

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detano	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	300
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl1000v5-fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – IGLOO Device Family Overview

General Description

The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that consumes as little as 5 μ W while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 μ W) while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIClevel unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOO FPGAs.

The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption.

Flash*Freeze Technology

The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for portable electronics.

Figure 1-5 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Table 2-33 •Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case
Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard)
Applicable to Standard I/O Banks

I/O Standard	Drive Strength)	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (᠒)	t _{DOUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{EoUT} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8	High	5	_	0.97	1.85	0.18	0.83	0.66	1.89	1.46	1.96	2.26	ns
3.3 V LVCMOS Wide Range ²	100 µA	8	High	5	-	0.97	2.62	0.18	1.17	0.66	2.63	2.02	2.79	3.17	ns
2.5 V LVCMOS	8 mA	8	High	5	_	0.97	1.88	0.18	1.04	0.66	1.92	1.63	1.95	2.15	ns
1.8 V LVCMOS	4 mA	4	High	5	-	0.97	2.18	0.18	0.98	0.66	2.22	1.93	1.97	2.06	ns
1.5 V LVCMOS	2 mA	2	High	5	-	0.97	2.51	0.18	1.14	0.66	2.56	2.21	1.99	2.03	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification.

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	IL	v	н	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	132	127	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	268	181	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

 Table 2-48 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	V _{OL}	VОН	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Applies to 1.2 V DC Core Voltage

 Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

 Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

 Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	5.12	0.26	0.98	1.10	5.20	4.46	2.81	3.02	10.99	10.25	ns
4 mA	Std.	1.55	5.12	0.26	0.98	1.10	5.20	4.46	2.81	3.02	10.99	10.25	ns
6 mA	Std.	1.55	4.38	0.26	0.98	1.10	4.45	3.93	3.07	3.48	10.23	9.72	ns
8 mA	Std.	1.55	4.38	0.26	0.98	1.10	4.45	3.93	3.07	3.48	10.23	9.72	ns
12 mA	Std.	1.55	3.85	0.26	0.98	1.10	3.91	3.53	3.24	3.77	9.69	9.32	ns
16 mA	Std.	1.55	3.69	0.26	0.98	1.10	3.75	3.44	3.28	3.84	9.54	9.23	ns
24 mA	Std.	1.55	3.61	0.26	0.98	1.10	3.67	3.46	3.33	4.13	9.45	9.24	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.33	0.26	0.98	1.10	3.38	2.75	2.82	3.18	9.17	8.54	ns
4 mA	Std.	1.55	3.33	0.26	0.98	1.10	3.38	2.75	2.82	3.18	9.17	8.54	ns
6 mA	Std.	1.55	2.91	0.26	0.98	1.10	2.95	2.37	3.07	3.64	8.73	8.15	ns
8 mA	Std.	1.55	2.91	0.26	0.98	1.10	2.95	2.37	3.07	3.64	8.73	8.15	ns
12 mA	Std.	1.55	2.67	0.26	0.98	1.10	2.71	2.18	3.25	3.93	8.50	7.97	ns
16 mA	Std.	1.55	2.63	0.26	0.98	1.10	2.67	2.14	3.28	4.01	8.45	7.93	ns
24 mA	Std.	1.55	2.65	0.26	0.98	1.10	2.69	2.10	3.33	4.31	8.47	7.89	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	4.56	0.26	0.97	1.10	4.63	3.98	2.54	2.83	10.42	9.76	ns
4 mA	Std.	1.55	4.56	0.26	0.97	1.10	4.63	3.98	2.54	2.83	10.42	9.76	ns
6 mA	Std.	1.55	3.84	0.26	0.97	1.10	3.90	3.50	2.77	3.24	9.69	9.29	ns
8 mA	Std.	1.55	3.84	0.26	0.97	1.10	3.90	3.50	2.77	3.24	9.69	9.29	ns
12 mA	Std.	1.55	3.35	0.26	0.97	1.10	3.40	3.13	2.93	3.51	9.19	8.91	ns
16 mA	Std.	1.55	3.35	0.26	0.97	1.10	3.40	3.13	2.93	3.51	9.19	8.91	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-77 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case V_{CC} = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	4 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	6 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns
100 µA	8 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-78 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	4 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	6 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns
100 µA	8 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	IL	v	н	VOL	VOH	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	83	87	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	169	124	10	10

Table 2-79 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

 Table 2-80 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	v	ΊL	v	ΊH	VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

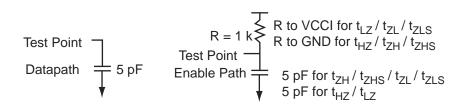
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-113 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks


1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
toclr2Q	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
toremclr	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
tOESUE	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
tISUD	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-156 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-17 on page 2-86 for more information.

Table 2-187 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32	2.93	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-188 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

			Std.		
Parameter	Description	Mir	n. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.3	81	2.76	ns
t _{RCKH}	Input High Delay for Global Clock	2.4	2	3.03	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.4	0		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.6	5		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-189 • IGLOO CCC/PLL Specification

For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		360 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4, 5}			100	ns
Input Cycle-to-Cycle Jitter (peak magnitude)			1	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			2.5	ns
LockControl = 1			1.5	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	1.25		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.469		15.65	ns
Delay Range in Block: Fixed Delay ^{1, 2}		3.5		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Maximum Peak-to-Peak Jitter Data ⁷			ta ⁷
	$SSO \geq 4^8$	$SSO \geq 8^8$	$SSO \geq 16^8$	
0.75 MHz to 50 MHz	0.60%	0.80%	1.20%	
50 MHz to 160 MHz	4.00%	6.00%	12.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C, V_{CC} = 1.5 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. The AGL030 device does not support a PLL.

5. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

8. Simultaneously Switching Outputs (SSOs) are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

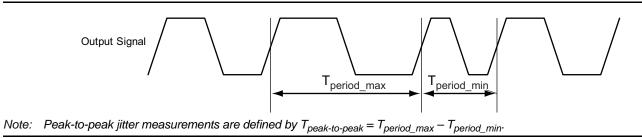


Figure 2-30 • Peak-to-Peak Jitter Definition

Embedded SRAM and FIFO Characteristics

SRAM

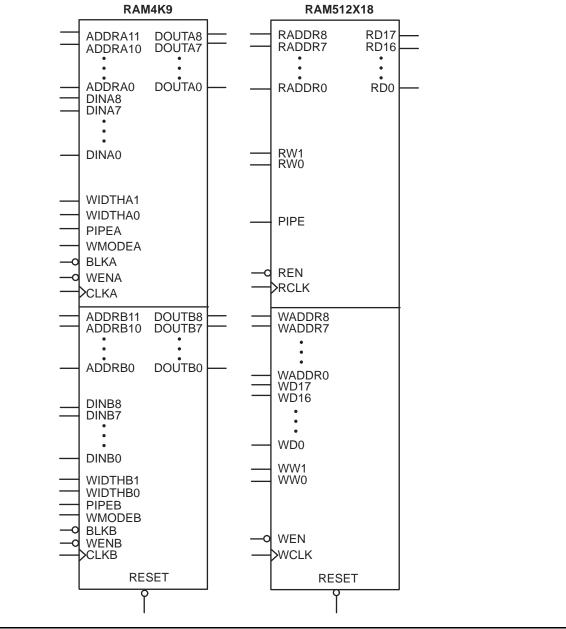


Figure 2-31 • RAM Models

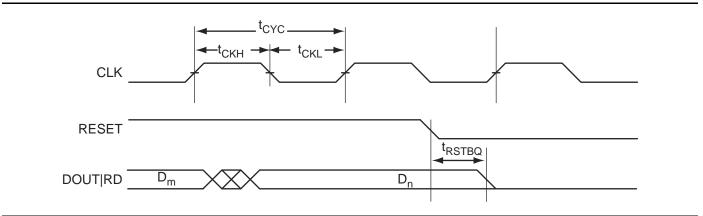


Figure 2-36 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

Pin Number	ACL 020 Eurotion	_
	AGL030 Function	F
1	IO82RSB1	
2	IO80RSB1	
3	IO78RSB1	
4	IO76RSB1	
5	GEC0/IO73RSB1	
6	GEA0/IO72RSB1	
7	GEB0/IO71RSB1	
8	VCC	
9	GND	
10	VCCIB1	
11	IO68RSB1	
12	IO67RSB1	
13	IO66RSB1	
14	IO65RSB1	
15	IO64RSB1	
16	IO63RSB1	
17	IO62RSB1	
18	FF/IO60RSB1	
19	IO58RSB1	
20	IO56RSB1	
21	IO54RSB1	
22	IO52RSB1	
23	IO51RSB1	
24	VCC	
25	GND	
26	VCCIB1	
27	IO50RSB1	
28	IO48RSB1	
29	IO46RSB1	
30	IO44RSB1	
31	IO42RSB1	
32	ТСК	
33	TDI	
34	TMS	
35	VPUMP	
36	TDO	

٦	QN68				
۱	Pin Number	AGL030 Function			
	37	TRST			
	38	VJTAG			
	39	IO40RSB0			
	40	IO37RSB0			
	41	GDB0/IO34RSB0			
	42	GDA0/IO33RSB0			
	43	GDC0/IO32RSB0			
	44	VCCIB0			
	45	GND			
	46	VCC			
	47	IO31RSB0			
	48	IO29RSB0			
	49	IO28RSB0			
	50	IO27RSB0			
	51	IO25RSB0			
	52	IO24RSB0			
	53	IO22RSB0			
	54	IO21RSB0			
	55	IO19RSB0			
	56	IO17RSB0			
	57	IO15RSB0			
	58	IO14RSB0			
	59	VCCIB0			
	60	GND			
	61	VCC			
	62	IO12RSB0			
	63	IO10RSB0			
	64	IO08RSB0			
	65	IO06RSB0			
	66	IO04RSB0			
	67	IO02RSB0			
	68	IO00RSB0			

Microsemi

IGLOO Low Power Flash FPGAs

	FG144		FG144	FG144	
Pin Number	AGL1000 Function	Pin Number	AGL1000 Function	Pin Number	AGL1000 Function
A1	GNDQ	D1	IO213PDB3	G1	GFA1/IO207PPB3
A2	VMV0	D2	IO213NDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO223NDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO225PPB3	G4	GFA0/IO207NPB3
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO44RSB0	D7	GBC0/IO72RSB0	G7	GND
A8	VCC	D8	GBC1/IO73RSB0	G8	GDC1/IO111PPB1
A9	IO69RSB0	D9	GBB2/IO79PDB1	G9	IO96NDB1
A10	GBA0/IO76RSB0	D10	IO79NDB1	G10	GCC2/IO96PDB1
A11	GBA1/IO77RSB0	D11	IO80NPB1	G11	IO95NDB1
A12	GNDQ	D12	GCB1/IO92PPB1	G12	GCB2/IO95PDB1
B1	GAB2/IO224PDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO209NDB3	H2	GFB2/IO205PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO209PDB3	H3	GFC2/IO204PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO190PDB3
B5	IO13RSB0	E5	IO225NPB3	H5	VCC
B6	IO26RSB0	E6	VCCIB0	H6	IO105PDB1
B7	IO35RSB0	E7	VCCIB0	H7	IO105NDB1
B8	IO60RSB0	E8	GCC1/IO91PDB1	H8	GDB2/IO115RSB2
B9	GBB0/IO74RSB0	E9	VCCIB1	H9	GDC0/IO111NPB1
B10	GBB1/IO75RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO93NDB1	H11	IO101PSB1
B12	VMV1	E12	IO94NDB1	H12	VCC
C1	IO224NDB3	F1	GFB0/IO208NPB3	J1	GEB1/IO189PDB3
C2	GFA2/IO206PPB3	F2	VCOMPLF	J2	IO205NDB3
C3	GAC2/IO223PDB3	F3	GFB1/IO208PPB3	J3	VCCIB3
C4	VCC	F4	IO206NPB3	J4	GEC0/IO190NDB3
C5	IO16RSB0	F5	GND	J5	IO160RSB2
C6	IO29RSB0	F6	GND	J6	IO157RSB2
C7	IO32RSB0	F7	GND	J7	VCC
C8	IO63RSB0	F8	GCC0/IO91NDB1	J8	ТСК
C9	IO66RSB0	F9	GCB0/IO92NPB1	J9	GDA2/IO114RSB2
C10	GBA2/IO78PDB1	F10	GND	J10	TDO
C11	IO78NDB1	F11	GCA1/IO93PDB1	J11	GDA1/IO113PDB1
C12	GBC2/IO80PPB1	F12	GCA2/IO94PDB1	J12	GDB1/IO112PDB1

FG484		
Pin Number AGL600 Function		
M3	IO158NPB3	
M4	GFA2/IO161PPB3	
M5	GFA1/IO162PDB3	
M6	VCCPLF	
M7	IO160NDB3	
M8	GFB2/IO160PDB3	
M9	VCC	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO73PPB1	
M16	GCA1/IO71PPB1	
M17	GCC2/IO74PPB1	
M18	IO80PPB1	
M19	GCA2/IO72PDB1	
M20	IO79PPB1	
M21	IO78PPB1	
M22	NC	
N1	IO154NDB3	
N2	IO154PDB3	
N3	NC	
N4	GFC2/IO159PDB3	
N5	IO161NPB3	
N6	IO156PPB3	
N7	IO129RSB2	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO73NPB1	

FG484			
Pin Number	AGL1000 Function		
E13	IO51RSB0		
E14	IO57RSB0		
E15	GBC1/IO73RSB0		
E16	GBB0/IO74RSB0		
E17	IO71RSB0		
E18	GBA2/IO78PDB1		
E19	IO81PDB1		
E20	GND		
E21	NC		
E22	IO84PDB1		
F1	NC		
F2	IO215PDB3		
F3	IO215NDB3		
F4	IO224NDB3		
F5	IO225NDB3		
F6	VMV3		
F7	IO11RSB0		
F8	GAC0/IO04RSB0		
F9	GAC1/IO05RSB0		
F10	IO25RSB0		
F11	IO36RSB0		
F12	IO42RSB0		
F13	IO49RSB0		
F14	IO56RSB0		
F15	GBC0/IO72RSB0		
F16	IO62RSB0		
F17	VMV0		
F18	IO78NDB1		
F19	IO81NDB1		
F20	IO82PPB1		
F21	NC		
F22	IO84NDB1		
G1	IO214NDB3		
G2	IO214PDB3		
G3	NC		
G4	IO222NDB3		

FG484		
Pin Number	AGL1000 Function	
Y7	IO174RSB2	
Y8	VCC	
Y9	VCC	
Y10	IO154RSB2	
Y11	IO148RSB2	
Y12	IO140RSB2	
Y13	NC	
Y14	VCC	
Y15	VCC	
Y16	NC	
Y17	NC	
Y18	GND	
Y19	NC	
Y20	NC	
Y21	NC	
Y22	VCCIB1	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 23 (December 2012)	The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).	III
	The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added.	2-115, 2-116
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 22 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40271).	N/A
Revision 21 (May 2012)	Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet in revision 19 and has been removed (SAR 38217).	I to IV
	Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same to '3.6' in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR 37685).	2-82
	Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).	2-127
	The following sentence was removed from the VMVx description in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1