E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3072
Total RAM Bits	36864
Number of I/O	71
Number of Gates	125000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl125v2-vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

	AGL015 ¹	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000
Package					M1AGL250		M1AGL600	M1AGL1000
QN48	-	C, I	-	-	-	-	-	_
QN68	C, I	-	-	-	-	-	-	-
UC81	-	C, I	-	-	-	-	-	-
CS81	-	C, I	-	-	-	-	-	-
CS121	-	_	C, I	C, I	-	-	_	-
VQ100	-	C, I	C, I	C, I	C, I	-	-	-
QN132 ²	-	C, I	C, I ²	C, I	-	-	-	-
CS196	-	-	-	C, I	C, I	C, I	-	-
FG144	-	-	-	C, I	C, I	C, I	C, I	C, I
FG256	-	-	-	-	-	C, I	C, I	C, I
CS281	-	-	-	-	-	-	C, I	C, I
FG484	-	-	-	-	-	C, I	C, I	C, I

Notes:

1. AGL015 is not recommended for new designs.

2. Package not available.

C = Commercial temperature range: 0°C to 85°C junction temperature.

I = Industrial temperature range: -40°C to 100°C junction temperature.

IGLOO Device Status

IGLOO Devices	Status	M1 IGLOO Devices	Status
AGL015	Not recommended for new designs.		
AGL030	Production		
AGL060	Production		
AGL125	Production		
AGL250	Production	M1AGL250	Production
AGL400	Production		
AGL600	Production	M1AGL600	Production
AGL1000	Production	M1AGL1000	Production

References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/soc/contact/default.aspx.

AGL015 and AGL030

The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features.

Devices Not Recommended For New Designs

AGL015 is not recommended for new designs.

1 – IGLOO Device Family Overview

General Description

The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that consumes as little as 5 μ W while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 μ W) while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIClevel unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOO FPGAs.

The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption.

Flash*Freeze Technology

The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for portable electronics.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Microsemi Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-23 on page 2-19.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-24 on page 2-19.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-24 on page 2-19. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $\mathsf{P}_{\mathsf{STAT}}$ is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

P_{STAT} = (P_{DC1} or P_{DC2} or P_{DC3}) + N_{BANKS} * P_{DC5} + N_{INPUTS} * P_{DC6} + N_{OUTPUTS} * P_{DC7}

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—PDYN

 $P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}$

Global Clock Contribution—P_{CLOCK}

 $\mathsf{P}_{\mathsf{CLOCK}} = (\mathsf{P}_{\mathsf{AC1}} + \mathsf{N}_{\mathsf{SPINE}} * \mathsf{P}_{\mathsf{AC2}} + \mathsf{N}_{\mathsf{ROW}} * \mathsf{P}_{\mathsf{AC3}} + \mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} * \mathsf{P}_{\mathsf{AC4}}) * \mathsf{F}_{\mathsf{CLK}}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the *IGLOO FPGA Fabric User Guide.*

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the *IGLOO FPGA Fabric User Guide*.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

P_{AC1}, P_{AC2}, P_{AC3}, and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $\mathsf{P}_{\text{S-CELL}} = \mathsf{N}_{\text{S-CELL}} * (\mathsf{P}_{\text{AC5}} + \alpha_1 / 2 * \mathsf{P}_{\text{AC6}}) * \mathsf{F}_{\text{CLK}}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19.

 F_{CLK} is the global clock signal frequency.

Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equivalent			VIL	V _{IH}		VOL	V _{OH}	I _{OL} 1	I _{OH} 1
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VDD-0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS ⁴	1 mA	1 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	1	1
1.2 V LVCMOS Wide Range ^{4,5}	100 µA	1 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1

Notes:

1. Currents are measured at 85°C junction temperature.

2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to V2 Devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

Table 2-92 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	2.91	0.26	1.19	1.10	2.95	2.66	2.50	2.72	8.74	8.45	ns
4 mA	Std.	1.55	2.91	0.26	1.19	1.10	2.95	2.66	2.50	2.72	8.74	8.45	ns
6 mA	Std.	1.55	2.51	0.26	1.19	1.10	2.54	2.18	2.75	3.21	8.33	7.97	ns
8 mA	Std.	1.55	2.51	0.26	1.19	1.10	2.54	2.18	2.75	3.21	8.33	7.97	ns
12 mA	Std.	1.55	2.29	0.26	1.19	1.10	2.32	1.94	2.94	3.52	8.10	7.73	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-93 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	4.85	0.26	1.15	1.10	4.93	4.55	2.13	2.24	ns
4 mA	Std.	1.55	4.85	0.26	1.15	1.10	4.93	4.55	2.13	2.24	ns
6 mA	Std.	1.55	4.09	0.26	1.15	1.10	4.16	3.95	2.38	2.71	ns
8 mA	Std.	1.55	4.09	0.26	1.15	1.10	4.16	3.95	2.38	2.71	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-94 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	2.76	0.26	1.15	1.10	2.80	2.52	2.13	2.32	ns
4 mA	Std.	1.55	2.76	0.26	1.15	1.10	2.80	2.52	2.13	2.32	ns
6 mA	Std.	1.55	2.39	0.26	1.15	1.10	2.42	2.05	2.38	2.80	ns
8 mA	Std.	1.55	2.39	0.26	1.15	1.10	2.42	2.05	2.38	2.80	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	4	4	17	22	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	35	44	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	8	8	45	51	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	12	12	91	74	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	16	16	91	74	10	10

Table 2-95 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-96 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	4	4	17	22	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	35	44	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	8	8	35	44	10	10

Notes:

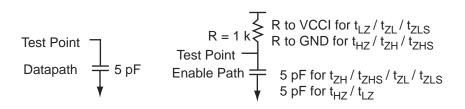
1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.


Table 2-97 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	6.38	0.18	1.01	0.66	6.51	5.93	2.33	1.56	10.10	9.53	ns
4 mA	Std.	0.97	5.35	0.18	1.01	0.66	5.46	5.04	2.67	2.38	9.05	8.64	ns
6 mA	Std.	0.97	4.62	0.18	1.01	0.66	4.71	4.44	2.90	2.79	8.31	8.04	ns
8 mA	Std.	0.97	4.37	0.18	1.01	0.66	4.46	4.31	2.95	2.89	8.05	7.90	ns
12 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns
16 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

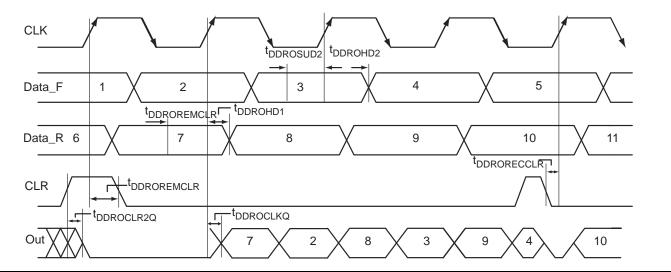


Figure 2-24 • Output DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-167 • Output DDR Propagation Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.38	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-179 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.48	1.82	ns
t _{RCKH}	Input High Delay for Global Clock	1.52	1.94	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-180 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.55	1.89	ns
t _{RCKH}	Input High Delay for Global Clock	1.60	2.02	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Waveforms

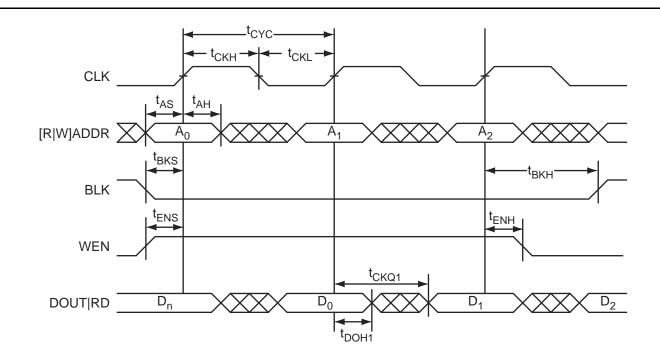


Figure 2-32 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

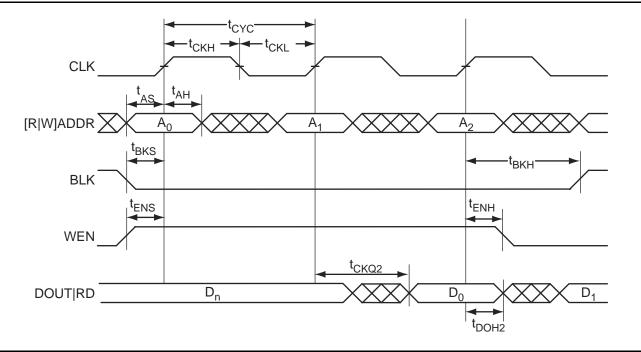


Figure 2-33 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Package Pin Assignments

	CS81	CS81			
Pin Number	AGL030 Function	Pin Number	AGL030 Function		
A1	IO00RSB0	E1	GEB0/IO71RSE		
A2	IO02RSB0	E2	GEA0/IO72RSE		
A3	IO06RSB0	E3	GEC0/IO73RSE		
A4	IO11RSB0	E4	VCCIB1		
A5	IO16RSB0	E5	VCC		
A6	IO19RSB0	E6	VCCIB0		
A7	IO22RSB0	E7	GDC0/IO32RSE		
A8	IO24RSB0	E8	GDA0/IO33RSE		
A9	IO26RSB0	E9	GDB0/IO34RSE		
B1	IO81RSB1	F1	IO68RSB1		
B2	IO04RSB0	F2	IO67RSB1		
B3	IO10RSB0	F3	IO64RSB1		
B4	IO13RSB0	F4	GND		
B5	IO15RSB0	F5	VCCIB1		
B6	IO20RSB0	F6	IO47RSB1		
B7	IO21RSB0	F7	IO36RSB0		
B8	IO28RSB0	F8	IO38RSB0		
B9	IO25RSB0	F9	IO40RSB0		
C1	IO79RSB1	G1	IO65RSB1		
C2	IO80RSB1	G2	IO66RSB1		
C3	IO08RSB0	G3	IO57RSB1		
C4	IO12RSB0	G4	IO53RSB1		
C5	IO17RSB0	G5	IO49RSB1		
C6	IO14RSB0	G6	IO44RSB1		
C7	IO18RSB0	G7	IO46RSB1		
C8	IO29RSB0	G8	VJTAG		
C9	IO27RSB0	G9	TRST		
D1	IO74RSB1	H1	IO62RSB1		
D2	IO76RSB1	H2	FF/IO60RSB1		
D3	IO77RSB1	H3	IO58RSB1		
D4	VCC	H4	IO54RSB1		
D5	VCCIB0	H5	IO48RSB1		
D6	GND	H6	IO43RSB1		
D7	IO23RSB0	H7	IO42RSB1		
D8	IO31RSB0	H8	TDI		
D9	IO30RSB0	H9	TDO		

	CS81
Pin Number	AGL030 Function
J1	IO63RSB1
J2	IO61RSB1
J3	IO59RSB1
J4	IO56RSB1
J5	IO52RSB1
J6	IO45RSB1
J7	ТСК
J8	TMS
J9	VPUMP

IGLOO Low Power Flash FPGAs

	CS196		CS196
Pin Number	AGL400 Function	Pin Number	AGL400 Function
H10	GCC1/IO67PDB1	L4	IO138NPB3
H11	GCB0/IO68NDB1	L5	IO122RSB2
H12	GCA1/IO69PDB1	L6	IO128RSB2
H13	IO70NDB1	L7	IO101RSB2
H14	GCA2/IO70PDB1	L8	IO88RSB2
J1	GFC2/IO142PDB3	L9	IO86RSB2
J2	IO141PPB3	L10	IO94RSB2
J3	IO143NPB3	L11	VPUMP
J4	IO140PDB3	L12	VJTAG
J5	IO140NDB3	L13	GDA0/IO79VPB1
J6	IO109RSB2	L14	GDB0/IO78VDB1
J7	VCC	M1	GEB0/IO136NDB3
J8	VCC	M2	GEA1/IO135PPB3
J9	IO84RSB2	M3	GNDQ
J10	IO75PDB1	M4	VCCIB2
J11	GCB2/IO71PDB1	M5	IO120RSB2
J12	IO71NDB1	M6	IO119RSB2
J13	GDC1/IO77UDB1	M7	IO112RSB2
J14	GDC0/IO77VDB1	M8	VCCIB2
K1	IO142NDB3	M9	IO89RSB2
K2	GND	M10	GDB2/IO81RSB2
K3	IO141NPB3	M11	VCCIB2
K4	VCCIB3	M12	VMV2
K5	IO138PPB3	M12	VMV2
K6	IO125RSB2	M13	TRST
K7	IO110RSB2	M14	VCCIB1
K8	IO98RSB2	N1	GEA0/IO135NPB3
K9	IO104RSB2	N2	VMV3
K10	IO75NDB1	N3	GEC2/IO132RSB2
K11	VCCIB1	N4	IO130RSB2
K12	GDA1/IO79UPB1	N5	GND
K13	GND	N6	IO117RSB2
K14	GDB1/IO78UDB1	N7	IO106RSB2
L1	GEB1/IO136PDB3	N8	IO100RSB2
L2	GEC1/IO137PDB3	N9	IO92RSB2
L3	GEC0/IO137NDB3	N10	GND

	CS196
Pin Number	AGL400 Function
N11	ТСК
N12	TDI
N13	GNDQ
N14	TDO
P1	GND
P2	GEA2/IO134RSB2
P3	FF/GEB2/IO133RSB 2
P4	IO123RSB2
P5	IO116RSB2
P6	IO114RSB2
P7	IO107RSB2
P8	IO103RSB2
P9	IO95RSB2
P10	IO91RSB2
P11	GDC2/IO82RSB2
P12	GDA2/IO80RSB2
P13	TMS
P14	GND

IGLOO Low Power Flash FPGAs

CS281						
Pin Number	AGL1000 Function	Pin Nu				
H8	VCC	K1				
H9	VCCIB0	K1				
H10	VCC	K1				
H11	VCCIB0	K1				
H12	VCC	L1				
H13	VCCIB1	L2				
H15	IO90NPB1	L				
H16	GCB0/IO92NPB1	Lt				
H18	GCA1/IO93PPB1	L7				
H19	GCA2/IO94PPB1	L8				
J1	VCOMPLF	LS				
J2	GFA0/IO207NDB3	L1				
J4	VCCPLF	L1				
J5	GFC0/IO209NPB3	L1				
J7	GFA2/IO206PDB3	L1				
J8	VCCIB3	L1				
J9	GND	L1				
J10	GND	L1				
J11	GND	L1				
J12	VCCIB1	M				
J13	GCC1/IO91PPB1	M				
J15	GCA0/IO93NPB1	M				
J16	GCB2/IO95PPB1	M				
J18	IO94NPB1	M				
J19	IO102PSB1	M				
K1	VCCIB3	M				
K2	GFA1/IO207PDB3	M1				
K4	GND	M1				
K5	IO204NPB3	M1				
K7	IO206NDB3	M1				
K8	VCC	M1				
K9	GND	M1				
K10	GND	M1				
K11	GND	M1				
K12	VCC	N				
K13	GCC2/IO96PPB1	N				

CS281					
Pin Number	AGL1000 Function				
K15	IO95NPB1				
K16	GND				
K18	IO96NPB1				
K19	VCCIB1				
L1	GFB2/IO205PDB3				
L2	IO205NDB3				
L4	GFC2/IO204PPB3				
L5	L5 IO203PPB3				
L7	IO203NPB3				
L8	VCCIB3				
L9	GND				
L10	GND				
L11	GND				
L12	VCCIB1				
L13	IO103PPB1				
L15	IO103NPB1				
L16	IO97PPB1				
L18	IO98NPB1				
L19	IO97NPB1				
M1	IO202PDB3				
M2	IO202NDB3				
M4	IO201NPB3				
M5	IO198PPB3				
M7	VCCIB3				
M8	VCC				
M9	VCCIB2				
M10	VCC				
M11	VCCIB2				
M12	VCC				
M13	VCCIB1				
M15	IO104NPB1				
M16	IO100NPB1				
M18	IO104PPB1				
M19	IO98PPB1				
N1	IO201PPB3				
N2	IO198NPB3				

	CS281
Pin Number	AGL1000 Function
N4	IO196PPB3
N5	IO197NPB3
N7	GEA2/IO187RSB2
N8	VCCIB2
N9	IO155RSB2
N10	IO154RSB2
N11	IO150RSB2
N12	VCCIB2
N13	VPUMP
N15	IO107PPB1
N16	IO105PPB1
N18	IO107NPB1
N19	IO100PPB1
P1	IO195PDB3
P2	GND
P3	IO195NDB3
P4	IO194PPB3
P5	GEA0/IO188NPB3
P15	IO108NDB1
P16	IO108PDB1
P17	GDC1/IO111PPB1
P18	GND
P19	IO105NPB1
R1	IO196NPB3
R2	IO194NPB3
R4	GEC1/IO190PPB3
R5	GEB1/IO189PPB3
R6	IO184RSB2
R7	IO173RSB2
R8	IO168RSB2
R9	IO160RSB2
R10	IO151RSB2
R11	IO141RSB2
R12	IO136RSB2
R13	IO127RSB2
R14	IO124RSB2

Package Pin Assignments

FG256	
Pin Number	AGL400 Function
R5	IO123RSB2
R6	IO118RSB2
R7	IO112RSB2
R8	IO106RSB2
R9	IO100RSB2
R10	IO96RSB2
R11	IO89RSB2
R12	IO85RSB2
R13	GDB2/IO81RSB2
R14	TDI
R15	NC
R16	TDO
T1	GND
T2	IO126RSB2
Т3	FF/GEB2/IO133RSB2
T4	IO124RSB2
T5	IO116RSB2
T6	IO113RSB2
T7	IO107RSB2
T8	IO105RSB2
Т9	IO102RSB2
T10	IO97RSB2
T11	IO92RSB2
T12	GDC2/IO82RSB2
T13	IO86RSB2
T14	GDA2/IO80RSB2
T15	TMS
T16	GND

Package Pin Assignments

	FG484
Pin Number	AGL400 Function
M3	NC
M4	GFA2/IO144PPB3
M5	GFA1/IO145PDB3
M6	VCCPLF
M7	IO143NDB3
M8	GFB2/IO143PDB3
M9	VCC
M10	GND
M11	GND
M12	GND
M13	GND
M14	VCC
M15	GCB2/IO71PPB1
M16	GCA1/IO69PPB1
M17	GCC2/IO72PPB1
M18	NC
M19	GCA2/IO70PDB1
M20	NC
M21	NC
M22	NC
N1	NC
N2	NC
N3	NC
N4	GFC2/IO142PDB3
N5	IO144NPB3
N6	IO141PPB3
N7	IO120RSB2
N8	VCCIB3
N9	VCC
N10	GND
N11	GND
N12	GND
N13	GND
N14	VCC
N15	VCCIB1
N16	IO71NPB1

	FG484
Pin Number	AGL1000 Function
A1	GND
A2	GND
A3	VCCIB0
A4	IO07RSB0
A5	IO09RSB0
A6	IO13RSB0
A7	IO18RSB0
A8	IO20RSB0
A9	IO26RSB0
A10	IO32RSB0
A11	IO40RSB0
A12	IO41RSB0
A13	IO53RSB0
A14	IO59RSB0
A15	IO64RSB0
A16	IO65RSB0
A17	IO67RSB0
A18	IO69RSB0
A19	NC
A20	VCCIB0
A21	GND
A22	GND
AA1	GND
AA2	VCCIB3
AA3	NC
AA4	IO181RSB2
AA5	IO178RSB2
AA6	IO175RSB2
AA7	IO169RSB2
AA8	IO166RSB2
AA9	IO160RSB2
AA10	IO152RSB2
AA11	IO146RSB2
AA12	IO139RSB2
AA13	IO133RSB2
AA14	NC

	FG484
Pin Number	AGL1000 Function
U1	IO195PDB3
U2	IO195NDB3
U3	IO194NPB3
U4	GEB1/IO189PDB3
U5	GEB0/IO189NDB3
U6	VMV2
U7	IO179RSB2
U8	IO171RSB2
U9	IO165RSB2
U10	IO159RSB2
U11	IO151RSB2
U12	IO137RSB2
U13	IO134RSB2
U14	IO128RSB2
U15	VMV1
U16	TCK
U17	VPUMP
U18	TRST
U19	GDA0/IO113NDB1
U20	NC
U21	IO108NDB1
U22	IO109PDB1
V1	NC
V2	NC
V3	GND
V4	GEA1/IO188PDB3
V5	GEA0/IO188NDB3
V6	IO184RSB2
V7	GEC2/IO185RSB2
V8	IO168RSB2
V9	IO163RSB2
V10	IO157RSB2
V11	IO149RSB2
V12	IO143RSB2
V13	IO138RSB2
V14	IO131RSB2

Datasheet Information

Revision	Changes	Page
Revision 21 (continued)	Pin description table for AGL125 CS121 was removed as it was incorrectly added to the datasheet in revision 19 (SAR 38217).	-
Revision 20 (March 2012)	Notes indicating that AGL015 is not recommended for new designs have been added. The "Devices Not Recommended For New Designs" section is new (SAR 35015).	I to IV
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been reinserted (SAR 33689).	I to IV
	Values for the power data for PAC1, PAC2, PAC3, PAC4, PAC7, and PAC8 were revised in Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices and Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices to match the SmartPower tool in Libero software version 9.0 SP1 and Power Calculator spreadsheet v7a released on 08/10/2010 (SAR 33768).	2-15
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO FPGA Fabric User Guide</i> (SAR 34730).	
	Figure 2-4 • Input Buffer Timing Model and Delays (example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to t _{DIN} (SAR 37104).	2-21
	 Added missing characteristics for 3.3 V LVCMOS, 3.3 V LVCMOS Wide range, 1.2 V LVCMOS, and 1.2 V LVCMOS Wide range to the following tables: Table 2-38, Table 2-39, Table 2-40, Table 2-42, Table 2-43, and Table 2-44 (SARs 33854 and 36891) Table 2-63, Table 2-64, and Table 2-65 (SAR 33854) Table 2-127, Table 2-128, Table 2-129, Table 2-137, Table 2-138, and Table 2-139 (SAR 36891). 	2-40, 2-47 to 2-49, 2-74, 2-77, and
	AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match Table 2-50 · AC Waveforms, Measuring Points, and Capacitive Loads (SAR 34878).	
	Added values for minimum pulse width and removed the FRMAX row from Table 2-173 through Table 2-188 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SAR 29271).	
Revision 19 (September 2011)	CS121 was added to the product tables in the "IGLOO Low Power Flash FPGAs" section for AGL125 (SAR 22737). CS81 was added for AGL250 (SAR 22737).	I
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been removed (SAR 33689).	I to IV
	M1AGL400 was removed from the "I/Os Per Package1" table. This device was discontinued in April 2009 (SAR 32450).	II
	Dimensions for the QN48 package were added to Table 1 • IGLOO FPGAs Package Sizes Dimensions (SAR 30537).	II
	The Y security option and Licensed DPA Logo were added to the "IGLOO Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	
	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 19 (continued)	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 28756).	
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-8
	Values for VCCPLL at 1.2 V –1.5 V DC core supply voltage were revised in Table 2-2 • Recommended Operating Conditions 1 (SAR 22356).	2-2
	The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 25220).	
	The value for VCCPLL 1.5 V DC core supply voltage was changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 26551).	
	The notes in the table were renumbered in order of their appearance in the table (SAR 21869).	
	The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with the limits given in Table 2-2 • Recommended Operating Conditions 1. The resulting maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259).	2-6
	Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package Thermal Resistivities (SARs 26228, 32301).	2-6
T. fo	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.14 V) were updated to remove the column for –20°C and shift the data over to correct columns (SAR 23041).	2-7
	The tables in the "Quiescent Supply Current" section were updated with revised notes on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new.	2-7
	The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 21348).	2-37
before Failure. The ex 100°C. Table 2-46 • I/	The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event before Failure. The example in the associated paragraph was changed from 110°C to 100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was revised to change 110° to 100°C. (SAR 26259).	2-40
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics –	2-28,
V LVCMOS Withat the minimurange is ±100 µ only. For a deta The following s uses a 5 V-tole The values for Module" section The following n and Output Lev ±5% Differential inp Table 2-189 • Specification w CCC/PLL core	Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-47, 2-77
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-56
	The values for $F_{DDRIMAX}$ and F_{DDOMAX} were updated in the tables in the "Input DDR Module" section and "Output DDR Module" section (SAR 23919).	2-94, 2-97
	The following notes were removed from Table 2-147 • Minimum and Maximum DC Input and Output Levels (SAR 29428): ±5%	2-81
	Differential input voltage = ±350 mV	
	Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-115