

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1536
Total RAM Bits	18432
Number of I/O	71
Number of Gates	60000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl060v2-vqg100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Advantages

Low Power

Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in IGLOO devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based IGLOO devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, Flash-based IGLOO devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and

Figure 1-5 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equivalent			VIL	V _{IH}		VOL	V _{OH}	I _{OL} 1	I _{OH} 1
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VDD-0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS ⁴	1 mA	1 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	1	1
1.2 V LVCMOS Wide Range ^{4,5}	100 µA	1 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1

Notes:

1. Currents are measured at 85°C junction temperature.

2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to V2 Devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

Detailed I/O DC Characteristics

Table 2-37 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-38 • I/O Output Buffer Maximum Resistances¹ Applicable to Advanced I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
1.2 V LVCMOS ⁴	2 mA	158	164
1.2 V LVCMOS Wide Range ⁴	100 μA	Same as regular 1.2 V LVCMOS	Same as regular 1.2 V LVCMOS
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO V2 Devices operating at VCCI ≥ VCC

Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.90	1.98	2.13	5.96	5.49	ns
4 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.90	1.98	2.13	5.96	5.49	ns
6 mA	Std.	0.97	1.94	0.18	0.85	0.66	1.99	1.57	2.20	2.53	5.58	5.16	ns
8 mA	Std.	0.97	1.94	0.18	0.85	0.66	1.99	1.57	2.20	2.53	5.58	5.16	ns
12 mA	Std.	0.97	1.75	0.18	0.85	0.66	1.79	1.40	2.36	2.79	5.38	4.99	ns
16 mA	Std.	0.97	1.75	0.18	0.85	0.66	1.79	1.40	2.36	2.79	5.38	4.99	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	3.80	0.18	0.83	0.66	3.88	3.41	1.74	1.78	ns
4 mA	Std.	0.97	3.80	0.18	0.83	0.66	3.88	3.41	1.74	1.78	ns
6 mA	Std.	0.97	3.15	0.18	0.83	0.66	3.21	2.94	1.96	2.17	ns
8 mA	Std.	0.97	3.15	0.18	0.83	0.66	3.21	2.94	1.96	2.17	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	2.19	0.18	0.83	0.66	2.24	1.79	1.74	1.87	ns
4 mA	Std.	0.97	2.19	0.18	0.83	0.66	2.24	1.79	1.74	1.87	ns
6 mA	Std.	0.97	1.85	0.18	0.83	0.66	1.89	1.46	1.96	2.26	ns
8 mA	Std.	0.97	1.85	0.18	0.83	0.66	1.89	1.46	1.96	2.26	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*		
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT		
tosud	Data Setup Time for the Output Data Register	FF, HH		
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH		
tosue	Enable Setup Time for the Output Data Register	GG, HH		
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH		
toclr2Q	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT		
toremclr	Asynchronous Clear Removal Time for the Output Data Register	LL, HH		
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH		
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT		
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH		
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH		
tOESUE	Enable Setup Time for the Output Enable Register	KK, HH		
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH		
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT		
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH		
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH		
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE		
tISUD	Data Setup Time for the Input Data Register	CC, AA		
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA		
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA		
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA		
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE		
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA		
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA		

Table 2-156 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-17 on page 2-86 for more information.

1.2 V DC Core Voltage

Table 2-165 • Input DDR Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.76	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.94	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.93	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.84	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	1.23	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	1.42	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.24	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

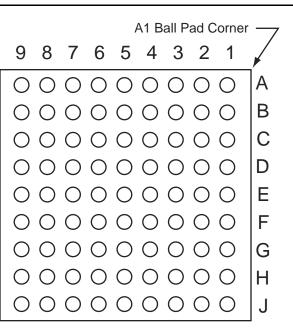
- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

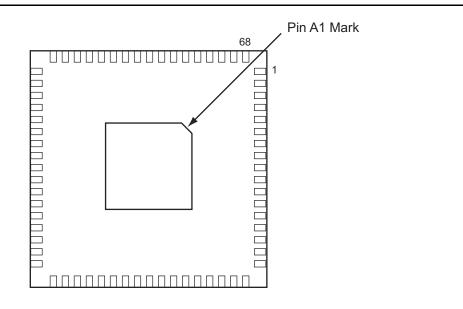
Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.


FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.


Note: This is the bottom view of the package.

Note

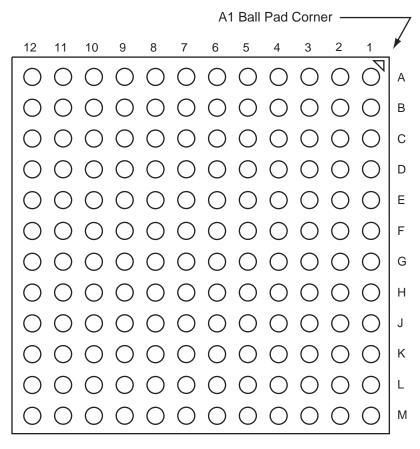
For more information on package drawings, see PD3068: Package Mechanical Drawings.

	CS81		CS81
Pin Number	AGL030 Function	Pin Number	AGL030 Function
A1	IO00RSB0	E1	GEB0/IO71RSE
A2	IO02RSB0	E2	GEA0/IO72RSE
A3	IO06RSB0	E3	GEC0/IO73RSE
A4	IO11RSB0	E4	VCCIB1
A5	IO16RSB0	E5	VCC
A6	IO19RSB0	E6	VCCIB0
A7	IO22RSB0	E7	GDC0/IO32RSE
A8	IO24RSB0	E8	GDA0/IO33RSE
A9	IO26RSB0	E9	GDB0/IO34RSE
B1	IO81RSB1	F1	IO68RSB1
B2	IO04RSB0	F2	IO67RSB1
B3	IO10RSB0	F3	IO64RSB1
B4	IO13RSB0	F4	GND
B5	IO15RSB0	F5	VCCIB1
B6	IO20RSB0	F6	IO47RSB1
B7	IO21RSB0	F7	IO36RSB0
B8	IO28RSB0	F8	IO38RSB0
B9	IO25RSB0	F9	IO40RSB0
C1	IO79RSB1	G1	IO65RSB1
C2	IO80RSB1	G2	IO66RSB1
C3	IO08RSB0	G3	IO57RSB1
C4	IO12RSB0	G4	IO53RSB1
C5	IO17RSB0	G5	IO49RSB1
C6	IO14RSB0	G6	IO44RSB1
C7	IO18RSB0	G7	IO46RSB1
C8	IO29RSB0	G8	VJTAG
C9	IO27RSB0	G9	TRST
D1	IO74RSB1	H1	IO62RSB1
D2	IO76RSB1	H2	FF/IO60RSB1
D3	IO77RSB1	H3	IO58RSB1
D4	VCC	H4	IO54RSB1
D5	VCCIB0	H5	IO48RSB1
D6	GND	H6	IO43RSB1
D7	IO23RSB0	H7	IO42RSB1
D8	IO31RSB0	H8	TDI
D9	IO30RSB0	H9	TDO

	CS81
Pin Number	AGL030 Function
J1	IO63RSB1
J2	IO61RSB1
J3	IO59RSB1
J4	IO56RSB1
J5	IO52RSB1
J6	IO45RSB1
J7	ТСК
J8	TMS
J9	VPUMP

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).


Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

(QN132
Pin Number	AGL060 Function
C16	IO60RSB1
C17	IO57RSB1
C18	NC
C19	ТСК
C20	VMV1
C21	VPUMP
C22	VJTAG
C23	VCCIB0
C24	NC
C25	NC
C26	GCA1/IO42RSB0
C27	GCC0/IO39RSB0
C28	VCCIB0
C29	IO29RSB0
C30	GNDQ
C31	GBA1/IO27RSB0
C32	GBB0/IO24RSB0
C33	VCC
C34	IO19RSB0
C35	IO16RSB0
C36	IO13RSB0
C37	GAC1/IO10RSB0
C38	NC
C39	GAA0/IO05RSB0
C40	VMV0
D1	GND
D2	GND
D3	GND
D4	GND

FG144

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

IGLOO Low Power Flash FPGAs

FG144		FG144		FG144		
Pin Number AGL125 Function		Pin Number AGL125 Function		Pin Number	Pin Number AGL125 Function	
A1	GNDQ	D1	IO128RSB1	G1	GFA1/IO121RSB1	
A2	VMV0	D2	IO129RSB1	G2	GND	
A3	GAB0/IO02RSB0	D3	IO130RSB1	G3	VCCPLF	
A4	GAB1/IO03RSB0	D4	GAA2/IO67RSB1	G4	GFA0/IO122RSB1	
A5	IO11RSB0	D5	GAC0/IO04RSB0	G5	GND	
A6	GND	D6	GAC1/IO05RSB0	G6	GND	
A7	IO18RSB0	D7	GBC0/IO35RSB0	G7	GND	
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO61RSB0	
A9	IO25RSB0	D9	GBB2/IO43RSB0	G9	IO48RSB0	
A10	GBA0/IO39RSB0	D10	IO28RSB0	G10	GCC2/IO59RSB0	
A11	GBA1/IO40RSB0	D11	IO44RSB0	G11	IO47RSB0	
A12	GNDQ	D12	GCB1/IO53RSB0	G12	GCB2/IO58RSB0	
B1	GAB2/IO69RSB1	E1	VCC	H1	VCC	
B2	GND	E2	GFC0/IO125RSB1	H2	GFB2/IO119RSB1	
B3	GAA0/IO00RSB0	E3	GFC1/IO126RSB1	H3	GFC2/IO118RSB1	
B4	GAA1/IO01RSB0	E4	VCCIB1	H4	GEC1/IO112RSB1	
B5	IO08RSB0	E5	IO68RSB1	H5	VCC	
B6	IO14RSB0	E6	VCCIB0	H6	IO50RSB0	
B7	IO19RSB0	E7	VCCIB0	H7	IO60RSB0	
B8	IO22RSB0	E8	GCC1/IO51RSB0	H8	GDB2/IO71RSB1	
B9	GBB0/IO37RSB0	E9	VCCIB0	H9	GDC0/IO62RSB0	
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB0	
B11	GND	E11	GCA0/IO56RSB0	H11	IO49RSB0	
B12	VMV0	E12	IO46RSB0	H12	VCC	
C1	IO132RSB1	F1	GFB0/IO123RSB1	J1	GEB1/IO110RSB1	
C2	GFA2/IO120RSB1	F2	VCOMPLF	J2	IO115RSB1	
C3	GAC2/IO131RSB1	F3	GFB1/IO124RSB1	J3	VCCIB1	
C4	VCC	F4	IO127RSB1	J4	GEC0/IO111RSB1	
C5	IO10RSB0	F5	GND	J5	IO116RSB1	
C6	IO12RSB0	F6	GND	J6	IO117RSB1	
C7	IO21RSB0	F7	GND	J7	VCC	
C8	IO24RSB0	F8	GCC0/IO52RSB0	J8	ТСК	
C9	IO27RSB0	F9	GCB0/IO54RSB0	J9	GDA2/IO70RSB1	
C10	GBA2/IO41RSB0	F10	GND	J10	TDO	
C11	IO42RSB0	F11	GCA1/IO55RSB0	J11	GDA1/IO65RSB0	
C12	GBC2/IO45RSB0	F12	GCA2/IO57RSB0	J12	GDB1/IO63RSB0	

FG256		FG256		FG256	
Pin Number AGL1000 Function		Pin Number AGL1000 Function		Pin Number	AGL1000 Function
A1	GND	C7	IO25RSB0	E13	GBC2/IO80PDB1
A2	GAA0/IO00RSB0	C8	IO36RSB0	E14	IO83PPB1
A3	GAA1/IO01RSB0	C9	IO42RSB0	E15	IO86PPB1
A4	GAB0/IO02RSB0	C10	IO49RSB0	E16	IO87PDB1
A5	IO16RSB0	C11	IO56RSB0	F1	IO217NDB3
A6	IO22RSB0	C12	GBC0/IO72RSB0	F2	IO218NDB3
A7	IO28RSB0	C13	IO62RSB0	F3	IO216PDB3
A8	IO35RSB0	C14	VMV0	F4	IO216NDB3
A9	IO45RSB0	C15	IO78NDB1	F5	VCCIB3
A10	IO50RSB0	C16	IO81NDB1	F6	GND
A11	IO55RSB0	D1	IO222NDB3	F7	VCC
A12	IO61RSB0	D2	IO222PDB3	F8	VCC
A13	GBB1/IO75RSB0	D3	GAC2/IO223PDB3	F9	VCC
A14	GBA0/IO76RSB0	D4	IO223NDB3	F10	VCC
A15	GBA1/IO77RSB0	D5	GNDQ	F11	GND
A16	GND	D6	IO23RSB0	F12	VCCIB1
B1	GAB2/IO224PDB3	D7	IO29RSB0	F13	IO83NPB1
B2	GAA2/IO225PDB3	D8	IO33RSB0	F14	IO86NPB1
B3	GNDQ	D9	IO46RSB0	F15	IO90PPB1
B4	GAB1/IO03RSB0	D10	IO52RSB0	F16	IO87NDB1
B5	IO17RSB0	D11	IO60RSB0	G1	IO210PSB3
B6	IO21RSB0	D12	GNDQ	G2	IO213NDB3
B7	IO27RSB0	D13	IO80NDB1	G3	IO213PDB3
B8	IO34RSB0	D14	GBB2/IO79PDB1	G4	GFC1/IO209PPB3
B9	IO44RSB0	D15	IO79NDB1	G5	VCCIB3
B10	IO51RSB0	D16	IO82NSB1	G6	VCC
B11	IO57RSB0	E1	IO217PDB3	G7	GND
B12	GBC1/IO73RSB0	E2	IO218PDB3	G8	GND
B13	GBB0/IO74RSB0	E3	IO221NDB3	G9	GND
B14	IO71RSB0	E4	IO221PDB3	G10	GND
B15	GBA2/IO78PDB1	E5	VMV0	G11	VCC
B16	IO81PDB1	E6	VCCIB0	G12	VCCIB1
C1	IO224NDB3	E7	VCCIB0	G13	GCC1/IO91PPB1
C2	IO225NDB3	E8	IO38RSB0	G14	IO90NPB1
C3	VMV3	E9	IO47RSB0	G15	IO88PDB1
C4	IO11RSB0	E10	VCCIB0	G16	IO88NDB1
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO208NPB3
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO207NDB3

FG484			
Pin Number AGL400 Function			
A1	GND		
A2	GND		
A3	VCCIB0		
A4	NC		
A5	NC		
A6	IO15RSB0		
A7	IO18RSB0		
A8	NC		
A9	NC		
A10	IO23RSB0		
A11	IO29RSB0		
A12	IO35RSB0		
A13	IO36RSB0		
A14	NC		
A15	NC		
A16	IO50RSB0		
A17	IO51RSB0		
A18	NC		
A19	NC		
A20	VCCIB0		
A21	GND		
A22	GND		
AA1	GND		
AA2	VCCIB3		
AA3	NC		
AA4	NC		
AA5	NC		
AA6	NC		
AA7	NC		
AA8	NC		
AA9	NC		
AA10	NC		
AA11	NC		
AA12	NC		
AA13	NC		
AA14	NC		

FG484			
Pin Number	AGL600 Function		
M3	IO158NPB3		
M4	GFA2/IO161PPB3		
M5	GFA1/IO162PDB3		
M6	VCCPLF		
M7	IO160NDB3		
M8	GFB2/IO160PDB3		
M9	VCC		
M10	GND		
M11	GND		
M12	GND		
M13	GND		
M14	VCC		
M15	GCB2/IO73PPB1		
M16	GCA1/IO71PPB1		
M17	GCC2/IO74PPB1		
M18	IO80PPB1		
M19	GCA2/IO72PDB1		
M20	IO79PPB1		
M21	IO78PPB1		
M22	NC		
N1	IO154NDB3		
N2	IO154PDB3		
N3	NC		
N4	GFC2/IO159PDB3		
N5	IO161NPB3		
N6	IO156PPB3		
N7	IO129RSB2		
N8	VCCIB3		
N9	VCC		
N10	GND		
N11	GND		
N12	GND		
N13	GND		
N14	VCC		
N15	VCCIB1		
N16	IO73NPB1		

FG484			
Pin Number	AGL1000 Function		
K11	GND		
K12	GND		
K13	GND		
K14	VCC		
K15	VCCIB1		
K16	GCC1/IO91PPB1		
K17	IO90NPB1		
K18	IO88PDB1		
K19	IO88NDB1		
K20	IO94NPB1		
K21	IO98NDB1		
K22	IO98PDB1		
L1	NC		
L2	IO200PDB3		
L3	IO210NPB3		
L4	GFB0/IO208NPB3		
L5	GFA0/IO207NDB3		
L6	GFB1/IO208PPB3		
L7	VCOMPLF		
L8	GFC0/IO209NPB3		
L9	VCC		
L10	GND		
L11	GND		
L12	GND		
L13	GND		
L14	VCC		
L15	GCC0/IO91NPB1		
L16	GCB1/IO92PPB1		
L17	GCA0/IO93NPB1		
L18	IO96NPB1		
L19	GCB0/IO92NPB1		
L20	IO97PDB1		
L21	IO97NDB1		
L22	IO99NPB1		
M1	NC		
M2	IO200NDB3		

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 19 (continued)	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 28756).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-8
	Values for VCCPLL at 1.2 V –1.5 V DC core supply voltage were revised in Table 2-2 • Recommended Operating Conditions 1 (SAR 22356).	2-2
	The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 25220).	
	The value for VCCPLL 1.5 V DC core supply voltage was changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 26551).	
	The notes in the table were renumbered in order of their appearance in the table (SAR 21869).	
	The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with the limits given in Table 2-2 • Recommended Operating Conditions 1. The resulting maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259).	2-6
	Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package Thermal Resistivities (SARs 26228, 32301).	2-6
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.14 V) were updated to remove the column for –20°C and shift the data over to correct columns (SAR 23041).	2-7
	The tables in the "Quiescent Supply Current" section were updated with revised notes on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new.	2-7
	The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 21348).	2-37
	The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event before Failure. The example in the associated paragraph was changed from 110°C to 100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was revised to change 110° to 100°C. (SAR 26259).	2-40
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics –	2-28,
	Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-47, 2-77
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-56
	The values for $F_{DDRIMAX}$ and F_{DDOMAX} were updated in the tables in the "Input DDR Module" section and "Output DDR Module" section (SAR 23919).	2-94, 2-97
	The following notes were removed from Table 2-147 • Minimum and Maximum DC Input and Output Levels (SAR 29428): ±5%	2-81
	Differential input voltage = ±350 mV	
	Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-115

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	N/A IV III
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20