

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿXF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	133
Number of Gates	125000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	196-TFBGA, CSBGA
Supplier Device Package	196-CSP (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl125v2-cs196i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for the AGL1000-FG484 package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{23.3°C/W} = 1.28 \text{ W}$$

EQ 2

				θ _{ja}			
Package Type	Device	Pin Count	θ j_c	Still Air	1 m/s	2.5 m/s	Unit
Quad Flat No Lead (QN)	AGL030	132	13.1	21.4	16.8	15.3	C/W
	AGL060	132	11.0	21.2	16.6	15.0	C/W
	AGL125	132	9.2	21.1	16.5	14.9	C/W
	AGL250	132	8.9	21.0	16.4	14.8	C/W
	AGL030	68	13.4	68.4	45.8	43.1	C/W
Very Thin Quad Flat Pack (VQ)*		100	10.0	35.3	29.4	27.1	C/W
Chip Scale Package (CS)	AGL1000	281	6.0	28.0	22.8	21.5	C/W
	AGL400	196	7.2	37.1	31.1	28.9	C/W
	AGL250	196	7.6	38.3	32.2	30.0	C/W
	AGL125	196	8.0	39.5	33.4	31.1	C/W
	AGL030	81	12.4	32.8	28.5	27.2	C/W
	AGL060	81	11.1	28.8	24.8	23.5	C/W
	AGL250	81	10.4	26.9	22.3	20.9	C/W
Micro Chip Scale Package (UC)	AGL030	81	16.9	40.6	35.2	33.7	C/W
Fine Pitch Ball Grid Array (FG)	AGL060	144	18.6	55.2	49.4	47.2	C/W
	AGL1000	144	6.3	31.6	26.2	24.2	C/W
	AGL400	144	6.8	37.6	31.2	29.0	C/W
	AGL250	256	12.0	38.6	34.7	33.0	C/W
	AGL1000	256	6.6	28.1	24.4	22.7	C/W
	AGL1000	484	8.0	23.3	19.0	16.7	C/W

Table 2-5 • Package Thermal Resistivities

Note: *Thermal resistances for other device-package combinations will be posted in a later revision.

Disclaimer:

The simulation for determining the junction-to-air thermal resistance is based on JEDEC standards (JESD51) and assumptions made in building the model. Junction-to-case is based on SEMI G38-88. JESD51 is only used for comparing one package to another package, provided the two tests uses the same condition. They have little relevance in actual application and therefore should be used with a degree of caution.

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V)For IGLOO V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage VCC	Junction Temperature (°C)											
(V)	–40°C	0°C	25°C	70°C	85°C	100°C						
1.425	0.934	0.953	0.971	1.000	1.007	1.013						
1.500	0.855	0.874	0.891	0.917	0.924	0.929						
1.575	0.799	0.816	0.832	0.857	0.864	0.868						

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V) For IGLOO V2, 1.2 V DC Core Supply Voltage

Array Voltage VCC (V)	Junction Temperature (°C)										
	–40°C	0°C	25°C	70°C	85°C	100°C					
1.14	0.967	0.978	0.991	1.000	1.006	1.010					
1.20	0.864	0.874	0.885	0.894	0.899	0.902					
1.26	0.794	0.803	0.814	0.821	0.827	0.830					

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

		Pov	ver Supply Config	urations	
Modes/power supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP
Flash*Freeze	On	On	On	On	On/off/floating
Sleep	Off	Off	On	Off	Off
Shutdown	Off	Off	Off	Off	Off
No Flash*Freeze	On	On	On	On	On/off/floating

Note: Off: Power supply level = 0 V

Table 2-9 •	Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mod	e*
-------------	--	----

	Core Voltage	AGL015	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000	Units
Typical	1.2 V	4	4	8	13	20	27	30	44	μA
(25°C)	1.5 V	6	6	10	18	34	51	72	127	μΑ

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and PDC7).

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-23 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline		
α ₁	Toggle rate of VersaTile outputs	10%		
α ₂	I/O buffer toggle rate	10%		

Table 2-24 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline				
β ₁	I/O output buffer enable rate	100%				
β ₂	RAM enable rate for read operations	12.5%				
β ₃	RAM enable rate for write operations	12.5%				

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.5 V LVCMOS		VIL	VIH VOL VOH		VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²	
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	. VOH		юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-119 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	5.88	0.18	1.14	0.66	6.00	5.45	2.00	1.94	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-120 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	2.51	0.18	1.14	0.66	2.56	2.21	1.99	2.03	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-121 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	7.17	0.26	1.27	1.10	7.29	6.60	3.33	3.03	13.07	12.39	ns
4 mA	Std.	1.55	6.27	0.26	1.27	1.10	6.37	5.86	3.61	3.51	12.16	11.64	ns
6 mA	Std.	1.55	5.94	0.26	1.27	1.10	6.04	5.70	3.67	3.64	11.82	11.48	ns
8 mA	Std.	1.55	5.86	0.26	1.27	1.10	5.96	5.71	2.83	4.11	11.74	11.50	ns
12 mA	Std.	1.55	5.86	0.26	1.27	1.10	5.96	5.71	2.83	4.11	11.74	11.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-122 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.44	0.26	1.27	1.10	3.49	3.35	3.32	3.12	9.28	9.14	ns
4 mA	Std.	1.55	3.06	0.26	1.27	1.10	3.10	2.89	3.60	3.61	8.89	8.67	ns
6 mA	Std.	1.55	2.98	0.26	1.27	1.10	3.02	2.80	3.66	3.74	8.81	8.58	ns
8 mA	Std.	1.55	2.96	0.26	1.27	1.10	3.00	2.70	3.75	4.23	8.78	8.48	ns
12 mA	Std.	1.55	2.96	0.26	1.27	1.10	3.00	2.70	3.75	4.23	8.78	8.48	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-135 • 1.2 V LVCMOS High Slew

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Banks
```

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
1 mA	Std.	1.55	8.57	0.26	1.53	1.10	8.23	7.38	2.51	2.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-136 • 1.2 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
1 mA	Std.	1.55	3.59	0.26	1.53	1.10	3.47	3.06	2.51	2.49	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

1.2 V LVCMOS Wide Range

Table 2-137 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range Applicable to Advanced I/O Banks

1.2 V LVCI Wide Rang	MOS ge		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	100	100	20	26	10	10

Notes:

1. The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 μA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 4. Currents are measured at 100°C junction temperature and maximum voltage.
- 5. Currents are measured at 85°C junction temperature.
- 6. Software default selection highlighted in gray.

1.2 V DC Core Voltage

Table 2-158 • Input Data Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.68	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.97	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	1.02	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	1.19	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	1.19	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Output Register

Figure 2-19 • Output Register Timing Diagram

DDR Module Specifications

Input DDR Module

Figure 2-21 • Input DDR Timing Model

Table 2-163 •	Parameter	Definitions
---------------	-----------	-------------

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	А, В
t _{DDRIHD}	Data Hold Time of DDR input	А, В
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

Output DDR Module

Figure 2-23 • Output DDR Timing Model

Table 2-166 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

	QN132
Pin Number	AGL125 Function
C17	IO83RSB1
C18	VCCIB1
C19	ТСК
C20	VMV1
C21	VPUMP
C22	VJTAG
C23	VCCIB0
C24	NC
C25	NC
C26	GCA1/IO55RSB0
C27	GCC0/IO52RSB0
C28	VCCIB0
C29	IO42RSB0
C30	GNDQ
C31	GBA1/IO40RSB0
C32	GBB0/IO37RSB0
C33	VCC
C34	IO24RSB0
C35	IO19RSB0
C36	IO16RSB0
C37	IO10RSB0
C38	VCCIB0
C39	GAB1/IO03RSB0
C40	VMV0
D1	GND
D2	GND
D3	GND
D4	GND

Microsemi

IGLOO Low Power Flash FPGAs

	FG144		FG144		FG144
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	VCC
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	VCC
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

FG256		
Pin Number	AGL600 Function	
R5	IO132RSB2	
R6	IO127RSB2	
R7	IO121RSB2	
R8	IO114RSB2	
R9	IO109RSB2	
R10	IO105RSB2	
R11	IO98RSB2	
R12	IO96RSB2	
R13	GDB2/IO90RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO137RSB2	
Т3	FF/GEB2/IO142RSB2	
T4	IO134RSB2	
T5	IO125RSB2	
T6	IO123RSB2	
T7	IO118RSB2	
T8	IO115RSB2	
Т9	IO111RSB2	
T10	IO106RSB2	
T11	IO102RSB2	
T12	GDC2/IO91RSB2	
T13	IO93RSB2	
T14	GDA2/IO89RSB2	
T15	TMS	
T16	GND	

FG484		
Pin Number AGL400 Function		
K11	GND	
K12	GND	
K13	GND	
K14	VCC	
K15	VCCIB1	
K16	GCC1/IO67PPB1	
K17	IO64NPB1	
K18	IO73PDB1	
K19	IO73NDB1	
K20	NC	
K21	NC	
K22	NC	
L1	NC	
L2	NC	
L3	NC	
L4	GFB0/IO146NPB3	
L5	GFA0/IO145NDB3	
L6	GFB1/IO146PPB3	
L7	VCOMPLF	
L8	GFC0/IO147NPB3	
L9	VCC	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	VCC	
L15	GCC0/IO67NPB1	
L16	GCB1/IO68PPB1	
L17	GCA0/IO69NPB1	
L18	NC	
L19	GCB0/IO68NPB1	
L20	NC	
L21	NC	
L22	NC	
M1	NC	
M2	NC	

Microsemi

IGLOO Low Power Flash FPGAs

	FG484	
Pin Number	AGL600 Function	Pin Number
A1	GND	AA15
A2	GND	AA16
A3	VCCIB0	AA17
A4	NC	AA18
A5	NC	AA19
A6	IO09RSB0	AA20
A7	IO15RSB0	AA21
A8	NC	AA22
A9	NC	AB1
A10	IO22RSB0	AB2
A11	IO23RSB0	AB3
A12	IO29RSB0	AB4
A13	IO35RSB0	AB5
A14	NC	AB6
A15	NC	AB7
A16	IO46RSB0	AB8
A17	IO48RSB0	AB9
A18	NC	AB10
A19	NC	AB11
A20	VCCIB0	AB12
A21	GND	AB13
A22	GND	AB14
AA1	GND	AB15
AA2	VCCIB3	AB16
AA3	NC	AB17
AA4	NC	AB18
AA5	NC	AB19
AA6	IO135RSB2	AB20
AA7	IO133RSB2	AB21
AA8	NC	AB22
AA9	NC	B1
AA10	NC	B2
AA11	NC	B3
AA12	NC	B4
AA13	NC	B5
AA14	NC	B6

	FG484	
Number	AGL600 Function	Pir
AA15	NC	
AA16	IO101RSB2	
AA17	NC	
AA18	NC	
AA19	NC	
AA20	NC	
AA21	VCCIB1	
AA22	GND	
AB1	GND	
AB2	GND	
AB3	VCCIB2	
AB4	NC	
AB5	NC	
AB6	IO130RSB2	
AB7	IO128RSB2	
AB8	IO122RSB2	
AB9	IO116RSB2	
AB10	NC	
AB11	NC	
AB12	IO113RSB2	
AB13	IO112RSB2	
AB14	NC	
AB15	NC	
AB16	IO100RSB2	
AB17	IO95RSB2	
AB18	NC	
AB19	NC	
AB20	VCCIB2	
AB21	GND	
AB22	GND	
B1	GND	
B2	VCCIB3	
B3	NC	
B4	NC	
B5	NC	
B6	IO08RSB0	

FG484		
Pin Number	AGL600 Function	
B7	IO12RSB0	
B8	NC	
B9	NC	
B10	IO17RSB0	
B11	NC	
B12	NC	
B13	IO36RSB0	
B14	NC	
B15	NC	
B16	IO47RSB0	
B17	IO49RSB0	
B18	NC	
B19	NC	
B20	NC	
B21	VCCIB1	
B22	GND	
C1	VCCIB3	
C2	NC	
C3	NC	
C4	NC	
C5	GND	
C6	NC	
C7	NC	
C8	VCC	
C9	VCC	
C10	NC	
C11	NC	
C12	NC	
C13	NC	
C14	VCC	
C15	VCC	
C16	NC	
C17	NC	
C18	GND	
C19	NC	
C20	NC	

FG484	
Pin Number	AGL600 Function
C21	NC
C22	VCCIB1
D1	NC
D2	NC
D3	NC
D4	GND
D5	GAA0/IO00RSB0
D6	GAA1/IO01RSB0
D7	GAB0/IO02RSB0
D8	IO11RSB0
D9	IO16RSB0
D10	IO18RSB0
D11	IO28RSB0
D12	IO34RSB0
D13	IO37RSB0
D14	IO41RSB0
D15	IO43RSB0
D16	GBB1/IO57RSB0
D17	GBA0/IO58RSB0
D18	GBA1/IO59RSB0
D19	GND
D20	NC
D21	NC
D22	NC
E1	NC
E2	NC
E3	GND
E4	GAB2/IO173PDB3
E5	GAA2/IO174PDB3
E6	GNDQ
E7	GAB1/IO03RSB0
E8	IO13RSB0
E9	IO14RSB0
E10	IO21RSB0
E11	IO27RSB0
E12	IO32RSB0

FG484		
Pin Number	AGL600 Function	
H19	IO66PDB1	
H20	VCC	
H21	NC	
H22	NC	
J1	NC	
J2	NC	
J3	NC	
J4	IO166NDB3	
J5	IO168NPB3	
J6	IO167PPB3	
J7	IO169PDB3	
J8	VCCIB3	
J9	GND	
J10	VCC	
J11	VCC	
J12	VCC	
J13	VCC	
J14	GND	
J15	VCCIB1	
J16	IO62NDB1	
J17	IO64NPB1	
J18	IO65PPB1	
J19	IO66NDB1	
J20	NC	
J21	IO68PDB1	
J22	IO68NDB1	
K1	IO157PDB3	
K2	IO157NDB3	
K3	NC	
K4	IO165NDB3	
K5	IO165PDB3	
K6	IO168PPB3	
K7	GFC1/IO164PPB3	
K8	VCCIB3	
K9	VCC	
K10	GND	

FG484		
Pin Number	AGL1000 Function	
U1	IO195PDB3	
U2	IO195NDB3	
U3	IO194NPB3	
U4	GEB1/IO189PDB3	
U5	GEB0/IO189NDB3	
U6	VMV2	
U7	IO179RSB2	
U8	IO171RSB2	
U9	IO165RSB2	
U10	IO159RSB2	
U11	IO151RSB2	
U12	IO137RSB2	
U13	IO134RSB2	
U14	IO128RSB2	
U15	VMV1	
U16	TCK	
U17	VPUMP	
U18	TRST	
U19	GDA0/IO113NDB1	
U20	NC	
U21	IO108NDB1	
U22	IO109PDB1	
V1	NC	
V2	NC	
V3	GND	
V4	GEA1/IO188PDB3	
V5	GEA0/IO188NDB3	
V6	IO184RSB2	
V7	GEC2/IO185RSB2	
V8	IO168RSB2	
V9	IO163RSB2	
V10	IO157RSB2	
V11	IO149RSB2	
V12	IO143RSB2	
V13	IO138RSB2	
V14	IO131RSB2	

Revision / Version	Changes	Page
Advance v0.4 (September 2007)	Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings.	i, ii, iii, iv
	The number of single-ended I/Os for the CS81 package for AGL030 was updated to 66 in the "I/Os Per Package1" table.	ii
	The "Power Conservation Techniques" section was updated to recommend that unused I/O signals be left floating.	2-51
Advance v0.3 (August 2007)	In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	i
	The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	ï
	The CS81 and CS121 packages were added to the Temperature Grade Offerings table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	iv
	The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent).	2-61
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2