E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1536
Total RAM Bits	18432
Number of I/O	71
Number of Gates	60000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl060v2-vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-29 • Summary of AC Measuring Points

Standard	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V VCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
1.2 V LVCMOS	0.60 V
1.2 V LVCMOS Wide Range	0.60 V
3.3 V PCI	0.285 * VCCI (RR)
	0.615 * VCCI (FF)
3.3 V PCI-X	0.285 * VCCI (RR)
	0.615 * VCCI (FF)

Table 2-30 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

 Table 2-34 •
 Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case

 Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard)

 Applicable to Advanced I/O Banks

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{Eour} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	5	-	1.55	2.67	0.26	0.98	1.10	2.71	2.18	3.25	3.93	8.50	7.97	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	5	-	1.55	3.73	0.26	1.32	1.10	3.73	2.91	4.51	5.43	9.52	8.69	ns
2.5 V LVCMOS	12 mA	12 mA	High	5	—	1.55	2.64	0.26	1.20	1.10	2.67	2.29	3.30	3.79	8.46	8.08	ns
1.8 V LVCMOS	12 mA	12 mA	High	5	-	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns
1.5 V LVCMOS	12 mA	12 mA	High	5	_	1.55	2.96	0.26	1.27	1.10	3.00	2.70	3.75	4.23	8.78	8.48	ns
1.2 V LVCMOS	2 mA	2 mA	High	5	-	1.55	3.60	0.26	1.60	1.10	3.47	3.36	3.93	3.65	9.26	9.14	ns
1.2 V LVCMOS Wide Range ³	100 µA	2 mA	High	5	_	1.55	3.60	0.26	1.60	1.10	3.47	3.36	3.93	3.65	9.26	9.14	ns
3.3 V PCI	Per PCI spec	_	High	10	25 ²	1.55	2.91	0.26	0.86	1.10	2.95	2.29	3.25	3.93	8.74	8.08	ns
3.3 V PCI-X	Per PCI- X spec	Ι	High	10	25 ²	1.55	2.91	0.25	0.86	1.10	2.95	2.29	3.25	3.93	8.74	8.08	ns
LVDS	24 mA	-	High	I	-	1.55	2.27	0.25	1.57	-	-	-	-	-	—	-	ns
LVPECL	24 mA	Ι	High	I	-	1.55	2.24	0.25	1.38	1	-	-	-	_	-	-	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification.

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	IL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	132	127	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	268	181	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

 Table 2-48 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	V _{OL}	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-104 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	2.62	0.18	0.98	0.66	2.67	2.59	1.67	1.29	2.62	ns
4 mA	Std.	2.18	0.18	0.98	0.66	2.22	1.93	1.97	2.06	2.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-105 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	6.97	0.26	1.11	1.10	7.08	6.48	2.87	2.29	12.87	12.27	ns
4 mA	Std.	1.55	5.91	0.26	1.11	1.10	6.01	5.57	3.21	3.14	11.79	11.36	ns
6 mA	Std.	1.55	5.16	0.26	1.11	1.10	5.24	4.95	3.45	3.55	11.03	10.74	ns
8 mA	Std.	1.55	4.90	0.26	1.11	1.10	4.98	4.81	3.50	3.66	10.77	10.60	ns
12 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns
16 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-106 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.73	0.26	1.11	1.10	3.71	3.73	2.86	2.34	9.49	9.51	ns
4 mA	Std.	1.55	3.12	0.26	1.11	1.10	3.16	2.97	3.21	3.22	8.95	8.75	ns
6 mA	Std.	1.55	2.79	0.26	1.11	1.10	2.83	2.59	3.45	3.65	8.62	8.38	ns
8 mA	Std.	1.55	2.73	0.26	1.11	1.10	2.77	2.52	3.50	3.75	8.56	8.30	ns
12 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns
16 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-107 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.32	0.26	1.11	1.10	6.43	5.81	2.47	2.16	12.22	11.60	ns
4 mA	Std.	1.55	5.27	0.26	1.11	1.10	5.35	5.01	2.78	2.92	11.14	10.79	ns
6 mA	Std.	1.55	4.56	0.26	1.11	1.10	4.64	4.44	3.00	3.30	10.42	10.22	ns
8 mA	Std.	1.55	4.56	0.26	1.11	1.10	4.64	4.44	3.00	3.30	10.42	10.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-108 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.22	0.26	1.11	1.10	3.26	3.18	2.47	2.20	9.05	8.97	ns
4 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.75	2.50	2.78	3.01	8.54	8.29	ns
6 mA	Std.	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns
8 mA	Std.	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-109 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.13	0.26	1.08	1.10	6.24	5.79	2.08	1.78	ns
4 mA	Std.	1.55	5.17	0.26	1.08	1.10	5.26	4.98	2.38	2.54	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-110 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	3.06	0.26	1.08	1.10	3.10	3.01	2.08	1.83	3.06	ns
4 mA	Std.	2.60	0.26	1.08	1.10	2.64	2.33	2.38	2.62	2.60	ns

Notes:

1. Software default selection highlighted in gray.

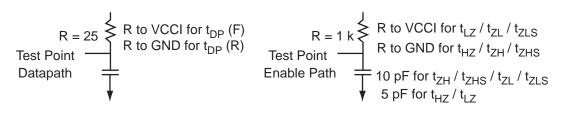
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

 Table 2-141 • Minimum and Maximum DC Input and Output Levels

 Applicable to Advanced and Standard Plus I/Os


3.3 V PCI/PCI-X	v	IL	V	IH	VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA ²	μA²
Per PCI specification		Per PCI curves							10	10		

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-12.

Figure 2-12 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-142.

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	10
		0.615 * VCCI for $t_{DP(F)}$	

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

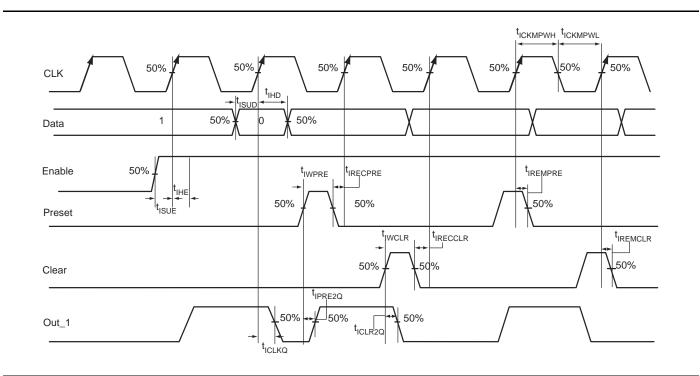
1.5 V DC Core Voltage

Table 2-143 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	2.32	0.19	0.70	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.


Table 2-144 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade t	LOOUT	τ _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	1.97	0.19	0.70	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Input Register

Figure 2-18 • Input Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-157 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.42	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.47	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.67	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.79	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.79	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-115. Table 2-173 to Table 2-188 on page 2-114 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-173 • AGL015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

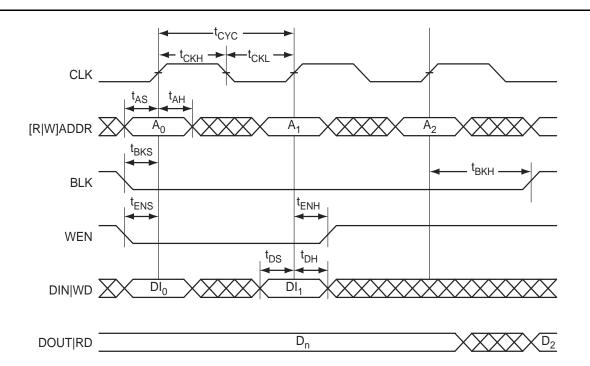
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-174 • AGL030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V


		S	Std.		
Parameter	Description	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.42	ns	
t _{RCKH}	Input High Delay for Global Clock	1.23	1.49	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

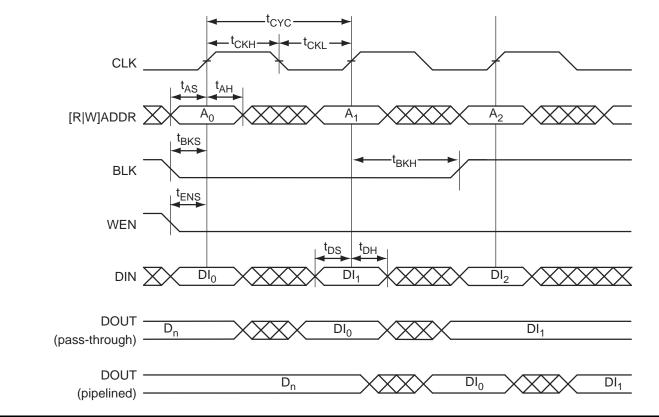


Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 only.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

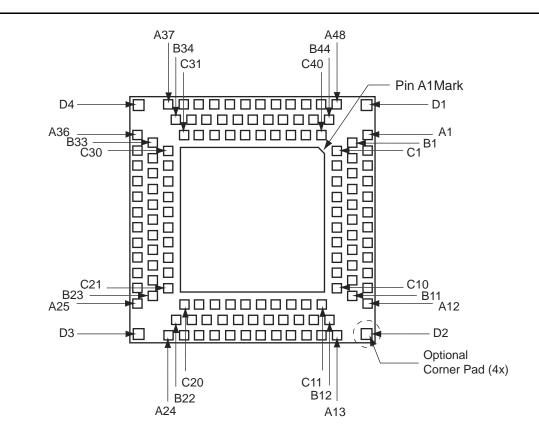
Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

Package Pin Assignments

	CS196		CS196		CS196
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
A1	GND	C9	IO23RSB0	F3	IO113RSB1
A2	GAA0/IO00RSB0	C10	IO29RSB0	F4	IO112RSB1
A3	GAC0/IO04RSB0	C11	VCCIB0	F5	IO111RSB1
A4	GAC1/IO05RSB0	C12	IO42RSB0	F6	NC
A5	IO09RSB0	C13	GNDQ	F7	VCC
A6	IO15RSB0	C14	IO44RSB0	F8	VCC
A7	IO18RSB0	D1	IO127RSB1	F9	NC
A8	IO22RSB0	D2	IO129RSB1	F10	IO07RSB0
A9	IO27RSB0	D3	GAA2/IO132RSB1	F11	IO25RSB0
A10	GBC0/IO35RSB0	D4	IO126RSB1	F12	IO10RSB0
A11	GBB0/IO37RSB0	D5	IO06RSB0	F13	IO33RSB0
A12	GBB1/IO38RSB0	D6	IO13RSB0	F14	IO47RSB0
A13	GBA1/IO40RSB0	D7	IO19RSB0	G1	GFB1/IO121RSB1
A14	GND	D8	IO21RSB0	G2	GFA0/IO119RSB1
B1	VCCIB1	D9	IO26RSB0	G3	GFA2/IO117RSB1
B2	VMV0	D10	IO31RSB0	G4	VCOMPLF
B3	GAA1/IO01RSB0	D11	IO30RSB0	G5	GFC0/IO122RSB1
B4	GAB1/IO03RSB0	D12	VMV0	G6	VCC
B5	GND	D13	IO46RSB0	G7	GND
B6	IO16RSB0	D14	GBC2/IO45RSB0	G8	GND
B7	IO20RSB0	E1	IO125RSB1	G9	VCC
B8	IO24RSB0	E2	GND	G10	GCC0/IO52RSB0
B9	IO28RSB0	E3	IO131RSB1	G11	GCB1/IO53RSB0
B10	GND	E4	VCCIB1	G12	GCA0/IO56RSB0
B11	GBC1/IO36RSB0	E5	NC	G13	IO48RSB0
B12	GBA0/IO39RSB0	E6	IO08RSB0	G14	GCC2/IO59RSB0
B13	GBA2/IO41RSB0	E7	IO17RSB0	H1	GFB0/IO120RSB1
B14	GBB2/IO43RSB0	E8	IO12RSB0	H2	GFA1/IO118RSB1
C1	GAC2/IO128RSB1	E9	IO11RSB0	H3	VCCPLF
C2	GAB2/IO130RSB1	E10	NC	H4	GFB2/IO116RSB1
C3	GNDQ	E11	VCCIB0	H5	GFC1/IO123RSB1
C4	VCCIB0	E12	IO32RSB0	H6	VCC
C5	GAB0/IO02RSB0	E13	GND	H7	GND
C6	IO14RSB0	E14	IO34RSB0	H8	GND
C7	VCCIB0	F1	IO124RSB1	H9	VCC
C8	NC	F2	IO114RSB1	H10	GCC1/IO51RSB0

	CS281) [CS281
Pin Number	AGL600 Function	Pin Number	AGL600 Function
R15	IO94RSB2	V10	IO112RSB2
R15	GDA1/IO88PPB1	V10 V11	IO112R3B2
R10	GDB0/IO87NPB1	V11 V12	
_			IO108RSB2
R19	GDC0/IO86NPB1	V13	IO102RSB2
T1	IO148PPB3	V14	GND
T2	GEC0/IO146NPB3	V15	IO93RSB2
T4	GEB0/IO145NPB3	V16	GDA2/IO89RSB2
T5	IO132RSB2	V17	TDI
T6	IO136RSB2	V18	VCCIB2
T7	IO130RSB2	V19	TDO
T8	IO126RSB2	W1	GND
Т9	IO120RSB2	W2	FF/GEB2/IO142RSE
T10	GND	W3	IO139RSB2
T11	IO113RSB2	W4	IO137RSB2
T12	IO104RSB2	W5	IO134RSB2
T13	IO101RSB2	W6	IO133RSB2
T14	IO98RSB2	W7	IO128RSB2
T15	GDC2/IO91RSB2	W8	IO124RSB2
T16	TMS	W9	IO119RSB2
T18	VJTAG	W10	VCCIB2
T19	GDB1/IO87PPB1	W11	IO109RSB2
U1	IO147PDB3	W12	IO107RSB2
U2	GEA1/IO144PPB3	W13	IO105RSB2
U6	IO131RSB2	W14	IO100RSB2
U14	IO99RSB2	W15	IO96RSB2
U18	TRST	W16	IO92RSB2
U19	GDA0/IO88NPB1	W17	GDB2/IO90RSB2
V1	IO147NDB3	W18	ТСК
V2	VCCIB3	W19	GND
V3	GEC2/IO141RSB2		L
V4	IO140RSB2	1	
V5	IO135RSB2	1	
V6	GND	1	
V7	IO125RSB2	1	
V8	IO122RSB2		


V9

IO116RSB2

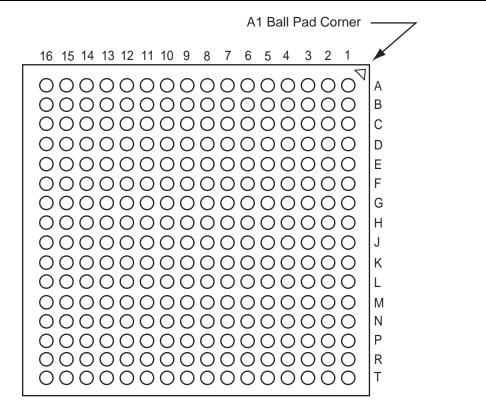
Package Pin Assignments

QN132

Notes:

2. The die attach paddle center of the package is tied to ground (GND).

Note


QN132 package is discontinued and is not available for IGLOO devices. For more information on package drawings, see *PD3068: Package Mechanical Drawings*.

^{1.} This is the bottom view of the package.

IGLOO Low Power Flash FPGAs

	QN132		QN132		QN132
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GAB2/IO117UPB3	A37	GBB1/IO38RSB0	B25	GND
A2	IO117VPB3	A38	GBC0/IO35RSB0	B26	IO54PDB1
A3	VCCIB3	A39	VCCIB0	B27	GCB2/IO52PDB1
A4	GFC1/IO110PDB3	A40	IO28RSB0	B28	GND
A5	GFB0/IO109NPB3	A41	IO22RSB0	B29	GCB0/IO49NDB1
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO48PDB1
A7	GFA1/IO108PPB3	A43	IO14RSB0	B31	GND
A8	GFC2/IO105PPB3	A44	IO11RSB0	B32	GBB2/IO42PDB1
A9	IO103NDB3	A45	IO07RSB0	B33	VMV1
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A11	GEA1/IO98PPB3	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A12	GEA0/IO98NPB3	A48	GAB0/IO02RSB0	B36	GND
A13	GEC2/IO95RSB2	B1	IO118VDB3	B37	IO26RSB0
A14	IO91RSB2	B2	GAC2/IO116UDB3	B38	IO21RSB0
A15	VCC	B3	GND	B39	GND
A16	IO90RSB2	B4	GFC0/IO110NDB3	B40	IO13RSB0
A17	IO87RSB2	B5	VCOMPLF	B41	IO08RSB0
A18	IO85RSB2	B6	GND	B42	GND
A19	IO82RSB2	B7	GFB2/IO106PSB3	B43	GAC0/IO04RSB0
A20	IO76RSB2	B8	IO103PDB3	B44	GNDQ
A21	IO70RSB2	B9	GND	C1	GAA2/IO118UDB3
A22	VCC	B10	GEB0/IO99NDB3	C2	IO116VDB3
A23	GDB2/IO62RSB2	B11	VMV3	C3	VCC
A24	TDI	B12	FF/GEB2/IO96RSB2	C4	GFB1/IO109PPB3
A25	TRST	B13	IO92RSB2	C5	GFA0/IO108NPB3
A26	GDC1/IO58UDB1	B14	GND	C6	GFA2/IO107PSB3
A27	VCC	B15	IO89RSB2	C7	IO105NPB3
A28	IO54NDB1	B16	IO86RSB2	C8	VCCIB3
A29	IO52NDB1	B17	GND	C9	GEB1/IO99PDB3
A30	GCA2/IO51PPB1	B18	IO78RSB2	C10	GNDQ
A31	GCA0/IO50NPB1	B19	IO72RSB2	C11	GEA2/IO97RSB2
A32	GCB1/IO49PDB1	B20	GND	C12	IO94RSB2
A33	IO47NSB1	B21	GNDQ	C13	VCCIB2
A34	VCC	B22	TMS	C14	IO88RSB2
A35	IO41NPB1	B23	TDO	C15	IO84RSB2
A36	GBA2/IO41PPB1	B24	GDC0/IO58VDB1	C16	IO80RSB2

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

	FG256		FG256		FG256
Pin Number	AGL400 Function	Pin Number	AGL400 Function	Pin Number	AGL400 Function
A1	GND	C7	IO20RSB0	E13	GBC2/IO62PDB1
A2	GAA0/IO00RSB0	C8	IO24RSB0	E14	IO65RSB1
A3	GAA1/IO01RSB0	C9	IO33RSB0	E15	IO52RSB0
A4	GAB0/IO02RSB0	C10	IO39RSB0	E16	IO66PDB1
A5	IO16RSB0	C11	IO45RSB0	F1	IO150NDB3
A6	IO17RSB0	C12	GBC0/IO54RSB0	F2	IO149NPB3
A7	IO22RSB0	C13	IO48RSB0	F3	IO09RSB0
A8	IO28RSB0	C14	VMV0	F4	IO152UDB3
A9	IO34RSB0	C15	IO61NPB1	F5	VCCIB3
A10	IO37RSB0	C16	IO63PDB1	F6	GND
A11	IO41RSB0	D1	IO151VDB3	F7	VCC
A12	IO43RSB0	D2	IO151UDB3	F8	VCC
A13	GBB1/IO57RSB0	D3	GAC2/IO153UDB3	F9	VCC
A14	GBA0/IO58RSB0	D4	IO06RSB0	F10	VCC
A15	GBA1/IO59RSB0	D5	GNDQ	F11	GND
A16	GND	D6	IO10RSB0	F12	VCCIB1
B1	GAB2/IO154UDB3	D7	IO19RSB0	F13	IO62NDB1
B2	GAA2/IO155UDB3	D8	IO26RSB0	F14	IO49RSB0
B3	IO12RSB0	D9	IO30RSB0	F15	IO64PPB1
B4	GAB1/IO03RSB0	D10	IO40RSB0	F16	IO66NDB1
B5	IO13RSB0	D11	IO46RSB0	G1	IO148NDB3
B6	IO14RSB0	D12	GNDQ	G2	IO148PDB3
B7	IO21RSB0	D13	IO47RSB0	G3	IO149PPB3
B8	IO27RSB0	D14	GBB2/IO61PPB1	G4	GFC1/IO147PPB3
B9	IO32RSB0	D15	IO53RSB0	G5	VCCIB3
B10	IO38RSB0	D16	IO63NDB1	G6	VCC
B11	IO42RSB0	E1	IO150PDB3	G7	GND
B12	GBC1/IO55RSB0	E2	IO08RSB0	G8	GND
B13	GBB0/IO56RSB0	E3	IO153VDB3	G9	GND
B14	IO44RSB0	E4	IO152VDB3	G10	GND
B15	GBA2/IO60PDB1	E5	VMV0	G11	VCC
B16	IO60NDB1	E6	VCCIB0	G12	VCCIB1
C1	IO154VDB3	E7	VCCIB0	G13	GCC1/IO67PPB1
C2	IO155VDB3	E8	IO25RSB0	G14	IO64NPB1
C3	IO11RSB0	E9	IO31RSB0	G15	IO73PDB1
C4	IO07RSB0	E10	VCCIB0	G16	IO73NDB1
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO146NPB3
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO145NDB3

Package Pin Assignments

FG256		
Pin Number	AGL400 Function	
R5	IO123RSB2	
R6	IO118RSB2	
R7	IO112RSB2	
R8	IO106RSB2	
R9	IO100RSB2	
R10	IO96RSB2	
R11	IO89RSB2	
R12	IO85RSB2	
R13	GDB2/IO81RSB2	
R14	TDI	
R15	NC	
R16	TDO	
T1	GND	
T2	IO126RSB2	
Т3	FF/GEB2/IO133RSB2	
T4	IO124RSB2	
T5	IO116RSB2	
T6	IO113RSB2	
T7	IO107RSB2	
T8	IO105RSB2	
Т9	IO102RSB2	
T10	IO97RSB2	
T11	IO92RSB2	
T12	GDC2/IO82RSB2	
T13	IO86RSB2	
T14	GDA2/IO80RSB2	
T15	TMS	
T16	GND	

FG484		
Pin Number	AGL400 Function	
C21	NC	
C22	VCCIB1	
D1	NC	
D2	NC	
D3	NC	
D4	GND	
D5	GAA0/IO00RSB0	
D6	GAA1/IO01RSB0	
D7	GAB0/IO02RSB0	
D8	IO16RSB0	
D9	IO17RSB0	
D10	IO22RSB0	
D11	IO28RSB0	
D12	IO34RSB0	
D13	IO37RSB0	
D14	IO41RSB0	
D15	IO43RSB0	
D16	GBB1/IO57RSB0	
D17	GBA0/IO58RSB0	
D18	GBA1/IO59RSB0	
D19	GND	
D20	NC	
D21	NC	
D22	NC	
E1	NC	
E2	NC	
E3	GND	
E4	GAB2/IO154UDB3	
E5	GAA2/IO155UDB3	
E6	IO12RSB0	
E7	GAB1/IO03RSB0	
E8	IO13RSB0	
E9	IO14RSB0	
E10	IO21RSB0	
E11	IO27RSB0	
E12	IO32RSB0	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
(December 2012)	The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).	III
	The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added.	2-115, 2-116
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 22 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40271).	N/A
Revision 21 (May 2012)	Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet in revision 19 and has been removed (SAR 38217).	I to IV
	Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same to '3.6' in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR 37685).	2-82
	Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).	2-127
	The following sentence was removed from the VMVx description in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision / Version	Changes	Page
Revision 14 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to include two bullets regarding wide range power supply voltage support.	Ι
	3.0 V wide range was added to the list of supported voltages in the "I/Os with Advanced I/O Standards" section. The "Wide Range I/O Support" section is new.	1-8
Revision 13 (Jan 2009) Packaging v1.8	The "CS121" pin table was revised to add a note regarding pins F1 and G1.	4-7
Revision 12 (Dec 2008)	QN48 and QN68 were added to the AGL030 for the following tables:	N/A
Product Brief v1.3	"IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings"	
	QN132 is fully supported by AGL125 so footnote 3 was removed.	
Packaging v1.7	The "QN48" pin diagram and pin table are new.	4-24
	The "QN68" pin table for AGL030 is new.	4-26
Revision 12 (Dec 2008)	The AGL600 Function for pin K15 in the "FG484" table was changed to VCCIB1.	4-78
Revision 11 (Oct 2008) Product Brief v1.2	This document was updated to include AGL400 device information. The following sections were updated:	N/A
	"IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings"	
	Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)	
DC and Switching Characteristics Advance v0.5	The tables in the "Quiescent Supply Current" section were updated with values for AGL400. In addition, the title was updated to include: (VCC = VJTAG = VPP = 0 V).	2-7
	The tables in the "Power Consumption of Various Internal Resources" section were updated with values for AGL400.	2-13
	Table 2-178 • AGL400 Global Resource is new.	2-109
Packaging v1.6	The "CS196" table for the AGL400 device is new.	4-14
	The "FG144" table for the AGL400 device is new.	4-47
	The "FG256" table for the AGL400 device is new.	4-54
	The "FG484" table for the AGL400 device is new.	4-64
Revision 10 (Aug 2008)	3.0 V LVCMOS wide range support data was added to Table 2-2 • Recommended Operating Conditions 1.	2-2
DC and Switching Characteristics Advance v0.4	3.3 V LVCMOS wide range support data was added to Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings to Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings.	2-24 to 2-26
	3.3 V LVCMOS wide range support data was added to Table 2-28 • Summary of Maximum and Minimum DC Input Levels.	2-27
	3.3 V LVCMOS wide range support text was added to Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range.	2-39