

Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                   |
|--------------------------------|--------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                        |
| Number of Logic Elements/Cells | 1536                                                                     |
| Total RAM Bits                 | 18432                                                                    |
| Number of I/O                  | 71                                                                       |
| Number of Gates                | 60000                                                                    |
| Voltage - Supply               | 1.14V ~ 1.575V                                                           |
| Mounting Type                  | Surface Mount                                                            |
| Operating Temperature          | 0°C ~ 70°C (TA)                                                          |
| Package / Case                 | 100-TQFP                                                                 |
| Supplier Device Package        | 100-VQFP (14x14)                                                         |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/agl060v2-vq100 |
|                                |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1 – IGLOO Device Family Overview

## **General Description**

The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash\*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that consumes as little as 5  $\mu$ W while retaining SRAM and register data. Flash\*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12  $\mu$ W) while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIClevel unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOO FPGAs.

The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption.

## Flash\*Freeze Technology

The IGLOO device offers unique Flash\*Freeze technology, allowing the device to enter and exit ultra-low power Flash\*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash\*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

When the IGLOO device enters Flash\*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash\*Freeze mode, all activity resumes and data is retained.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for portable electronics.

# Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

|           |                                                       |         |           | Device-    | Specific S   | tatic Powe  | er (mW)     |           |        |
|-----------|-------------------------------------------------------|---------|-----------|------------|--------------|-------------|-------------|-----------|--------|
| Parameter | Definition                                            | AGL1000 | AGL600    | AGL400     | AGL250       | AGL125      | AGL060      | AGL030    | AGL015 |
| PDC1      | Array static power in Active mode                     |         |           | See        | Table 2-12   | 2 on page 2 | 2-9.        |           |        |
| PDC2      | Array static power in Static (Idle) mode              |         |           | See        | Table 2-11   | on page 2   | 2-8.        |           |        |
| PDC3      | Array static power in<br>Flash*Freeze mode            |         |           | See        | e Table 2-9  | on page 2   | -7.         |           |        |
| PDC4      | Static PLL contribution                               |         |           |            | 1.8          | 34          |             |           |        |
| PDC5      | Bank quiescent power<br>(V <sub>CCI</sub> -dependent) |         |           | See        | Table 2-12   | 2 on page 2 | 2-9.        |           |        |
| PDC6      | I/O input pin static power (standard-dependent)       |         | See Table | 2-13 on pa | ige 2-10 th  | rough Table | e 2-15 on p | age 2-11. |        |
| PDC7      | I/O output pin static power (standard-dependent)      |         | See Table | 2-16 on pa | ige 2-11 thi | ough Table  | e 2-18 on p | age 2-12. |        |

Note: \*For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

## Guidelines

## **Toggle Rate Definition**

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
  - Bit 0 (LSB) = 100%
  - Bit 1 = 50%
  - Bit 2 = 25%
  - ...
  - Bit 7 (MSB) = 0.78125%
  - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

## Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

#### Table 2-23 • Toggle Rate Guidelines Recommended for Power Calculation

| Component      | Definition                       | Guideline |
|----------------|----------------------------------|-----------|
| α <sub>1</sub> | Toggle rate of VersaTile outputs | 10%       |
| α <sub>2</sub> | I/O buffer toggle rate           | 10%       |

#### Table 2-24 • Enable Rate Guidelines Recommended for Power Calculation

| Component      | Definition                           | Guideline |
|----------------|--------------------------------------|-----------|
| β <sub>1</sub> | I/O output buffer enable rate        | 100%      |
| β <sub>2</sub> | RAM enable rate for read operations  | 12.5%     |
| β <sub>3</sub> | RAM enable rate for write operations | 12.5%     |

## 2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

| 2.5 V<br>LVCMOS   | v         | 1L        | v         | IH        | VOL       | VОН       | IOL | юн | IOSH                    | IOSL                    | IIL <sup>1</sup> | IIH <sup>2</sup> |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----|-------------------------|-------------------------|------------------|------------------|
| Drive<br>Strength | Min.<br>V | Max.<br>V | Min.<br>V | Max.<br>V | Max.<br>V | Min.<br>V | mA  | mA | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup>  | μA <sup>4</sup>  |
| 2 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 2   | 2  | 16                      | 18                      | 10               | 10               |
| 4 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 4   | 4  | 16                      | 18                      | 10               | 10               |
| 6 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 6   | 6  | 32                      | 37                      | 10               | 10               |
| 8 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 8   | 8  | 32                      | 37                      | 10               | 10               |
| 12 mA             | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 12  | 12 | 65                      | 74                      | 10               | 10               |
| 16 mA             | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 16  | 16 | 83                      | 87                      | 10               | 10               |
| 24 mA             | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 24  | 24 | 169                     | 124                     | 10               | 10               |

## Table 2-79 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

 Table 2-80 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

| 2.5 V<br>LVCMOS   | v         | ΊL        | v         | ΊH        | VOL       | vон       | IOL | юн | IOSH                    | IOSL                    | IIL <sup>1</sup> | IIH <sup>2</sup> |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----|-------------------------|-------------------------|------------------|------------------|
| Drive<br>Strength | Min.<br>V | Max.<br>V | Min.<br>V | Max.<br>V | Max.<br>V | Min.<br>V | mA  | mA | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup>  | μA <sup>4</sup>  |
| 2 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 2   | 2  | 16                      | 18                      | 10               | 10               |
| 4 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 4   | 4  | 16                      | 18                      | 10               | 10               |
| 6 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 6   | 6  | 32                      | 37                      | 10               | 10               |
| 8 mA              | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 8   | 8  | 32                      | 37                      | 10               | 10               |
| 12 mA             | -0.3      | 0.7       | 1.7       | 2.7       | 0.7       | 1.7       | 12  | 12 | 65                      | 74                      | 10               | 10               |

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

#### Applies to 1.2 V Core Voltage

# Table 2-89 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 5.59            | 0.26             | 1.20            | 1.10              | 5.68            | 5.14            | 2.82            | 2.80            | 11.47            | 10.93            | ns    |
| 4 mA           | Std.        | 1.55              | 5.59            | 0.26             | 1.20            | 1.10              | 5.68            | 5.14            | 2.82            | 2.80            | 11.47            | 10.93            | ns    |
| 6 mA           | Std.        | 1.55              | 4.76            | 0.26             | 1.20            | 1.10              | 4.84            | 4.47            | 3.10            | 3.33            | 10.62            | 10.26            | ns    |
| 8 mA           | Std.        | 1.55              | 4.76            | 0.26             | 1.20            | 1.10              | 4.84            | 4.47            | 3.10            | 3.33            | 10.62            | 10.26            | ns    |
| 12 mA          | Std.        | 1.55              | 4.17            | 0.26             | 1.20            | 1.10              | 4.23            | 3.99            | 3.30            | 3.67            | 10.02            | 9.77             | ns    |
| 16 mA          | Std.        | 1.55              | 3.98            | 0.26             | 1.20            | 1.10              | 4.04            | 3.88            | 3.34            | 3.76            | 9.83             | 9.66             | ns    |
| 24 mA          | Std.        | 1.55              | 3.90            | 0.26             | 1.20            | 1.10              | 3.96            | 3.90            | 3.40            | 4.09            | 9.75             | 9.68             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

## Table 2-90 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions:  $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 3.33            | 0.26             | 1.20            | 1.10              | 3.38            | 3.09            | 2.82            | 2.91            | 9.17             | 8.88             | ns    |
| 4 mA           | Std.        | 1.55              | 3.33            | 0.26             | 1.20            | 1.10              | 3.38            | 3.09            | 2.82            | 2.91            | 9.17             | 8.88             | ns    |
| 6 mA           | Std.        | 1.55              | 2.89            | 0.26             | 1.20            | 1.10              | 2.93            | 2.56            | 3.10            | 3.45            | 8.72             | 8.34             | ns    |
| 8 mA           | Std.        | 1.55              | 2.89            | 0.26             | 1.20            | 1.10              | 2.93            | 2.56            | 3.10            | 3.45            | 8.72             | 8.34             | ns    |
| 12 mA          | Std.        | 1.55              | 2.64            | 0.26             | 1.20            | 1.10              | 2.67            | 2.29            | 3.30            | 3.79            | 8.46             | 8.08             | ns    |
| 16 mA          | Std.        | 1.55              | 2.59            | 0.26             | 1.20            | 1.10              | 2.63            | 2.24            | 3.34            | 3.88            | 8.41             | 8.03             | ns    |
| 24 mA          | Std.        | 1.55              | 2.60            | 0.26             | 1.20            | 1.10              | 2.64            | 2.18            | 3.40            | 4.22            | 8.42             | 7.97             | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-91 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 5.02            | 0.26             | 1.19            | 1.10              | 5.11            | 4.60            | 2.50            | 2.62            | 10.89            | 10.38            | ns    |
| 4 mA           | Std.        | 1.55              | 5.02            | 0.26             | 1.19            | 1.10              | 5.11            | 4.60            | 2.50            | 2.62            | 10.89            | 10.38            | ns    |
| 6 mA           | Std.        | 1.55              | 4.21            | 0.26             | 1.19            | 1.10              | 4.27            | 4.00            | 2.76            | 3.10            | 10.06            | 9.79             | ns    |
| 8 mA           | Std.        | 1.55              | 4.21            | 0.26             | 1.19            | 1.10              | 4.27            | 4.00            | 2.76            | 3.10            | 10.06            | 9.79             | ns    |
| 12 mA          | Std.        | 1.55              | 3.66            | 0.26             | 1.19            | 1.10              | 3.71            | 3.55            | 2.94            | 3.41            | 9.50             | 9.34             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

# Table 2-107 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 VApplicable to Standard Plus Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 6.32            | 0.26             | 1.11            | 1.10              | 6.43            | 5.81            | 2.47            | 2.16            | 12.22            | 11.60            | ns    |
| 4 mA           | Std.        | 1.55              | 5.27            | 0.26             | 1.11            | 1.10              | 5.35            | 5.01            | 2.78            | 2.92            | 11.14            | 10.79            | ns    |
| 6 mA           | Std.        | 1.55              | 4.56            | 0.26             | 1.11            | 1.10              | 4.64            | 4.44            | 3.00            | 3.30            | 10.42            | 10.22            | ns    |
| 8 mA           | Std.        | 1.55              | 4.56            | 0.26             | 1.11            | 1.10              | 4.64            | 4.44            | 3.00            | 3.30            | 10.42            | 10.22            | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

## Table 2-108 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 3.22            | 0.26             | 1.11            | 1.10              | 3.26            | 3.18            | 2.47            | 2.20            | 9.05             | 8.97             | ns    |
| 4 mA           | Std.        | 1.55              | 2.72            | 0.26             | 1.11            | 1.10              | 2.75            | 2.50            | 2.78            | 3.01            | 8.54             | 8.29             | ns    |
| 6 mA           | Std.        | 1.55              | 2.43            | 0.26             | 1.11            | 1.10              | 2.47            | 2.16            | 2.99            | 3.39            | 8.25             | 7.94             | ns    |
| 8 mA           | Std.        | 1.55              | 2.43            | 0.26             | 1.11            | 1.10              | 2.47            | 2.16            | 2.99            | 3.39            | 8.25             | 7.94             | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

#### Table 2-109 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

#### Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------|
| 2 mA           | Std.        | 1.55              | 6.13            | 0.26             | 1.08            | 1.10              | 6.24            | 5.79            | 2.08            | 1.78            | ns    |
| 4 mA           | Std.        | 1.55              | 5.17            | 0.26             | 1.08            | 1.10              | 5.26            | 4.98            | 2.38            | 2.54            | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

## Table 2-110 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

#### Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------|
| 2 mA           | Std.        | 3.06              | 0.26            | 1.08             | 1.10            | 3.10              | 3.01            | 2.08            | 1.83            | 3.06            | ns    |
| 4 mA           | Std.        | 2.60              | 0.26            | 1.08             | 1.10            | 2.64              | 2.33            | 2.38            | 2.62            | 2.60            | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

## I/O Register Specifications



# Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

## **DDR Module Specifications**

## Input DDR Module



## Figure 2-21 • Input DDR Timing Model

| Table 2-163 • | Parameter | Definitions |
|---------------|-----------|-------------|
|---------------|-----------|-------------|

| Parameter Name          | Parameter Definition         | Measuring Nodes (from, to) |
|-------------------------|------------------------------|----------------------------|
| t <sub>DDRICLKQ1</sub>  | Clock-to-Out Out_QR          | B, D                       |
| t <sub>DDRICLKQ2</sub>  | Clock-to-Out Out_QF          | B, E                       |
| t <sub>DDRISUD</sub>    | Data Setup Time of DDR input | А, В                       |
| t <sub>DDRIHD</sub>     | Data Hold Time of DDR input  | А, В                       |
| t <sub>DDRICLR2Q1</sub> | Clear-to-Out Out_QR          | C, D                       |
| t <sub>DDRICLR2Q2</sub> | Clear-to-Out Out_QF          | C, E                       |
| t <sub>DDRIREMCLR</sub> | Clear Removal                | С, В                       |
| t <sub>DDRIRECCLR</sub> | Clear Recovery               | С, В                       |



Figure 2-30 • Peak-to-Peak Jitter Definition

## **Timing Characteristics**

## 1.5 V DC Core Voltage

#### Table 2-191 • RAM4K9

## Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V

| Parameter             | Description                                                                                                          | Std. | Units |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|------|-------|
| t <sub>AS</sub>       | Address setup time                                                                                                   | 0.83 | ns    |
| t <sub>AH</sub>       | Address hold time                                                                                                    | 0.16 | ns    |
| t <sub>ENS</sub>      | REN, WEN setup time                                                                                                  | 0.81 | ns    |
| t <sub>ENH</sub>      | REN, WEN hold time                                                                                                   | 0.16 | ns    |
| t <sub>BKS</sub>      | BLK setup time                                                                                                       | 1.65 | ns    |
| t <sub>BKH</sub>      | BLK hold time                                                                                                        | 0.16 | ns    |
| t <sub>DS</sub>       | Input data (DIN) setup time                                                                                          | 0.71 | ns    |
| t <sub>DH</sub>       | Input data (DIN) hold time                                                                                           | 0.36 | ns    |
| t <sub>CKQ1</sub>     | Clock High to new data valid on DOUT (output retained, WMODE = 0)                                                    | 3.53 | ns    |
|                       | Clock High to new data valid on DOUT (flow-through, WMODE = 1)                                                       | 3.06 | ns    |
| t <sub>CKQ2</sub>     | Clock High to new data valid on DOUT (pipelined)                                                                     | 1.81 | ns    |
| t <sub>C2CWWL</sub> 1 | Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge       | 0.23 | ns    |
| t <sub>C2CRWL</sub> 1 | Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge | 0.35 | ns    |
| t <sub>C2CWRH</sub> 1 | Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge | 0.41 | ns    |
| t <sub>RSTBQ</sub>    | RESET Low to data out Low on DOUT (flow-through)                                                                     | 2.06 | ns    |
|                       | RESET Low to data out Low on DOUT (pipelined)                                                                        | 2.06 | ns    |
| t <sub>REMRSTB</sub>  | RESET removal                                                                                                        | 0.61 | ns    |
| t <sub>RECRSTB</sub>  | RESET recovery                                                                                                       | 3.21 | ns    |
| t <sub>MPWRSTB</sub>  | RESET minimum pulse width                                                                                            | 0.68 | ns    |
| t <sub>CYC</sub>      | Clock cycle time                                                                                                     | 6.24 | ns    |
| F <sub>MAX</sub>      | Maximum frequency                                                                                                    | 160  | MHz   |

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

## 1.2 V DC Core Voltage

## Table 2-196 • FIFO

## Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$ , VCC = 1.14 V

| Parameter            | Description                                       | Std.  | Units |
|----------------------|---------------------------------------------------|-------|-------|
| t <sub>ENS</sub>     | REN, WEN Setup Time                               | 4.13  | ns    |
| t <sub>ENH</sub>     | REN, WEN Hold Time                                | 0.31  | ns    |
| t <sub>BKS</sub>     | BLK Setup Time                                    | 0.47  | ns    |
| t <sub>BKH</sub>     | BLK Hold Time                                     | 0.00  | ns    |
| t <sub>DS</sub>      | Input Data (WD) Setup Time                        | 1.56  | ns    |
| t <sub>DH</sub>      | Input Data (WD) Hold Time                         | 0.49  | ns    |
| t <sub>CKQ1</sub>    | Clock High to New Data Valid on RD (flow-through) | 6.80  | ns    |
| t <sub>CKQ2</sub>    | Clock High to New Data Valid on RD (pipelined)    | 3.62  | ns    |
| t <sub>RCKEF</sub>   | RCLK High to Empty Flag Valid                     | 7.23  | ns    |
| t <sub>WCKFF</sub>   | WCLK High to Full Flag Valid                      | 6.85  | ns    |
| t <sub>CKAF</sub>    | Clock High to Almost Empty/Full Flag Valid        | 26.61 | ns    |
| t <sub>RSTFG</sub>   | RESET Low to Empty/Full Flag Valid                | 7.12  | ns    |
| t <sub>RSTAF</sub>   | RESET Low to Almost Empty/Full Flag Valid         | 26.33 | ns    |
| t <sub>RSTBQ</sub>   | RESET Low to Data Out Low on RD (flow-through)    | 4.09  | ns    |
|                      | RESET Low to Data Out Low on RD (pipelined)       | 4.09  | ns    |
| t <sub>REMRSTB</sub> | RESET Removal                                     | 1.23  | ns    |
| t <sub>RECRSTB</sub> | RESET Recovery                                    | 6.58  | ns    |
| t <sub>MPWRSTB</sub> | RESET Minimum Pulse Width                         | 1.18  | ns    |
| t <sub>CYC</sub>     | Clock Cycle Time                                  | 10.90 | ns    |
| F <sub>MAX</sub>     | Maximum Frequency for FIFO                        | 92    | MHz   |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

|            | CS281           | CS281      |                   |  |
|------------|-----------------|------------|-------------------|--|
| Pin Number | AGL600 Function | Pin Number | AGL600 Function   |  |
| R15        | IO94RSB2        | V10        | IO112RSB2         |  |
| R16        | GDA1/IO88PPB1   | V11        | IO110RSB2         |  |
| R18        | GDB0/IO87NPB1   | V12        | IO108RSB2         |  |
| R19        | GDC0/IO86NPB1   | V13        | IO102RSB2         |  |
| T1         | IO148PPB3       | V14        | GND               |  |
| T2         | GEC0/IO146NPB3  | V15        | IO93RSB2          |  |
| T4         | GEB0/IO145NPB3  | V16        | GDA2/IO89RSB2     |  |
| T5         | IO132RSB2       | V17        | TDI               |  |
| Т6         | IO136RSB2       | V18        | VCCIB2            |  |
| T7         | IO130RSB2       | V19        | TDO               |  |
| Т8         | IO126RSB2       | W1         | GND               |  |
| Т9         | IO120RSB2       | W2         | FF/GEB2/IO142RSB2 |  |
| T10        | GND             | W3         | IO139RSB2         |  |
| T11        | IO113RSB2       | W4         | IO137RSB2         |  |
| T12        | IO104RSB2       | W5         | IO134RSB2         |  |
| T13        | IO101RSB2       | W6         | IO133RSB2         |  |
| T14        | IO98RSB2        | W7         | IO128RSB2         |  |
| T15        | GDC2/IO91RSB2   | W8         | IO124RSB2         |  |
| T16        | TMS             | W9         | IO119RSB2         |  |
| T18        | VJTAG           | W10        | VCCIB2            |  |
| T19        | GDB1/IO87PPB1   | W11        | IO109RSB2         |  |
| U1         | IO147PDB3       | W12        | IO107RSB2         |  |
| U2         | GEA1/IO144PPB3  | W13        | IO105RSB2         |  |
| U6         | IO131RSB2       | W14        | IO100RSB2         |  |
| U14        | IO99RSB2        | W15        | IO96RSB2          |  |
| U18        | TRST            | W16        | IO92RSB2          |  |
| U19        | GDA0/IO88NPB1   | W17        | GDB2/IO90RSB2     |  |
| V1         | IO147NDB3       | W18        | ТСК               |  |
| V2         | VCCIB3          | W19        | GND               |  |
| V3         | GEC2/IO141RSB2  |            |                   |  |
| V4         | IO140RSB2       |            |                   |  |
| V5         | IO135RSB2       | ]          |                   |  |
| V6         | GND             | ]          |                   |  |
| V7         | IO125RSB2       | ]          |                   |  |
| V8         | IO122RSB2       | 1          |                   |  |

V9

IO116RSB2

| QN132      |                 |  |  |  |
|------------|-----------------|--|--|--|
| Pin Number | AGL030 Function |  |  |  |
| C17        | IO47RSB1        |  |  |  |
| C18        | NC              |  |  |  |
| C19        | ТСК             |  |  |  |
| C20        | NC              |  |  |  |
| C21        | VPUMP           |  |  |  |
| C22        | VJTAG           |  |  |  |
| C23        | NC              |  |  |  |
| C24        | NC              |  |  |  |
| C25        | NC              |  |  |  |
| C26        | GDB0/IO34RSB0   |  |  |  |
| C27        | NC              |  |  |  |
| C28        | VCCIB0          |  |  |  |
| C29        | IO28RSB0        |  |  |  |
| C30        | IO25RSB0        |  |  |  |
| C31        | IO24RSB0        |  |  |  |
| C32        | IO21RSB0        |  |  |  |
| C33        | NC              |  |  |  |
| C34        | NC              |  |  |  |
| C35        | VCCIB0          |  |  |  |
| C36        | IO13RSB0        |  |  |  |
| C37        | IO10RSB0        |  |  |  |
| C38        | IO07RSB0        |  |  |  |
| C39        | IO03RSB0        |  |  |  |
| C40        | IO00RSB0        |  |  |  |
| D1         | GND             |  |  |  |
| D2         | GND             |  |  |  |
| D3         | GND             |  |  |  |
| D4         | GND             |  |  |  |

| FG144      |                   |  |  |  |
|------------|-------------------|--|--|--|
| Pin Number | AGL600 Function   |  |  |  |
| K1         | GEB0/IO145NDB3    |  |  |  |
| K2         | GEA1/IO144PDB3    |  |  |  |
| K3         | GEA0/IO144NDB3    |  |  |  |
| K4         | GEA2/IO143RSB2    |  |  |  |
| K5         | IO119RSB2         |  |  |  |
| K6         | IO111RSB2         |  |  |  |
| K7         | GND               |  |  |  |
| K8         | IO94RSB2          |  |  |  |
| K9         | GDC2/IO91RSB2     |  |  |  |
| K10        | GND               |  |  |  |
| K11        | GDA0/IO88NDB1     |  |  |  |
| K12        | GDB0/IO87NDB1     |  |  |  |
| L1         | GND               |  |  |  |
| L2         | VMV3              |  |  |  |
| L3         | FF/GEB2/IO142RSB2 |  |  |  |
| L4         | IO136RSB2         |  |  |  |
| L5         | VCCIB2            |  |  |  |
| L6         | IO115RSB2         |  |  |  |
| L7         | IO103RSB2         |  |  |  |
| L8         | IO97RSB2          |  |  |  |
| L9         | TMS               |  |  |  |
| L10        | VJTAG             |  |  |  |
| L11        | VMV2              |  |  |  |
| L12        | TRST              |  |  |  |
| M1         | GNDQ              |  |  |  |
| M2         | GEC2/IO141RSB2    |  |  |  |
| M3         | IO138RSB2         |  |  |  |
| M4         | IO123RSB2         |  |  |  |
| M5         | IO126RSB2         |  |  |  |
| M6         | IO134RSB2         |  |  |  |
| M7         | IO108RSB2         |  |  |  |
| M8         | IO99RSB2          |  |  |  |
| M9         | TDI               |  |  |  |
| M10        | VCCIB2            |  |  |  |
| M11        | VPUMP             |  |  |  |
| M12        | GNDQ              |  |  |  |

| FG256                      |                   |  |  |  |
|----------------------------|-------------------|--|--|--|
| Pin Number AGL400 Function |                   |  |  |  |
| R5                         | IO123RSB2         |  |  |  |
| R6                         | IO118RSB2         |  |  |  |
| R7                         | IO112RSB2         |  |  |  |
| R8                         | IO106RSB2         |  |  |  |
| R9                         | IO100RSB2         |  |  |  |
| R10                        | IO96RSB2          |  |  |  |
| R11                        | IO89RSB2          |  |  |  |
| R12                        | IO85RSB2          |  |  |  |
| R13                        | GDB2/IO81RSB2     |  |  |  |
| R14                        | TDI               |  |  |  |
| R15                        | NC                |  |  |  |
| R16                        | TDO               |  |  |  |
| T1                         | GND               |  |  |  |
| T2                         | IO126RSB2         |  |  |  |
| Т3                         | FF/GEB2/IO133RSB2 |  |  |  |
| T4                         | IO124RSB2         |  |  |  |
| T5                         | IO116RSB2         |  |  |  |
| T6                         | IO113RSB2         |  |  |  |
| T7                         | IO107RSB2         |  |  |  |
| Т8                         | IO105RSB2         |  |  |  |
| Т9                         | IO102RSB2         |  |  |  |
| T10                        | IO97RSB2          |  |  |  |
| T11                        | IO92RSB2          |  |  |  |
| T12                        | GDC2/IO82RSB2     |  |  |  |
| T13                        | IO86RSB2          |  |  |  |
| T14                        | GDA2/IO80RSB2     |  |  |  |
| T15                        | TMS               |  |  |  |
| T16                        | GND               |  |  |  |

| FG256      |                 | FG256      |                 | FG256      |                 |
|------------|-----------------|------------|-----------------|------------|-----------------|
| Pin Number | AGL600 Function | Pin Number | AGL600 Function | Pin Number | AGL600 Function |
| H3         | GFB1/IO163PPB3  | K9         | GND             | M15        | GDC1/IO86PDB1   |
| H4         | VCOMPLF         | K10        | GND             | M16        | IO84NDB1        |
| H5         | GFC0/IO164NPB3  | K11        | VCC             | N1         | IO150NDB3       |
| H6         | VCC             | K12        | VCCIB1          | N2         | IO147PPB3       |
| H7         | GND             | K13        | IO73NPB1        | N3         | GEC1/IO146PPB3  |
| H8         | GND             | K14        | IO80NPB1        | N4         | IO140RSB2       |
| H9         | GND             | K15        | IO74NPB1        | N5         | GNDQ            |
| H10        | GND             | K16        | IO72NDB1        | N6         | GEA2/IO143RSB2  |
| H11        | VCC             | L1         | IO159NDB3       | N7         | IO126RSB2       |
| H12        | GCC0/IO69NPB1   | L2         | IO156NPB3       | N8         | IO120RSB2       |
| H13        | GCB1/IO70PPB1   | L3         | IO151PPB3       | N9         | IO108RSB2       |
| H14        | GCA0/IO71NPB1   | L4         | IO158PSB3       | N10        | IO103RSB2       |
| H15        | IO67NPB1        | L5         | VCCIB3          | N11        | IO99RSB2        |
| H16        | GCB0/IO70NPB1   | L6         | GND             | N12        | GNDQ            |
| J1         | GFA2/IO161PPB3  | L7         | VCC             | N13        | IO92RSB2        |
| J2         | GFA1/IO162PDB3  | L8         | VCC             | N14        | VJTAG           |
| J3         | VCCPLF          | L9         | VCC             | N15        | GDC0/IO86NDB1   |
| J4         | IO160NDB3       | L10        | VCC             | N16        | GDA1/IO88PDB1   |
| J5         | GFB2/IO160PDB3  | L11        | GND             | P1         | GEB1/IO145PDB3  |
| J6         | VCC             | L12        | VCCIB1          | P2         | GEB0/IO145NDB3  |
| J7         | GND             | L13        | GDB0/IO87NPB1   | P3         | VMV2            |
| J8         | GND             | L14        | IO85NDB1        | P4         | IO138RSB2       |
| J9         | GND             | L15        | IO85PDB1        | P5         | IO136RSB2       |
| J10        | GND             | L16        | IO84PDB1        | P6         | IO131RSB2       |
| J11        | VCC             | M1         | IO150PDB3       | P7         | IO124RSB2       |
| J12        | GCB2/IO73PPB1   | M2         | IO151NPB3       | P8         | IO119RSB2       |
| J13        | GCA1/IO71PPB1   | M3         | IO147NPB3       | P9         | IO107RSB2       |
| J14        | GCC2/IO74PPB1   | M4         | GEC0/IO146NPB3  | P10        | IO104RSB2       |
| J15        | IO80PPB1        | M5         | VMV3            | P11        | IO97RSB2        |
| J16        | GCA2/IO72PDB1   | M6         | VCCIB2          | P12        | VMV1            |
| K1         | GFC2/IO159PDB3  | M7         | VCCIB2          | P13        | TCK             |
| K2         | IO161NPB3       | M8         | IO117RSB2       | P14        | VPUMP           |
| K3         | IO156PPB3       | M9         | IO110RSB2       | P15        | TRST            |
| K4         | IO129RSB2       | M10        | VCCIB2          | P16        | GDA0/IO88NDB1   |
| K5         | VCCIB3          | M11        | VCCIB2          | R1         | GEA1/IO144PDB3  |
| K6         | VCC             | M12        | VMV2            | R2         | GEA0/IO144NDB3  |
| K7         | GND             | M13        | IO94RSB2        | R3         | IO139RSB2       |
| K8         | GND             | M14        | GDB1/IO87PPB1   | R4         | GEC2/IO141RSB2  |

IGLOO Low Power Flash FPGAs

| Pin Number | AGL600 Function | Pin Number |
|------------|-----------------|------------|
| A1         | GND             | AA15       |
| A2         | GND             | AA16       |
| A3         | VCCIB0          | AA17       |
| A4         | NC              | AA18       |
| A5         | NC              | AA19       |
| A6         | IO09RSB0        | AA20       |
| A7         | IO15RSB0        | AA21       |
| A8         | NC              | AA22       |
| A9         | NC              | AB1        |
| A10        | IO22RSB0        | AB2        |
| A11        | IO23RSB0        | AB3        |
| A12        | IO29RSB0        | AB4        |
| A13        | IO35RSB0        | AB5        |
| A14        | NC              | AB6        |
| A15        | NC              | AB7        |
| A16        | IO46RSB0        | AB8        |
| A17        | IO48RSB0        | AB9        |
| A18        | NC              | AB10       |
| A19        | NC              | AB11       |
| A20        | VCCIB0          | AB12       |
| A21        | GND             | AB13       |
| A22        | GND             | AB14       |
| AA1        | GND             | AB15       |
| AA2        | VCCIB3          | AB16       |
| AA3        | NC              | AB17       |
| AA4        | NC              | AB18       |
| AA5        | NC              | AB19       |
| AA6        | IO135RSB2       | AB20       |
| AA7        | IO133RSB2       | AB21       |
| AA8        | NC              | AB22       |
| AA9        | NC              | B1         |
| AA10       | NC              | B2         |
| AA11       | NC              | B3         |
| AA12       | NC              | B4         |
| AA13       | NC              | B5         |
| AA14       | NC              | B6         |

| FG484  |                 |     |  |  |  |  |
|--------|-----------------|-----|--|--|--|--|
| Number | AGL600 Function | Pir |  |  |  |  |
| AA15   | NC              |     |  |  |  |  |
| AA16   | IO101RSB2       |     |  |  |  |  |
| AA17   | NC              |     |  |  |  |  |
| AA18   | NC              |     |  |  |  |  |
| AA19   | NC              |     |  |  |  |  |
| AA20   | NC              |     |  |  |  |  |
| AA21   | VCCIB1          |     |  |  |  |  |
| AA22   | GND             |     |  |  |  |  |
| AB1    | GND             |     |  |  |  |  |
| AB2    | GND             |     |  |  |  |  |
| AB3    | VCCIB2          |     |  |  |  |  |
| AB4    | NC              |     |  |  |  |  |
| AB5    | NC              |     |  |  |  |  |
| AB6    | IO130RSB2       |     |  |  |  |  |
| AB7    | IO128RSB2       |     |  |  |  |  |
| AB8    | IO122RSB2       |     |  |  |  |  |
| AB9    | IO116RSB2       |     |  |  |  |  |
| AB10   | NC              |     |  |  |  |  |
| AB11   | NC              |     |  |  |  |  |
| AB12   | IO113RSB2       |     |  |  |  |  |
| AB13   | IO112RSB2       |     |  |  |  |  |
| AB14   | NC              |     |  |  |  |  |
| AB15   | NC              |     |  |  |  |  |
| AB16   | IO100RSB2       |     |  |  |  |  |
| AB17   | IO95RSB2        |     |  |  |  |  |
| AB18   | NC              |     |  |  |  |  |
| AB19   | NC              |     |  |  |  |  |
| AB20   | VCCIB2          |     |  |  |  |  |
| AB21   | GND             |     |  |  |  |  |
| AB22   | GND             |     |  |  |  |  |
| B1     | GND             |     |  |  |  |  |
| B2     | VCCIB3          |     |  |  |  |  |
| B3     | NC              |     |  |  |  |  |
| B4     | NC              |     |  |  |  |  |
| B5     | NC              |     |  |  |  |  |
| B6     | IO08RSB0        |     |  |  |  |  |
|        |                 |     |  |  |  |  |

| FG484      |                 |
|------------|-----------------|
| Pin Number | AGL600 Function |
| B7         | IO12RSB0        |
| B8         | NC              |
| B9         | NC              |
| B10        | IO17RSB0        |
| B11        | NC              |
| B12        | NC              |
| B13        | IO36RSB0        |
| B14        | NC              |
| B15        | NC              |
| B16        | IO47RSB0        |
| B17        | IO49RSB0        |
| B18        | NC              |
| B19        | NC              |
| B20        | NC              |
| B21        | VCCIB1          |
| B22        | GND             |
| C1         | VCCIB3          |
| C2         | NC              |
| C3         | NC              |
| C4         | NC              |
| C5         | GND             |
| C6         | NC              |
| C7         | NC              |
| C8         | VCC             |
| C9         | VCC             |
| C10        | NC              |
| C11        | NC              |
| C12        | NC              |
| C13        | NC              |
| C14        | VCC             |
| C15        | VCC             |
| C16        | NC              |
| C17        | NC              |
| C18        | GND             |
| C19        | NC              |
| C20        | NC              |

| FG484      |                 |
|------------|-----------------|
| Pin Number | AGL600 Function |
| Y7         | NC              |
| Y8         | VCC             |
| Y9         | VCC             |
| Y10        | NC              |
| Y11        | NC              |
| Y12        | NC              |
| Y13        | NC              |
| Y14        | VCC             |
| Y15        | VCC             |
| Y16        | NC              |
| Y17        | NC              |
| Y18        | GND             |
| Y19        | NC              |
| Y20        | NC              |
| Y21        | NC              |
| Y22        | VCCIB1          |

| FG484      |                  |
|------------|------------------|
| Pin Number | AGL1000 Function |
| A1         | GND              |
| A2         | GND              |
| A3         | VCCIB0           |
| A4         | IO07RSB0         |
| A5         | IO09RSB0         |
| A6         | IO13RSB0         |
| A7         | IO18RSB0         |
| A8         | IO20RSB0         |
| A9         | IO26RSB0         |
| A10        | IO32RSB0         |
| A11        | IO40RSB0         |
| A12        | IO41RSB0         |
| A13        | IO53RSB0         |
| A14        | IO59RSB0         |
| A15        | IO64RSB0         |
| A16        | IO65RSB0         |
| A17        | IO67RSB0         |
| A18        | IO69RSB0         |
| A19        | NC               |
| A20        | VCCIB0           |
| A21        | GND              |
| A22        | GND              |
| AA1        | GND              |
| AA2        | VCCIB3           |
| AA3        | NC               |
| AA4        | IO181RSB2        |
| AA5        | IO178RSB2        |
| AA6        | IO175RSB2        |
| AA7        | IO169RSB2        |
| AA8        | IO166RSB2        |
| AA9        | IO160RSB2        |
| AA10       | IO152RSB2        |
| AA11       | IO146RSB2        |
| AA12       | IO139RSB2        |
| AA13       | IO133RSB2        |
| AA14       | NC               |

#### Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

#### **About Microsemi**

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at www.microsemi.com.