E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	143
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	196-TFBGA, CSBGA
Supplier Device Package	196-CSP (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl250v2-csg196i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – IGLOO Device Family Overview

General Description

The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that consumes as little as 5 μ W while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 μ W) while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIClevel unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOO FPGAs.

The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption.

Flash*Freeze Technology

The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for portable electronics.

User Nonvolatile FlashROM

IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The Microsemi development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGL015 and AGL030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015 and AGL030 do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

 Table 2-31 •
 Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case

 Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard)

 Applicable to Advanced I/O Banks

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{DoUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{þY} (ns)	t _{Eour} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	_	0.97	2.09	0.18	0.85	0.66	2.14	1.68	2.67	3.05	5.73	5.27	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	0.97	2.93	0.18	1.19	0.66	2.95	2.27	3.81	4.30	6.54	5.87	ns
2.5 V LVCMOS	12 mA	12	High	5	_	0.97	2.09	0.18	1.08	0.66	2.14	1.83	2.73	2.93	5.73	5.43	ns
1.8 V LVCMOS	12 mA	12	High	5	_	0.97	2.24	0.18	1.01	0.66	2.29	2.00	3.02	3.40	5.88	5.60	ns
1.5 V LVCMOS	12 mA	12	High	5	—	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns
3.3 V PCI	Per PCI spec	_	High	10	25 ²	0.97	2.32	0.18	0.74	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns
3.3 V PCI-X	Per PCI- X spec	_	High	10	25 ²	0.97	2.32	0.19	0.70	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns
LVDS	24 mA	-	High	-	-	0.97	1.74	0.19	1.35	—	—	—	—	-	-	-	ns
LVPECL	24 mA	-	High	-	—	0.97	1.68	0.19	1.16	—	-	—	—	-	—	—	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-77 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case V_{CC} = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	4 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	6 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns
100 µA	8 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-78 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	4 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	6 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns
100 µA	8 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	1L	v	IH	VOL	VОН	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	83	87	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	169	124	10	10

Table 2-79 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

 Table 2-80 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	v	ΊL	v	ΊH	VOL	vон	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-86 •2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.36	0.18	1.08	0.66	2.41	2.21	1.96	1.92	6.01	5.81	ns
4 mA	Std.	0.97	2.36	0.18	1.08	0.66	2.41	2.21	1.96	1.92	6.01	5.81	ns
6 mA	Std.	0.97	1.97	0.18	1.08	0.66	2.01	1.75	2.21	2.40	5.61	5.34	ns
8 mA	Std.	0.97	1.97	0.18	1.08	0.66	2.01	1.75	2.21	2.40	5.61	5.34	ns
12 mA	Std.	0.97	1.75	0.18	1.08	0.66	1.79	1.52	2.38	2.70	5.39	5.11	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-87 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	4.27	0.18	1.04	0.66	4.36	4.06	1.71	1.62	ns
4 mA	Std.	0.97	4.27	0.18	1.04	0.66	4.36	4.06	1.71	1.62	ns
6 mA	Std.	0.97	3.54	0.18	1.04	0.66	3.61	3.48	1.95	2.08	ns
8 mA	Std.	0.97	3.54	0.18	1.04	0.66	3.61	3.48	1.95	2.08	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-88 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	2.24	0.18	1.04	0.66	2.29	2.09	1.71	1.68	ns
4 mA	Std.	0.97	2.24	0.18	1.04	0.66	2.29	2.09	1.71	1.68	ns
6 mA	Std.	0.97	1.88	0.18	1.04	0.66	1.92	1.63	1.95	2.15	ns
8 mA	Std.	0.97	1.88	0.18	1.04	0.66	1.92	1.63	1.95	2.15	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	H, DOUT
tOSUD	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
tIRECPRE	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-155 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-84 for more information.

Output DDR Module

Figure 2-23 • Output DDR Timing Model

Table 2-166 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

Figure 2-26 • Timing Model and Waveforms

Timing Characteristics

1.5 V DC Core Voltage

Table 2-195 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.99	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.76	ns
t _{DH}	Input Data (WD) Hold Time	0.25	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	3.33	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	1.80	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	3.53	ns
t _{WCKFF}	WCLK High to Full Flag Valid	3.35	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	12.85	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	3.48	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	12.72	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	2.02	ns
	RESET Low to Data Out Low on RD (pipelined)	2.02	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency for FIFO	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

Microsemi

IGLOO Low Power Flash FPGAs

	CS196		CS196
Pin Number	AGL125 Function	Pin Number	AGL125 Function
H11	GCB0/IO54RSB0	L5	IO91RSB1
H12	GCA1/IO55RSB0	L6	IO90RSB1
H13	IO49RSB0	L7	IO83RSB1
H14	GCA2/IO57RSB0	L8	IO81RSB1
J1	GFC2/IO115RSB1	L9	IO71RSB1
J2	IO110RSB1	L10	IO70RSB1
J3	IO94RSB1	L11	VPUMP
J4	IO93RSB1	L12	VJTAG
J5	IO89RSB1	L13	GDA0/IO66RSB0
J6	NC	L14	GDB0/IO64RSB0
J7	VCC	M1	GEB0/IO106RSB1
J8	VCC	M2	GEA1/IO105RSB1
J9	NC	M3	GNDQ
J10	IO60RSB0	M4	VCCIB1
J11	GCB2/IO58RSB0	M5	IO92RSB1
J12	IO50RSB0	M6	IO88RSB1
J13	GDC1/IO61RSB0	M7	NC
J14	GDC0/IO62RSB0	M8	VCCIB1
K1	IO99RSB1	M9	IO76RSB1
K2	GND	M10	GDB2/IO68RSB1
K3	IO95RSB1	M11	VCCIB1
K4	VCCIB1	M12	VMV1
K5	NC	M13	TRST
K6	IO86RSB1	M14	VCCIB0
K7	IO80RSB1	N1	GEA0/IO104RSB1
K8	IO74RSB1	N2	VMV1
K9	IO72RSB1	N3	GEC2/IO101RSB1
K10	NC	N4	IO100RSB1
K11	VCCIB0	N5	GND
K12	GDA1/IO65RSB0	N6	IO87RSB1
K13	GND	N7	IO82RSB1
K14	GDB1/IO63RSB0	N8	IO78RSB1
L1	GEB1/IO107RSB1	N9	IO73RSB1
L2	GEC1/IO109RSB1	N10	GND
L3	GEC0/IO108RSB1	N11	ТСК
L4	IO96RSB1	N12	TDI

CS196		
Pin Number	AGL125 Function	
N13	GNDQ	
N14	TDO	
P1	GND	
P2	GEA2/IO103RSB1	
P3	FF/GEB2/IO102RSB1	
P4	IO98RSB1	
P5	IO97RSB1	
P6	IO85RSB1	
P7	IO84RSB1	
P8	IO79RSB1	
P9	IO77RSB1	
P10	IO75RSB1	
P11	GDC2/IO69RSB1	
P12	GDA2/IO67RSB1	
P13	TMS	
P14	GND	

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

IGLOO Low Power Flash FPGAs

Pin Number AGL400 Function Pin Number AGL400 Function H3 GFB1/10146PPB3 K9 GND M15 GDC1/1077UDB1 H4 VCOMPLF K10 GND M16 GDC1/1077UDB1 H5 GFC0/10147NPB3 K11 VCC N1 I0140NDB3 H6 VCC K12 VCCIB1 N2 I0138PPB3 H7 GND K13 I071NPB1 N3 GEC1/10137PPB3 H8 GND K15 I072NPB1 N4 I0131RSE2 H10 GND K16 I070NDB1 N5 GNDQ H11 VCC L1 I0142NDB3 N7 I0117RSE2 H11 VCC L1 I0142NDB3 N10 I094RSE2 H14 GCA0/I069NPB1 L4 I0139RSB3 N10 I094RSE2 H15 NC L5 GND N11 I087RSE2 J1 GFA1/I0145PB3 L7 VCC N14 VJTAG J3	FG256		FG256		FG256	
H3 GFB1/I0146PPB3 K9 GND M15 GDC1/I077UDB1 H4 VCC0MPLF K10 GND M16 I075NDB1 H5 GFC0/I0147NPB3 K11 VCCIB1 N2 I0138PPB3 H6 VCC K12 VCCIB1 N2 I0138PPB3 H7 GND K13 I071NPB1 N3 GEC1/I0737PB3 H8 GND K14 I074RSB1 N2 I0138PPB3 H9 GND K16 I070NDB1 N6 GEA2/I0134RSB2 H11 VCC L1 I0142NDB3 N7 I0117RSB2 H12 GCC0/I067NPB1 L2 I0141NPB3 N8 I0111RSB2 H13 GCB1/068NPB1 L4 I0139RSB3 N10 I099RSB2 H14 GCA0/I068NPB1 L5 VCCIB3 N11 I087RSB2 J1 GFA2/I0143PDB3 L7 VCC N13 I093RSB2 J2 GFA1/I0145PDB3 L8 VCC N14	Pin Number	AGL400 Function	Pin Number	AGL400 Function	Pin Number	AGL400 Function
H4 VCOMPLF K10 GND M16 IO75NDB1 H5 GFC0/IO147NPB3 K11 VCC N1 IO140NDB3 H6 VCC K12 VCCIB1 N2 IO138PPB3 H7 GND K14 IO71NPB1 N3 GEC1/IO137PPB3 H8 GND K14 IO74NSB1 N4 IO131RSE2 H9 GND K16 IO70NDB1 N5 GNDQ H11 VCC L1 IO142NDB3 N7 IO117RSE2 H12 GCC0//067NPB1 L2 IO141NPB3 N8 IO111RSE2 H14 GCC0//068PPB1 L3 IO122RSE2 N9 IO99RSE2 H14 GCA0//068NPB1 L4 IO139RSB3 N11 IO87RSE2 H15 NC L5 VCCIB3 N11 IO93RSE2 J1 GFA2/IO143PDB3 L10 VCC N13 IO93RSE2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG	H3	GFB1/IO146PPB3	K9	GND	M15	GDC1/IO77UDB1
H5 GFC0/I0147NPB3 K11 VCC N1 I0140NDB3 H6 VCC K12 VCCIB1 N2 I0138PPB3 H7 GND K13 I071NPB1 N3 GEC1/I0137PPB3 H8 GND K14 I074RSB1 N4 I0131RSB2 H9 GND K16 I070NDB1 N6 GE2/I0134RSB2 H11 VCC L1 I0142NDB3 N7 I0117RSB2 H12 GCC0/067NPB1 L2 I0141NPB3 N8 I0111RSB2 H13 GCB1/0689NPB1 L4 I0139RSB3 N10 I099RSB2 H16 GCB0/068NPB1 L6 GND N11 I087RSB2 H16 GCB0/068NPB1 L6 GND N11 I087RSB2 J1 GFA2/I0144PPB3 L7 VCC N14 VJTA6 J3 VCCPLF L9 VCC N14 VJTA6 J3 GND L13 GDB0/078VPB1 P2 GEB0/0136NDB3 <	H4	VCOMPLF	K10	GND	M16	IO75NDB1
H6 VCC K12 VCCIB1 N2 I0138PPB3 H7 GND K13 IO71NPB1 N3 GEC1/IO137PPB3 H8 GND K14 IO74NPB1 N4 IO131RSE2 H9 GND K15 IO72NPB1 N5 GNDQ H10 GND K16 IO70NDB1 N6 GE2A/IO134RSE2 H11 VCC L1 IO142ND83 N7 IO117RSE2 H12 GCC0/067NPB1 L2 IO141NPB3 N8 IO111RSE2 H14 GCA0/069NPB1 L4 IO138RSE3 N10 I094RSE2 H15 NC L5 VCCIB3 N11 I093RSE2 J1 GFA2/IO144PPB3 L7 VCC N13 I093RSE2 J2 GFA1/IO149DB3 L10 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDA1/IO79UDB1 J4 IO143NDB3 L11 GOT50PDB1 P1 GEB1/IO136PDB3	H5	GFC0/IO147NPB3	K11	VCC	N1	IO140NDB3
H7 GND K13 IO71NPB1 N3 GEC1/IO137PPB3 H8 GND K14 IO74R5B1 N4 IO131R5B2 H9 GND K16 IO70NDB1 N5 GNDQ H10 GND K16 IO70NDB1 N6 GEA2/IO134R5B2 H11 VCC L1 IO142NDB3 N7 IO111R5B2 H13 GCB/IO68PPB1 L2 IO141NPB3 N8 IO111R5B2 H14 GCA0/O69NPB1 L4 IO139R5B3 N10 IO94R5B2 H15 NC L5 VCCIB3 N11 IO87R5B2 H16 GCB0/IO68NPB1 L6 GND N13 IO93R5B2 J1 GFA2/IO143PDB3 L1 VCC N14 V/TAG J3 VCCPLF L9 VCC N14 V/TAG J4 IO143NDB3 L11 GND N16 GDA/I/O79UDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1/IO138DB3	H6	VCC	K12	VCCIB1	N2	IO138PPB3
H8 GND K14 IO74RSB1 N4 IO131RSB2 H9 GND K15 IO72NPB1 N5 GNDQ H10 GND K16 IO70NDB1 N6 GEA2/IO134RSB2 H11 VCC L1 IO142NDB3 N7 IO117RSB2 H12 GCC0/IO67NPB1 L2 IO141NPB3 N8 IO111RSB2 H13 GCB1/IO68PPB1 L3 IO12SRSB2 N9 IO99RSB2 H14 GCA0/IO69NPB1 L4 IO131RSB2 N10 IO94RSB2 H15 NC L5 VCCIB3 N11 IO93RSB2 J1 GFA1/IO145PB3 L8 VCC N13 IO93RSB2 J2 GFB1/IO143PDB3 L10 VCC N16 GDC/IO77VDB1 J4 IO143NDB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L14 IO76VDB1 P4 IO122RSB2	H7	GND	K13	IO71NPB1	N3	GEC1/IO137PPB3
H9 GND K15 IO72NPB1 N5 GNDQ H10 GND K16 IO70NDB1 N6 GEA2/I0134RSB2 H11 VCC L1 IO142NDB3 N7 IO117RSB2 H12 GCC0/I067NPB1 L2 IO141NPB3 N8 IO111RSB2 H13 GCB1/I068PPB1 L3 IO125RSB2 N9 IO99RSB2 H14 GCA0/I069NPB1 L4 IO135RSB3 N11 IO87RSB2 H16 GCB0/I068NPB1 L6 GND N12 GNDQ J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/I0145PDB3 L10 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDA/IO79VDB1 J4 IO143NDB3 L11 GND P1 GEB1/IO136PDB3 J4 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L14 IO76VDB1 P4 IO128RS82	H8	GND	K14	IO74RSB1	N4	IO131RSB2
H10 GND K16 IO70NDB1 N6 GEA2/IO134RSB2 H11 VCC L1 IO142NDB3 N7 IO117RSB2 H12 GCD0/IO67NPB1 L2 IO141NPB3 N8 IO117RSB2 H13 GCB1/IO68PPB1 L3 IO125RSB2 N9 IO99RSB2 H14 GCA0/IO69NPB1 L4 IO139RSB3 N10 IO94RSB2 H16 GCB0/IO68NPB1 L6 GND N12 GNDQ J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L17 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDC///O77VDB1 J4 IO143NDB3 L11 GND P1 GEB1///O136PDB3 J7 GND L13 GDB0//O78VPB1 P3 VMV2 J8 GND L14 IO76VDB1 P4 IO128RS2 J10 GND L15 IO76UDB3 P7 IO115RS82<	H9	GND	K15	IO72NPB1	N5	GNDQ
H11 VCC L1 IO142NDB3 N7 IO117RSB2 H12 GCC0/IO67NPB1 L2 IO141NPB3 N8 IO117RSB2 H13 GCB1/IO68PPB1 L3 IO125RSB2 N9 IO99RSB2 H14 GCA0/IO69NPB1 L4 IO139RSB3 N10 IO94RSB2 H16 GCB0/IO68NPB1 L6 GND N11 IO67RSB2 J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDA//IO79UDB1 J4 IO143NDB3 L10 VCC N16 GDA//IO79UDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1//IO136PDB3 J7 GND L13 GDB0//O78VPB1 P3 VMV2 J8 GND L16 IO76VDB1 P4 IO128RS2 J11 VCC M1 IO140PDB3 P7 IO	H10	GND	K16	IO70NDB1	N6	GEA2/IO134RSB2
H12 GCC0/I067NPB1 L2 I0141NPB3 N8 I0111RSE2 H13 GCB1/I068PPB1 L3 I0125RSB2 N9 I099RSB2 H14 GCA0/I069NPB1 L4 I0139RSB3 N10 I094RSB2 H15 NC L5 VCCIB3 N11 I067RSB2 H16 GCB0/I068NPB1 L6 GND N12 GNDQ J1 GFA2/I0144PPB3 L7 VCC N13 I093RSB2 J2 GFA1/I0145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDA/I/O79UDB1 J4 I0143NDB3 L10 VCC N16 GDA/I/O79UDB1 J5 GFB2/I0143PDB3 L11 GND P1 GEB1/I0136PDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L16 I076VDB1 P4 I0128RS2 J11 VCC M1 I0140PB3 P7 I0118RS2 <td>H11</td> <td>VCC</td> <td>L1</td> <td>IO142NDB3</td> <td>N7</td> <td>IO117RSB2</td>	H11	VCC	L1	IO142NDB3	N7	IO117RSB2
H13 GCB1/IO68PPB1 L3 IO125RSB2 N9 IO99RSB2 H14 GCA0/IO69NPB1 L4 IO139RSB3 N10 IO94RSB2 H15 NC L5 VCCIB3 N11 IO93RSB2 H16 GCB0/IO68NPB1 L6 GND N11 IO93RSB2 J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDA1/IO79DB1 J4 IO143NDB3 L10 VCC N16 GDA1/IO79DB1 J5 GFB2/IO14PB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L12 VCCIB1 P1 GEB1/IO136PDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L16 IO75VDB1 P4 IO128RS2 J10 GND L16 IO130RSB2 P8 IO110RS82	H12	GCC0/IO67NPB1	L2	IO141NPB3	N8	IO111RSB2
H14 GCA0/IO69NPB1 L4 IO139RSB3 N10 IO94RSB2 H15 NC L5 VCCIB3 N11 IO94RSB2 H16 GCB0/IO68NPB1 L6 GND N12 GNDQ J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDA/I/O79UDB1 J4 IO143NDB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L12 VCCB1 P3 GMV2 J3 GRD L13 GDB0/IO78VPB1 P1 GEB1/IO136PDB3 J7 GND L15 IO76UDB1 P4 IO129RSB2 J10 GND L16 IO75PDB1 P4 IO128RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J11 VCC M1 IO140PDB3 P10 IO98RSB2	H13	GCB1/IO68PPB1	L3	IO125RSB2	N9	IO99RSB2
H15 NC L5 VCCIB3 N11 IO87RSB2 H16 GCB0/IO68NPB1 L6 GND N12 GNDQ J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N16 GDA1/IO79UDB1 J4 IO143NDB3 L10 VCC N16 GDA1/IO79UDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO136NDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L15 IO76UDB1 P4 IO128RS82 J10 GND L16 IO75PDB1 P6 IO122RS82 J11 VCC M1 IO140PDB3 P7 IO116RS82 J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RS82	H14	GCA0/IO69NPB1	L4	IO139RSB3	N10	IO94RSB2
H16 GCB0/IO68NPB1 L6 GND N12 GNDQ J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N15 GDC0/IO77VDB1 J4 IO143NDB3 L10 VCC N16 GDA1/IO79UDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1/IO136PDB3 J7 GND L13 GDB0/IO78VPB1 P2 GEB0/IO136NDB3 J7 GND L14 IO76VDB1 P4 IO129RSB2 J9 GND L15 IO76UDB1 P5 IO128RSB2 J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J13 GCA1/IO69PPB1 M3 IO130RSB2 P8 IO110RSB2 J14 GC2/IO71PPB1 M4 GEC0/IO137NPB3 P10 I	H15	NC	L5	VCCIB3	N11	IO87RSB2
J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N15 GDC0/IO77VDB1 J4 IO143NDB3 L10 VCC N16 GDA1/IO79UDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO136NDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L15 IO76UDB1 P4 IO129RSB2 J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO116RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J13 GCA1/IO69PPB1 M3 IO130RSB2 P8 IO110RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO95RSB	H16	GCB0/IO68NPB1	L6	GND	N12	GNDQ
J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N15 GDC0/IO77VDB1 J4 IO143NDB3 L10 VCC N16 GDC0/IO77VDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO136NDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L14 IO76VDB1 P4 IO129RSB2 J10 GND L15 IO76UDB1 P5 IO128RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J12 GCB2/IO71PPB1 M2 IO130RSB2 P8 IO110RSB2 J13 GCA1/IO69PPB1 M3 IO138NPB3 P10 IO99RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO98RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P13	J1	GFA2/IO144PPB3	L7	VCC	N13	IO93RSB2
J3 VCCPLF L9 VCC N15 GDC0/I077VDB1 J4 I0143NDB3 L10 VCC N16 GDA1/I079UDB1 J5 GFB2/I0143PDB3 L11 GND P1 GEB1/I0136PDB3 J6 VCC L12 VCCIB1 P2 GEB0/I0136NDB3 J7 GND L13 GDB0/I078VPB1 P3 VMV2 J8 GND L15 I076UDB1 P4 I0129RSB2 J9 GND L16 I075PDB1 P4 I0129RSB2 J11 VCC M1 I0140PDB3 P7 I0116RSB2 J11 VCC M1 I0140PDB3 P7 I0116RSB2 J13 GCA1/I069PPB1 M3 I0138NPB3 P9 I098RSB2 J14 GCC2/I072PPB1 M4 GEC0/I0137NPB3 P10 I098RSB2 J16 GCA2/I070PDB1 M6 VCCIB2 P13 TCK K1 GFC2/I0142PDB3 M7 VCCIB2 P14 VPUMP	J2	GFA1/IO145PDB3	L8	VCC	N14	VJTAG
J4 IO143NDB3 L10 VCC N16 GDA1/IO79UDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO136NDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L14 IO76VDB1 P4 IO129RSB2 J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J11 VCC M1 IO130RSB2 P8 IO110RSB2 J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P13 TCK K1 GFC2/IO142PDB3 M8 IO108RSB2 P14 VPUMP K3 IO144NPB3 M9 IO101RSB2 P16 GDA0/IO7	J3	VCCPLF	L9	VCC	N15	GDC0/IO77VDB1
J5 GFB2/I0143PDB3 L11 GND P1 GEB1/I0136PDB3 J6 VCC L12 VCCIB1 P2 GEB0/I0136NDB3 J7 GND L13 GDB0/I078VPB1 P3 VMV2 J8 GND L14 I076VDB1 P4 I0129RSB2 J9 GND L15 I076UDB1 P5 I0128RSB2 J10 GND L16 I075PDB1 P6 I0122RSB2 J11 VCC M1 I0140PDB3 P7 I0115RSB2 J12 GCB2/I071PPB1 M2 I0130RSB2 P8 I0110RSB2 J13 GCA1/I069PPB1 M3 I0138NPB3 P9 I098RSB2 J14 GCC2/I072PPB1 M4 GEC0/I0137NPB3 P10 I095RSB2 J16 GCA2/I070PDB1 M6 VCCIB2 P13 TCK K1 GFC2/I0142PDB3 M8 I0108RSB2 P14 VPUMP K3 I0141PPB3 M9 I0101RSB2 P16	J4	IO143NDB3	L10	VCC	N16	GDA1/IO79UDB1
J6 VCC L12 VCCIB1 P2 GEB0/IO136NDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L14 IO76VDB1 P4 IO129RSB2 J9 GND L15 IO76UDB1 P4 IO129RSB2 J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J12 GCB2/IO71PPB1 M2 IO130RSB2 P8 IO110RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P9 IO98RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P13 TCK K1 GFC2/IO142PDB3 M7 VCCIB2 P14 VPUMP K3 IO144NPB3 M8 IO1018RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GEA1/IO135ND	J5	GFB2/IO143PDB3	L11	GND	P1	GEB1/IO136PDB3
J7 GND L13 GDB0/I078VPB1 P3 VMV2 J8 GND L14 I076VDB1 P4 I0129RSB2 J9 GND L15 I076UDB1 P5 I0128RSB2 J10 GND L16 I075PDB1 P6 I0122RSB2 J11 VCC M1 I0140PDB3 P7 I0115RSB2 J12 GCB2/I071PPB1 M2 I0130RSB2 P8 I0110RSB2 J13 GCA1/I069PPB1 M3 I0138NPB3 P9 I098RSB2 J14 GCC2/I072PPB1 M4 GEC0/I0137NPB3 P10 I095RSB2 J16 GCA2/I070PDB1 M6 VCCIB2 P12 I084RSB2 K1 GFC2/I0142PDB3 M7 VCCIB2 P13 TCK K2 I0144NPB3 M8 I0108RSB2 P14 VPUMP K3 I0141PPB3 M9 I0101RSB2 P16 GDA0/I079VDB1 K5 VCCIB3 M11 VCCIB2 R1 GE	J6	VCC	L12	VCCIB1	P2	GEB0/IO136NDB3
J8 GND L14 IO76VDB1 P4 IO129RSB2 J9 GND L15 IO76UDB1 P5 IO128RSB2 J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J12 GCB2/IO71PPB1 M2 IO130RSB2 P8 IO110RSB2 J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO95RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P13 TCK K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K4 IO120RSB2 M10 VCCIB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO13	J7	GND	L13	GDB0/IO78VPB1	P3	VMV2
J9 GND L15 IO76UDB1 P5 IO128RSB2 J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J12 GCB2/IO71PPB1 M2 IO130RSB2 P8 IO110RSB2 J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO98RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M9 IO101RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M13 IO83RSB2 R3	J8	GND	L14	IO76VDB1	P4	IO129RSB2
J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J12 GCB2/IO71PPB1 M2 IO130RSB2 P8 IO110RSB2 J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO95RSB2 J15 NC M5 VMV3 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M14 GDB1/IO78UPB1 R4	J9	GND	L15	IO76UDB1	P5	IO128RSB2
J11 VCC M1 IO140PDB3 P7 IO115RSB2 J12 GCB2/IO71PPB1 M2 IO130RSB2 P8 IO110RSB2 J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO95RSB2 J15 NC M5 VMV3 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135NDB3 K6 VCC M13 IO83RSB2 R3 IO127RSB2 K8 GND M14 GDB1/IO78UPB1 R4 <t< td=""><td>J10</td><td>GND</td><td>L16</td><td>IO75PDB1</td><td>P6</td><td>IO122RSB2</td></t<>	J10	GND	L16	IO75PDB1	P6	IO122RSB2
J12 GCB2/I071PPB1 M2 I0130RSB2 P8 I0110RSB2 J13 GCA1/I069PPB1 M3 I0138NPB3 P9 I098RSB2 J14 GCC2/I072PPB1 M4 GEC0/I0137NPB3 P10 I095RSB2 J15 NC M5 VMV3 P11 I088RSB2 J16 GCA2/I070PDB1 M6 VCCIB2 P12 I084RSB2 K1 GFC2/I0142PDB3 M7 VCCIB2 P13 TCK K2 I0144NPB3 M8 I0108RSB2 P14 VPUMP K3 I0141PPB3 M9 I0101RSB2 P15 TRST K4 I0120RSB2 M10 VCCIB2 P16 GDA0/I079VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/I0135PDB3 K6 VCC M12 VMV2 R2 GEA0/I0135NDB3 K7 GND M14 GDB1/I078UPB1 R4 GEC2/I0132RSB2	J11	VCC	M1	IO140PDB3	P7	IO115RSB2
J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO95RSB2 J15 NC M5 VMV3 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 P16 GDA0/IO135NDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	J12	GCB2/IO71PPB1	M2	IO130RSB2	P8	IO110RSB2
J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO95RSB2 J15 NC M5 VMV3 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P16 GDA0/IO79VDB1 K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	J13	GCA1/IO69PPB1	M3	IO138NPB3	P9	IO98RSB2
J15 NC M5 VMV3 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M13 IO83RSB2 R3 IO127RSB2 K8 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	J14	GCC2/IO72PPB1	M4	GEC0/IO137NPB3	P10	IO95RSB2
J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	J15	NC	M5	VMV3	P11	IO88RSB2
K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	J16	GCA2/IO70PDB1	M6	VCCIB2	P12	IO84RSB2
K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	K1	GFC2/IO142PDB3	M7	VCCIB2	P13	ТСК
K3IO141PPB3M9IO101RSB2P15TRSTK4IO120RSB2M10VCCIB2P16GDA0/IO79VDB1K5VCCIB3M11VCCIB2R1GEA1/IO135PDB3K6VCCM12VMV2R2GEA0/IO135NDB3K7GNDM13IO83RSB2R3IO127RSB2K8GNDM14GDB1/IO78UPB1R4GEC2/IO132RSB2	K2	IO144NPB3	M8	IO108RSB2	P14	VPUMP
K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M13 IO83RSB2 R3 IO127RSB2 K8 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	K3	IO141PPB3	M9	IO101RSB2	P15	TRST
K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M13 IO83RSB2 R3 IO127RSB2 K8 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	K4	IO120RSB2	M10	VCCIB2	P16	GDA0/IO79VDB1
K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M13 IO83RSB2 R3 IO127RSB2 K8 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	K5	VCCIB3	M11	VCCIB2	R1	GEA1/IO135PDB3
K7 GND M13 IO83RSB2 R3 IO127RSB2 K8 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	K6	VCC	M12	VMV2	R2	GEA0/IO135NDB3
K8 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2	K7	GND	M13	IO83RSB2	R3	IO127RSB2
	K8	GND	M14	GDB1/IO78UPB1	R4	GEC2/IO132RSB2

Package Pin Assignments

	FG484
Pin Number	AGL400 Function
E13	IO38RSB0
E14	IO42RSB0
E15	GBC1/IO55RSB0
E16	GBB0/IO56RSB0
E17	IO44RSB0
E18	GBA2/IO60PDB1
E19	IO60NDB1
E20	GND
E21	NC
E22	NC
F1	NC
F2	NC
F3	NC
F4	IO154VDB3
F5	IO155VDB3
F6	IO11RSB0
F7	IO07RSB0
F8	GAC0/IO04RSB0
F9	GAC1/IO05RSB0
F10	IO20RSB0
F11	IO24RSB0
F12	IO33RSB0
F13	IO39RSB0
F14	IO45RSB0
F15	GBC0/IO54RSB0
F16	IO48RSB0
F17	VMV0
F18	IO61NPB1
F19	IO63PDB1
F20	NC
F21	NC
F22	NC
G1	NC
G2	NC
G3	NC
G4	IO151VDB3

	FG484
Pin Number	AGL600 Function
C21	NC
C22	VCCIB1
D1	NC
D2	NC
D3	NC
D4	GND
D5	GAA0/IO00RSB0
D6	GAA1/IO01RSB0
D7	GAB0/IO02RSB0
D8	IO11RSB0
D9	IO16RSB0
D10	IO18RSB0
D11	IO28RSB0
D12	IO34RSB0
D13	IO37RSB0
D14	IO41RSB0
D15	IO43RSB0
D16	GBB1/IO57RSB0
D17	GBA0/IO58RSB0
D18	GBA1/IO59RSB0
D19	GND
D20	NC
D21	NC
D22	NC
E1	NC
E2	NC
E3	GND
E4	GAB2/IO173PDB3
E5	GAA2/IO174PDB3
E6	GNDQ
E7	GAB1/IO03RSB0
E8	IO13RSB0
E9	IO14RSB0
E10	IO21RSB0
E11	IO27RSB0
E12	IO32RSB0

	FG484
Pin Number	AGL1000 Function
E13	IO51RSB0
E14	IO57RSB0
E15	GBC1/IO73RSB0
E16	GBB0/IO74RSB0
E17	IO71RSB0
E18	GBA2/IO78PDB1
E19	IO81PDB1
E20	GND
E21	NC
E22	IO84PDB1
F1	NC
F2	IO215PDB3
F3	IO215NDB3
F4	IO224NDB3
F5	IO225NDB3
F6	VMV3
F7	IO11RSB0
F8	GAC0/IO04RSB0
F9	GAC1/IO05RSB0
F10	IO25RSB0
F11	IO36RSB0
F12	IO42RSB0
F13	IO49RSB0
F14	IO56RSB0
F15	GBC0/IO72RSB0
F16	IO62RSB0
F17	VMV0
F18	IO78NDB1
F19	IO81NDB1
F20	IO82PPB1
F21	NC
F22	IO84NDB1
G1	IO214NDB3
G2	IO214PDB3
G3	NC
G4	IO222NDB3

	FG484		
Pin Number	AGL1000 Function		
H19	IO87PDB1		
H20	VCC		
H21	NC		
H22	NC		
J1	IO212NDB3		
J2	IO212PDB3		
J3	NC		
J4	IO217NDB3		
J5	IO218NDB3		
J6	IO216PDB3		
J7	IO216NDB3		
J8	VCCIB3		
J9	GND		
J10	VCC		
J11	VCC		
J12	VCC		
J13	VCC		
J14	GND		
J15	VCCIB1		
J16	IO83NPB1		
J17	IO86NPB1		
J18	IO90PPB1		
J19	IO87NDB1		
J20	NC		
J21	IO89PDB1		
J22	IO89NDB1		
K1	IO211PDB3		
K2	IO211NDB3		
K3	NC		
K4	IO210PPB3		
K5	IO213NDB3		
K6	IO213PDB3		
K7	GFC1/IO209PPB3		
K8	VCCIB3		
K9	VCC		
K10	GND		

	FG484
Pin Number	AGL1000 Function
K11	GND
K12	GND
K13	GND
K14	VCC
K15	VCCIB1
K16	GCC1/IO91PPB1
K17	IO90NPB1
K18	IO88PDB1
K19	IO88NDB1
K20	IO94NPB1
K21	IO98NDB1
K22	IO98PDB1
L1	NC
L2	IO200PDB3
L3	IO210NPB3
L4	GFB0/IO208NPB3
L5	GFA0/IO207NDB3
L6	GFB1/IO208PPB3
L7	VCOMPLF
L8	GFC0/IO209NPB3
L9	VCC
L10	GND
L11	GND
L12	GND
L13	GND
L14	VCC
L15	GCC0/IO91NPB1
L16	GCB1/IO92PPB1
L17	GCA0/IO93NPB1
L18	IO96NPB1
L19	GCB0/IO92NPB1
L20	IO97PDB1
L21	IO97NDB1
L22	IO99NPB1
M1	NC
M2	IO200NDB3

Revision / Version	Changes	Page
Advance v0.4 (September 2007)	Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings.	i, ii, iii, iv
	The number of single-ended I/Os for the CS81 package for AGL030 was updated to 66 in the "I/Os Per Package1" table.	ii
	The "Power Conservation Techniques" section was updated to recommend that unused I/O signals be left floating.	2-51
Advance v0.3 (August 2007)	In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	i
	The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	ïi
	The CS81 and CS121 packages were added to the Temperature Grade Offerings table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	iv
	The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent).	2-61
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2