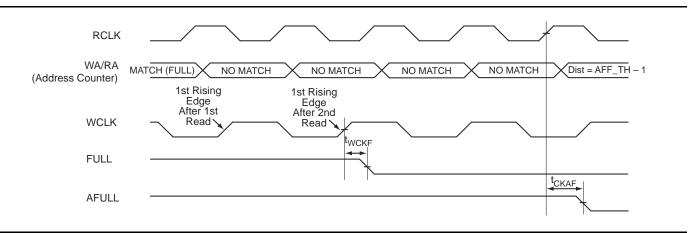
Timing Characteristics

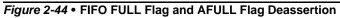
1.5 V DC Core Voltage

Table 2-191 • RAM4K9


Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V


Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.83	ns
t _{AH}	Address hold time	0.16	ns
t _{ENS}	REN, WEN setup time		ns
t _{ENH}	REN, WEN hold time	0.16	ns
t _{BKS}	BLK setup time	1.65	ns
t _{BKH}	BLK hold time	0.16	ns
t _{DS}	Input data (DIN) setup time	0.71	ns
t _{DH}	Input data (DIN) hold time	0.36	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	3.53	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)		ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge		ns
t _{C2CRWL} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge		ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge		ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	2.06	ns
	RESET Low to data out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET removal	0.61	ns
t _{RECRSTB}	RESET recovery	3.21	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz


Notes:


1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-195 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.99	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.76	ns
t _{DH}	Input Data (WD) Hold Time	0.25	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	3.33	ns
t _{CKQ2} Clock High to New Data Valid on RD (pipelined)		1.80	ns
t _{RCKEF} RCLK High to Empty Flag Valid		3.53	ns
t _{WCKFF} WCLK High to Full Flag Valid		3.35	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	12.85	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	3.48	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	12.72	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	2.02	ns
	RESET Low to Data Out Low on RD (pipelined)	2.02	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency for FIFO	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Embedded FlashROM Characteristics

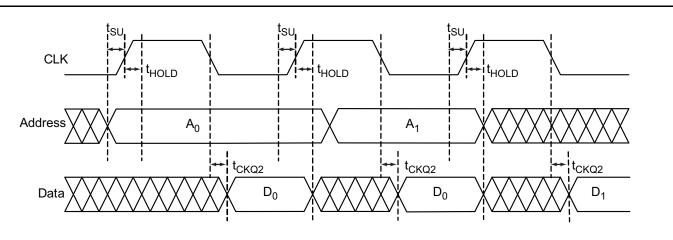


Figure 2-45 • Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

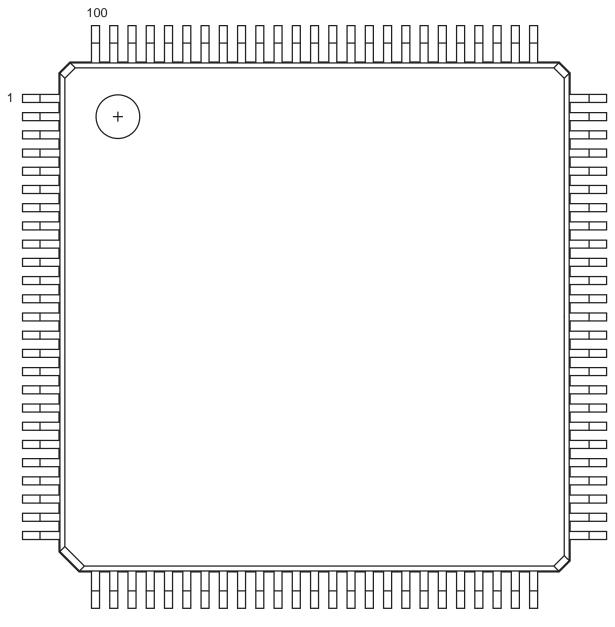
Table 2-197 • Embedded FlashROM Access TimeWorst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.57	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	34.14	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

1.2 V DC Core Voltage

Table 2-198 • Embedded FlashROM Access TimeWorst Commercial-Case Conditions: $T_J = 70^{\circ}$ C, VCC = 1.14 V

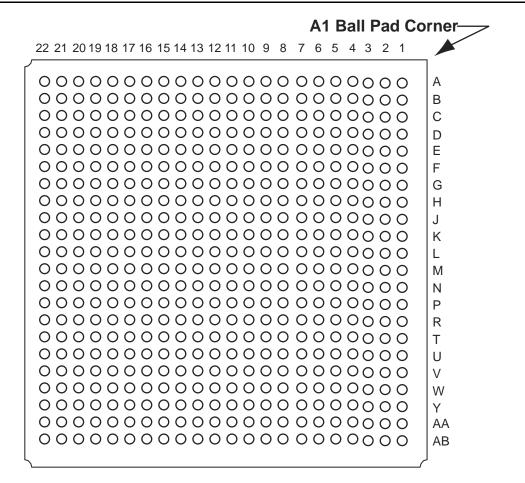
Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	52.90	ns
F _{MAX}	Maximum Clock Frequency	10	MHz


Microsemi

IGLOO Low Power Flash FPGAs

	CS81		CS81
Pin Number	AGL250 Function	Pin Number	AGL250 Funct
A1	GAA0/IO00RSB0	E1	GFB0/IO109NE
A2	GAA1/IO01RSB0	E2	GFB1/IO109PD
A3	GAC0/IO04RSB0	E3	GFA1/IO108PS
A4	IO13RSB0	E4	VCCIB3
A5	IO21RSB0	E5	VCC
A6	IO27RSB0	E6	VCCIB1
A7	GBB0/IO37RSB0	E7	GCA0/IO50ND
A8	GBA1/IO40RSB0	E8	GCA1/IO50PD
A9	GBA2/IO41PPB1	E9	GCB2/IO52PPI
B1	GAA2/IO118UPB3	F1	VCCPLF
B2	GAB0/IO02RSB0	F2	VCOMPLF
B3	GAC1/IO05RSB0	F3	GND
B4	IO11RSB0	F4	GND
B5	IO23RSB0	F5	VCCIB2
B6	GBC0/IO35RSB0	F6	GND
B7	GBB1/IO38RSB0	F7	GDA1/IO60US
B8	IO41NPB1	F8	GDC1/IO58UD
B9	GBB2/IO42PSB1	F9	GDC0/IO58VD
C1	GAB2/IO117UPB3	G1	GEA0/IO98ND
C2	IO118VPB3	G2	GEC1/IO100PD
C3	GND	G3	GEC0/IO100ND
C4	IO15RSB0	G4	IO91RSB2
C5	IO25RSB0	G5	IO86RSB2
C6	GND	G6	IO71RSB2
C7	GBA0/IO39RSB0	G7	GDB2/IO62RS
C8	GBC2/IO43PDB1	G8	VJTAG
C9	IO43NDB1	G9	TRST
D1	GAC2/IO116USB3	H1	GEA1/IO98PDI
D2	IO117VPB3	H2	FF/GEB2/IO96R
D3	GFA2/IO107PSB3	H3	IO93RSB2
D4	VCC	H4	IO90RSB2
D5	VCCIB0	H5	IO85RSB2
D6	GND	H6	IO77RSB2
D7	IO52NPB1	H7	GDA2/IO61RS
D8	GCC1/IO48PDB1	H8	TDI
D9	GCC0/IO48NDB1	H9	TDO

CS81		
Pin Number	AGL250 Function	
J1	GEA2/IO97RSB2	
J2	GEC2/IO95RSB2	
J3	IO92RSB2	
J4	IO88RSB2	
J5	IO84RSB2	
J6	IO74RSB2	
J7	ТСК	
J8	TMS	
J9	VPUMP	


VQ100

Note: This is the top view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

FG484			
Pin Number	AGL400 Function		
G5	IO151UDB3		
G6	GAC2/IO153UDB3		
G7	IO06RSB0		
G8	GNDQ		
G9	IO10RSB0		
G10	IO19RSB0		
G11	IO26RSB0		
G12	IO30RSB0		
G13	IO40RSB0		
G14	IO46RSB0		
G15	GNDQ		
G16	IO47RSB0		
G17	GBB2/IO61PPB1		
G18	IO53RSB0		
G19	IO63NDB1		
G20	NC		
G21	NC		
G22	NC		
H1	NC		
H2	NC		
H3	VCC		
H4	IO150PDB3		
H5	IO08RSB0		
H6	IO153VDB3		
H7	IO152VDB3		
H8	VMV0		
H9	VCCIB0		
H10	VCCIB0		
H11	IO25RSB0		
H12	IO31RSB0		
H13	VCCIB0		
H14	VCCIB0		
H15	VMV1		
H16	GBC2/IO62PDB1		
H17	IO65RSB1		
H18	IO52RSB0		

FG484		
Pin Number	AGL1000 Function	
H19	IO87PDB1	
H20	VCC	
H21	NC	
H22	NC	
J1	IO212NDB3	
J2	IO212PDB3	
J3	NC	
J4	IO217NDB3	
J5	IO218NDB3	
J6	IO216PDB3	
J7	IO216NDB3	
J8	VCCIB3	
J9	GND	
J10	VCC	
J11	VCC	
J12	VCC	
J13	VCC	
J14	GND	
J15	VCCIB1	
J16	IO83NPB1	
J17	IO86NPB1	
J18	IO90PPB1	
J19	IO87NDB1	
J20	NC	
J21	IO89PDB1	
J22	IO89NDB1	
K1	IO211PDB3	
K2	IO211NDB3	
K3	NC	
K4	IO210PPB3	
K5	IO213NDB3	
K6	IO213PDB3	
K7	GFC1/IO209PPB3	
K8	VCCIB3	
K9	VCC	
K10	GND	

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at www.microsemi.com.