Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Active | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 24576 | | Total RAM Bits | 147456 | | Number of I/O | 215 | | Number of Gates | 1000000 | | Voltage - Supply | 1.14V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Package / Case | 281-TFBGA, CSBGA | | Supplier Device Package | 281-CSP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agl1000v2-cs281i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### Wide Range I/O Support IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V. Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications. ### Specifying I/O States During Programming You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information. Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only. - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming. - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears. - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box. - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-5 on page 1-9). - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings: - 1 I/O is set to drive out logic High - 0 I/O is set to drive out logic Low Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tri-State: I/O is tristated # **Power Consumption of Various Internal Resources** Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage | | | | | Devic | e Specific
(µW/l | | Power | | | |-----------|--|---------|-----------|------------|---------------------|-------------|-------------|------------|--------| | Parameter | Definition | AGL1000 | AGL600 | AGL400 | AGL250 | AGL125 | AGL060 | AGL030 | AGL015 | | PAC1 | Clock contribution of a
Global Rib | 7.778 | 6.221 | 6.082 | 4.460 | 4.446 | 2.736 | 0.000 | 0.000 | | PAC2 | Clock contribution of a
Global Spine | 4.334 | 3.512 | 2.759 | 2.718 | 1.753 | 1.971 | 3.483 | 3.483 | | PAC3 | Clock contribution of a
VersaTile row | 1.379 | 1.445 | 1.377 | 1.483 | 1.467 | 1.503 | 1.472 | 1.472 | | PAC4 | Clock contribution of a
VersaTile used as a
sequential module | 0.151 | 0.149 | 0.151 | 0.149 | 0.149 | 0.151 | 0.146 | 0.146 | | PAC5 | First contribution of a
VersaTile used as a
sequential module | 0.057 | | | | | | • | | | PAC6 | Second contribution of a
VersaTile used as a
sequential module | 0.207 | | | | | | | | | PAC7 | Contribution of a VersaTile used as a combinatorial module | 0.276 | 0.262 | 0.279 | 0.277 | 0.280 | 0.300 | 0.281 | 0.273 | | PAC8 | Average contribution of a routing net | 1.161 | 1.147 | 1.193 | 1.273 | 1.076 | 1.088 | 1.134 | 1.153 | | PAC9 | Contribution of an I/O input pin (standard-dependent) | | See Table | 2-13 on pa | age 2-10 th | rough Table | e 2-15 on p | page 2-11. | | | PAC10 | Contribution of an I/O output pin (standard-dependent) | | See Table | 2-16 on pa | age 2-11 th | rough Table | e 2-18 on p | age 2-12. | | | PAC11 | Average contribution of a RAM block during a read operation | 25.00 | | | | | | | | | PAC12 | Average contribution of a RAM block during a write operation | 30.00 | | | | | | | | | PAC13 | Dynamic PLL contribution | | | | 2.7 | 70 | | | | Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. 2-12 Revision 27 Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) Applicable to Standard I/O Banks | I/O Standard | Drive Strength) | Equivalent Software Default
Drive Strength Option ¹ (mA) | Slew Rate | Capacitive Load (pF) | External Resistor (᠒) | t _{DOUT} (ns) | t _{DP} (ns) | t _{DIN} (ns) | t _{PY} (ns) | t _{EOUT} (ns) | t _{ZL} (ns) | t _{ZH} (ns) | t _{LZ} (ns) | t _{HZ} (ns) | Units | |---|-----------------|--|-----------|----------------------|-----------------------|------------------------|----------------------|-----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|-------| | 3.3 V
LVTTL /
3.3 V
LVCMOS | 8 mA | 8 | High | 5 | _ | 0.97 | 1.85 | 0.18 | 0.83 | 0.66 | 1.89 | 1.46 | 1.96 | 2.26 | ns | | 3.3 V
LVCMOS
Wide
Range ² | 100 μΑ | 8 | High | 5 | _ | 0.97 | 2.62 | 0.18 | 1.17 | 0.66 | 2.63 | 2.02 | 2.79 | 3.17 | ns | | 2.5 V
LVCMOS | 8 mA | 8 | High | 5 | _ | 0.97 | 1.88 | 0.18 | 1.04 | 0.66 | 1.92 | 1.63 | 1.95 | 2.15 | ns | | 1.8 V
LVCMOS | 4 mA | 4 | High | 5 | _ | 0.97 | 2.18 | 0.18 | 0.98 | 0.66 | 2.22 | 1.93 | 1.97 | 2.06 | ns | | 1.5 V
LVCMOS | 2 mA | 2 | High | 5 | - | 0.97 | 2.51 | 0.18 | 1.14 | 0.66 | 2.56 | 2.21 | 1.99 | 2.03 | ns | #### Notes: 2-30 Revision 27 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. ^{2.} All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. ^{3.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. #### **Timing Characteristics** Applies to 1.5 V DC Core Voltage Table 2-67 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced Banks | Drive
Strength | Equivalent
Software
Default Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | t _{ZLS} | t _{zHS} | Units | |-------------------|--|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------| | 100 μΑ | 2 mA | Std. | 0.97 | 6.61 | 0.18 | 1.19 | 0.66 | 6.63 | 5.63 | 3.15 | 2.98 | 10.22 | 9.23 | ns | | 100 μΑ | 4 mA | Std. | 0.97 | 6.61 | 0.18 | 1.19 | 0.66 | 6.63 | 5.63 | 3.15 | 2.98 | 10.22 | 9.23 | ns | | 100 μΑ | 6 mA | Std. | 0.97 | 5.49 | 0.18 | 1.19 | 0.66 | 5.51 | 4.84 | 3.54 | 3.66 | 9.10 | 8.44 | ns | | 100 μΑ | 8 mA | Std. | 0.97 | 5.49 | 0.18 | 1.19 | 0.66 | 5.51 | 4.84 | 3.54 | 3.66 | 9.10 | 8.44 | ns | | 100 μΑ | 12 mA | Std. | 0.97 | 4.69 | 0.18 | 1.19 | 0.66 | 4.71 | 4.25 | 3.80 | 4.10 | 8.31 | 7.85 | ns | | 100 μΑ | 16 mA | Std. | 0.97 | 4.46 | 0.18 | 1.19 | 0.66 | 4.48 | 4.11 | 3.86 | 4.21 | 8.07 | 7.71 | ns | | 100 μΑ | 24 mA | Std. | 0.97 | 4.34 | 0.18 | 1.19 | 0.66 | 4.36 | 4.14 | 3.93 | 4.64 | 7.95 | 7.74 | ns | #### Notes: - The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-68 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced Banks | Drive
Strength | Equivalent
Software
Default Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | t _{ZLS} | t _{ZHS} | Units | |-------------------|--|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------| | 100 μΑ | 2 mA | Std. | 0.97 | 3.92 | 0.18 | 1.19 | 0.66 | 3.94 | 3.10 | 3.16 | 3.17 | 7.54 | 6.70 | ns | | 100 μΑ | 4 mA | Std. | 0.97 | 3.92 | 0.18 | 1.19 | 0.66 | 3.94 | 3.10 | 3.16 | 3.17 | 7.54 | 6.70 | ns | | 100 μΑ | 6 mA | Std. | 0.97 | 3.28 | 0.18 | 1.19 | 0.66 | 3.30 | 2.54 | 3.54 | 3.86 | 6.90 | 6.14 | ns | | 100 μΑ | 8 mA | Std. | 0.97 | 3.28 | 0.18 | 1.19 | 0.66 | 3.30 | 2.54 | 3.54 | 3.86 | 6.90 | 6.14 | ns | | 100 μΑ | 12 mA | Std. | 0.97 | 2.93 | 0.18 | 1.19 | 0.66 | 2.95 | 2.27 | 3.81 | 4.30 | 6.54 | 5.87 | ns | | 100 μΑ | 16 mA | Std. | 0.97 | 2.87 | 0.18 | 1.19 | 0.66 | 2.89 | 2.22 | 3.86 | 4.41 | 6.49 | 5.82 | ns | | 100 μΑ | 24 mA | Std. | 0.97 | 2.90 | 0.18 | 1.19 | 0.66 | 2.92 | 2.16 | 3.94 | 4.86 | 6.51 | 5.75 | ns | #### Notes: - 1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. - 2. Software default selection highlighted in gray. - 3. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is \pm 100 μ A. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. Table 2-86 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus Banks | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | t _{ZLS} | t _{ZHS} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------| | 2 mA | Std. | 0.97 | 2.36 | 0.18 | 1.08 | 0.66 | 2.41 | 2.21 | 1.96 | 1.92 | 6.01 | 5.81 | ns | | 4 mA | Std. | 0.97 | 2.36 | 0.18 | 1.08 | 0.66 | 2.41 | 2.21 | 1.96 | 1.92 | 6.01 | 5.81 | ns | | 6 mA | Std. | 0.97 | 1.97 | 0.18 | 1.08 | 0.66 | 2.01 | 1.75 | 2.21 | 2.40 | 5.61 | 5.34 | ns | | 8 mA | Std. | 0.97 | 1.97 | 0.18 | 1.08 | 0.66 | 2.01 | 1.75 | 2.21 | 2.40 | 5.61 | 5.34 | ns | | 12 mA | Std. | 0.97 | 1.75 | 0.18 | 1.08 | 0.66 | 1.79 | 1.52 | 2.38 | 2.70 | 5.39 | 5.11 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-87 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | Std. | 0.97 | 4.27 | 0.18 | 1.04 | 0.66 | 4.36 | 4.06 | 1.71 | 1.62 | ns | | 4 mA | Std. | 0.97 | 4.27 | 0.18 | 1.04 | 0.66 | 4.36 | 4.06 | 1.71 | 1.62 | ns | | 6 mA | Std. | 0.97 | 3.54 | 0.18 | 1.04 | 0.66 | 3.61 | 3.48 | 1.95 | 2.08 | ns | | 8 mA | Std. | 0.97 | 3.54 | 0.18 | 1.04 | 0.66 | 3.61 | 3.48 | 1.95 | 2.08 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-88 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | Std. | 0.97 | 2.24 | 0.18 | 1.04 | 0.66 | 2.29 | 2.09 | 1.71 | 1.68 | ns | | 4 mA | Std. | 0.97 | 2.24 | 0.18 | 1.04 | 0.66 | 2.29 | 2.09 | 1.71 | 1.68 | ns | | 6 mA | Std. | 0.97 | 1.88 | 0.18 | 1.04 | 0.66 | 1.92 | 1.63 | 1.95 | 2.15 | ns | | 8 mA | Std. | 0.97 | 1.88 | 0.18 | 1.04 | 0.66 | 1.92 | 1.63 | 1.95 | 2.15 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2-58 Revision 27 Table 2-147 • Minimum and Maximum DC Input and Output Levels | DC Parameter | Description | Min. | Тур. | Max. | Units | |---------------------|-----------------------------|-------|-------|-------|-------| | VCCI | Supply Voltage | 2.375 | 2.5 | 2.625 | V | | VOL | Output Low Voltage | 0.9 | 1.075 | 1.25 | V | | VOH | Output High Voltage | 1.25 | 1.425 | 1.6 | V | | IOL ¹ | Output Lower Current | 0.65 | 0.91 | 1.16 | mA | | IOH ¹ | Output High Current | 0.65 | 0.91 | 1.16 | mA | | VI | Input Voltage | 0 | | 2.925 | V | | IIH ² | Input High Leakage Current | | | 10 | μΑ | | IIL ² | Input Low Leakage Current | | | 10 | μΑ | | VODIFF | Differential Output Voltage | 250 | 350 | 450 | mV | | VOCM | Output Common-Mode Voltage | 1.125 | 1.25 | 1.375 | V | | VICM | Input Common-Mode Voltage | 0.05 | 1.25 | 2.35 | V | | VIDIFF ⁴ | Input Differential Voltage | 100 | 350 | | mV | #### Notes: - 1. IOL/IOH is defined by VODIFF/(resistor network) - 2. Currents are measured at 85°C junction temperature. Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads | Input Low (V) | Input High (V) | Measuring Point* (V) | |---------------|----------------|----------------------| | 1.075 | 1.325 | Cross point | Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points. #### **Timing Characteristics** 1.5 V DC Core Voltage Table 2-149 • LVDS – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | Units | |-------------|-------------------|-----------------|------------------|-----------------|-------| | Std. | 0.97 | 1.67 | 0.19 | 1.31 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for derating values. #### 1.2 V DC Core Voltage Table 2-150 • LVDS – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | Units | |-------------|-------------------|-----------------|------------------|-----------------|-------| | Std. | 1.55 | 2.19 | 0.25 | 1.52 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for derating values. Table 2-151 • Minimum and Maximum DC Input and Output Levels | DC Parameter | Description | Min. | Max. | Min. | Max. | Min. | Max. | Units | |--------------------|--------------------------------|-------|------|-------|------|-------|------|-------| | VCCI | Supply Voltage | 3 | .0 | 3 | .3 | 3 | .6 | V | | VOL | Output Low Voltage | 0.96 | 1.27 | 1.06 | 1.43 | 1.30 | 1.57 | V | | VOH | Output High Voltage | 1.8 | 2.11 | 1.92 | 2.28 | 2.13 | 2.41 | V | | VIL, VIH | Input Low, Input High Voltages | 0 | 3.6 | 0 | 3.6 | 0 | 3.6 | V | | V _{ODIFF} | Differential Output Voltage | 0.625 | 0.97 | 0.625 | 0.97 | 0.625 | 0.97 | V | | V _{OCM} | Output Common-Mode Voltage | 1.762 | 1.98 | 1.762 | 1.98 | 1.762 | 1.98 | V | | V _{ICM} | Input Common-Mode Voltage | 1.01 | 2.57 | 1.01 | 2.57 | 1.01 | 2.57 | V | | V _{IDIFF} | Input Differential Voltage | 300 | | 300 | | 300 | | mV | #### Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads | Input Low (V) | Input High (V) | Measuring Point* (V) | |---------------|----------------|----------------------| | 1.64 | 1.94 | Cross point | Note: *Measuring point = Vtrip. See Table 2-28 on page 2-104 for a complete table of trip points. #### **Timing Characteristics** 1.5 V DC Core Voltage Table 2-153 • LVPECL – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: $T_J = 70$ °C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | Units | |-------------|-------------------|-----------------|------------------|-----------------|-------| | Std. | 0.97 | 1.67 | 0.19 | 1.16 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. #### 1.2 V DC Core Voltage Table 2-154 • LVPECL - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | Units | |-------------|-------------------|-----------------|------------------|-----------------|-------| | Std. | 1.55 | 2.24 | 0.25 | 1.37 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. # **DDR Module Specifications** # Input DDR Module Figure 2-21 • Input DDR Timing Model Table 2-163 • Parameter Definitions | Parameter Name | Parameter Definition | Measuring Nodes (from, to) | |-------------------------|------------------------------|----------------------------| | t _{DDRICLKQ1} | Clock-to-Out Out_QR | B, D | | t _{DDRICLKQ2} | Clock-to-Out Out_QF | B, E | | t _{DDRISUD} | Data Setup Time of DDR input | A, B | | t _{DDRIHD} | Data Hold Time of DDR input | A, B | | t _{DDRICLR2Q1} | Clear-to-Out Out_QR | C, D | | t _{DDRICLR2Q2} | Clear-to-Out Out_QF | C, E | | t _{DDRIREMCLR} | Clear Removal | C, B | | t _{DDRIRECCLR} | Clear Recovery | C, B | Figure 2-36 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18. 2-116 Revision 27 # Timing Waveforms Figure 2-38 • FIFO Read Figure 2-39 • FIFO Write 2-122 Revision 27 # **Embedded FlashROM Characteristics** Figure 2-45 • Timing Diagram ## **Timing Characteristics** 1.5 V DC Core Voltage Table 2-197 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{SU} | Address Setup Time | 0.57 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 34.14 | ns | | F _{MAX} | Maximum Clock Frequency | 15 | MHz | ### 1.2 V DC Core Voltage Table 2-198 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_{.J} = 70°C, VCC = 1.14 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{SU} | Address Setup Time | 0.59 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 52.90 | ns | | F _{MAX} | Maximum Clock Frequency | 10 | MHz | | CS281 | | | |------------|-----------------|--| | Pin Number | AGL600 Function | | | R15 | IO94RSB2 | | | R16 | GDA1/IO88PPB1 | | | R18 | GDB0/IO87NPB1 | | | R19 | GDC0/IO86NPB1 | | | T1 | IO148PPB3 | | | T2 | GEC0/IO146NPB3 | | | T4 | GEB0/IO145NPB3 | | | T5 | IO132RSB2 | | | T6 | IO136RSB2 | | | T7 | IO130RSB2 | | | T8 | IO126RSB2 | | | Т9 | IO120RSB2 | | | T10 | GND | | | T11 | IO113RSB2 | | | T12 | IO104RSB2 | | | T13 | IO101RSB2 | | | T14 | IO98RSB2 | | | T15 | GDC2/IO91RSB2 | | | T16 | TMS | | | T18 | VJTAG | | | T19 | GDB1/IO87PPB1 | | | U1 | IO147PDB3 | | | U2 | GEA1/IO144PPB3 | | | U6 | IO131RSB2 | | | U14 | IO99RSB2 | | | U18 | TRST | | | U19 | GDA0/IO88NPB1 | | | V1 | IO147NDB3 | | | V2 | VCCIB3 | | | V3 | GEC2/IO141RSB2 | | | V4 | IO140RSB2 | | | V5 | IO135RSB2 | | | V6 | GND | | | V7 | IO125RSB2 | | | V8 | IO122RSB2 | | | V9 | IO116RSB2 | | | CS281 | | | |------------|-------------------|--| | Pin Number | AGL600 Function | | | V10 | IO112RSB2 | | | V11 | IO110RSB2 | | | V12 | IO108RSB2 | | | V13 | IO102RSB2 | | | V14 | GND | | | V15 | IO93RSB2 | | | V16 | GDA2/IO89RSB2 | | | V17 | TDI | | | V18 | VCCIB2 | | | V19 | TDO | | | W1 | GND | | | W2 | FF/GEB2/IO142RSB2 | | | W3 | IO139RSB2 | | | W4 | IO137RSB2 | | | W5 | IO134RSB2 | | | W6 | IO133RSB2 | | | W7 | IO128RSB2 | | | W8 | IO124RSB2 | | | W9 | IO119RSB2 | | | W10 | VCCIB2 | | | W11 | IO109RSB2 | | | W12 | IO107RSB2 | | | W13 | IO105RSB2 | | | W14 | IO100RSB2 | | | W15 | IO96RSB2 | | | W16 | IO92RSB2 | | | W17 | GDB2/IO90RSB2 | | | W18 | TCK | | | W19 | GND | | ### Package Pin Assignments | QN132 | | | |------------|-----------------|--| | Pin Number | AGL030 Function | | | C17 | IO47RSB1 | | | C18 | NC | | | C19 | TCK | | | C20 | NC | | | C21 | VPUMP | | | C22 | VJTAG | | | C23 | NC | | | C24 | NC | | | C25 | NC | | | C26 | GDB0/IO34RSB0 | | | C27 | NC | | | C28 | VCCIB0 | | | C29 | IO28RSB0 | | | C30 | IO25RSB0 | | | C31 | IO24RSB0 | | | C32 | IO21RSB0 | | | C33 | NC | | | C34 | NC | | | C35 | VCCIB0 | | | C36 | IO13RSB0 | | | C37 | IO10RSB0 | | | C38 | IO07RSB0 | | | C39 | IO03RSB0 | | | C40 | IO00RSB0 | | | D1 | GND | | | D2 | GND | | | D3 | GND | | | D4 | GND | | 4-30 Revision 27 ### Package Pin Assignments | QN132 | | | |------------|-----------------|--| | Pin Number | AGL060 Function | | | C16 | IO60RSB1 | | | C17 | IO57RSB1 | | | C18 | NC | | | C19 | TCK | | | C20 | VMV1 | | | C21 | VPUMP | | | C22 | VJTAG | | | C23 | VCCIB0 | | | C24 | NC | | | C25 | NC | | | C26 | GCA1/IO42RSB0 | | | C27 | GCC0/IO39RSB0 | | | C28 | VCCIB0 | | | C29 | IO29RSB0 | | | C30 | GNDQ | | | C31 | GBA1/IO27RSB0 | | | C32 | GBB0/IO24RSB0 | | | C33 | VCC | | | C34 | IO19RSB0 | | | C35 | IO16RSB0 | | | C36 | IO13RSB0 | | | C37 | GAC1/IO10RSB0 | | | C38 | NC | | | C39 | GAA0/IO05RSB0 | | | C40 | VMV0 | | | D1 | GND | | | D2 | GND | | | D3 | GND | | | D4 | GND | | 4-32 Revision 27 ### Package Pin Assignments | QN132 | | | |------------|-----------------|--| | Pin Number | AGL125 Function | | | C17 | IO83RSB1 | | | C18 | VCCIB1 | | | C19 | TCK | | | C20 | VMV1 | | | C21 | VPUMP | | | C22 | VJTAG | | | C23 | VCCIB0 | | | C24 | NC | | | C25 | NC | | | C26 | GCA1/IO55RSB0 | | | C27 | GCC0/IO52RSB0 | | | C28 | VCCIB0 | | | C29 | IO42RSB0 | | | C30 | GNDQ | | | C31 | GBA1/IO40RSB0 | | | C32 | GBB0/IO37RSB0 | | | C33 | VCC | | | C34 | IO24RSB0 | | | C35 | IO19RSB0 | | | C36 | IO16RSB0 | | | C37 | IO10RSB0 | | | C38 | VCCIB0 | | | C39 | GAB1/IO03RSB0 | | | C40 | VMV0 | | | D1 | GND | | | D2 | GND | | | D3 | GND | | | D4 | GND | | 4-34 Revision 27 | FG484 | | | |------------|-----------------|--| | Pin Number | AGL600 Function | | | R9 | VCCIB2 | | | R10 | VCCIB2 | | | R11 | IO117RSB2 | | | R12 | IO110RSB2 | | | R13 | VCCIB2 | | | R14 | VCCIB2 | | | R15 | VMV2 | | | R16 | IO94RSB2 | | | R17 | GDB1/IO87PPB1 | | | R18 | GDC1/IO86PDB1 | | | R19 | IO84NDB1 | | | R20 | VCC | | | R21 | IO81NDB1 | | | R22 | IO82PDB1 | | | T1 | IO152PDB3 | | | T2 | IO152NDB3 | | | Т3 | NC | | | T4 | IO150NDB3 | | | T5 | IO147PPB3 | | | T6 | GEC1/IO146PPB3 | | | T7 | IO140RSB2 | | | Т8 | GNDQ | | | Т9 | GEA2/IO143RSB2 | | | T10 | IO126RSB2 | | | T11 | IO120RSB2 | | | T12 | IO108RSB2 | | | T13 | IO103RSB2 | | | T14 | IO99RSB2 | | | T15 | GNDQ | | | T16 | IO92RSB2 | | | T17 | VJTAG | | | T18 | GDC0/IO86NDB1 | | | T19 | GDA1/IO88PDB1 | | | T20 | NC | | | T21 | IO83PDB1 | | | T22 | IO82NDB1 | | 4-86 Revision 27 | | FG484 | |------------|------------------| | Pin Number | AGL1000 Function | | B7 | IO15RSB0 | | B8 | IO19RSB0 | | B9 | IO24RSB0 | | B10 | IO31RSB0 | | B11 | IO39RSB0 | | B12 | IO48RSB0 | | B13 | IO54RSB0 | | B14 | IO58RSB0 | | B15 | IO63RSB0 | | B16 | IO66RSB0 | | B17 | IO68RSB0 | | B18 | IO70RSB0 | | B19 | NC | | B20 | NC | | B21 | VCCIB1 | | B22 | GND | | C1 | VCCIB3 | | C2 | IO220PDB3 | | C3 | NC | | C4 | NC | | C5 | GND | | C6 | IO10RSB0 | | C7 | IO14RSB0 | | C8 | VCC | | C9 | VCC | | C10 | IO30RSB0 | | C11 | IO37RSB0 | | C12 | IO43RSB0 | | C13 | NC | | C14 | VCC | | C15 | VCC | | C16 | NC | | C17 | NC | | C18 | GND | | C19 | NC | | C20 | NC | 4-92 Revision 27 | | FG484 | |------------|-------------------| | D' N . I | | | Pin Number | AGL1000 Function | | V15 | IO125RSB2 | | V16 | GDB2/IO115RSB2 | | V17 | TDI | | V18 | GNDQ | | V19 | TDO | | V20 | GND | | V21 | NC | | V22 | IO109NDB1 | | W1 | NC | | W2 | IO191PDB3 | | W3 | NC | | W4 | GND | | W5 | IO183RSB2 | | W6 | FF/GEB2/IO186RSB2 | | W7 | IO172RSB2 | | W8 | IO170RSB2 | | W9 | IO164RSB2 | | W10 | IO158RSB2 | | W11 | IO153RSB2 | | W12 | IO142RSB2 | | W13 | IO135RSB2 | | W14 | IO130RSB2 | | W15 | GDC2/IO116RSB2 | | W16 | IO120RSB2 | | W17 | GDA2/IO114RSB2 | | W18 | TMS | | W19 | GND | | W20 | NC | | W21 | NC | | W22 | NC | | Y1 | VCCIB3 | | Y2 | IO191NDB3 | | Y3 | NC | | Y4 | IO182RSB2 | | Y5 | GND | | Y6 | IO177RSB2 | | | 1 | 4-102 Revision 27 | FG484 | | | |------------|------------------|--| | Pin Number | AGL1000 Function | | | Y7 | IO174RSB2 | | | Y8 | VCC | | | Y9 | VCC | | | Y10 | IO154RSB2 | | | Y11 | IO148RSB2 | | | Y12 | IO140RSB2 | | | Y13 | NC | | | Y14 | VCC | | | Y15 | VCC | | | Y16 | NC | | | Y17 | NC | | | Y18 | GND | | | Y19 | NC | | | Y20 | NC | | | Y21 | NC | | | Y22 | VCCIB1 | | #### Datasheet Information | Revision / Version | Changes | Page | |--|---|-------------------------| | Revision 8 (cont'd) | Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, and Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 were updated to change PDC2 to PDC6 and PDC3 to PDC7. The table notes were updated to reflect that power was measured on VCCI. | 2-10
through
2-11 | | | In Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices, the description for PAC13 was changed from Static to Dynamic. | 2-13 | | | Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices and Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device were updated to add PDC6 and PDC7, and to change the definition for PDC5 to bank quiescent power. Subtitles were added to indicate type of devices and core supply voltage. | 2-14,
2-16 | | | The "Total Static Power Consumption—PSTAT" section was updated to revise the calculation of P _{STAT} , including PDC6 and PDC7. | 2-17 | | | Footnote † was updated to include information about PAC13. The PLL Contribution equation was changed from: $P_{PLL} = P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$. | 2-18 | | Revision 7 (Jun 2008) Packaging v1.5 | The "QN132" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new. | 4-28 | | Revision 6 (Jun 2008)
Packaging v1.4 | This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview. | N/A | | | Pin numbers were added to the "QN68" package diagram. Note 2 was added below the diagram. | 4-25 | | Revision 5 (Mar 2008) Packaging v1.3 | The "CS196" package and pin table was added for AGL250. | 4-12 | | Revision 4 (Mar 2008) Product Brief v1.0 | The "Low Power" section was updated to change "1.2 V and 1.5 V Core Voltage" to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 12 μ W)" was removed from "Low Power Active FPGA Operation." | I | | | 1.2_V was added to the list of core and I/O voltages in the "Advanced I/O" and "I/Os with Advanced I/O Standards" section sections. | I, 1-7 | | | The "Embedded Memory" section was updated to remove the footnote reference from the section heading and place it instead after "4,608-Bit" and "True Dual-Port SRAM (except ×18)." | _ | 5-9 Revision 27